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Abstract: Background: Aqueous humor outflow resistance in the trabecular meshwork (TM), jux-
tacanalicular connective tissue (JCT), and Schlemm’s canal (SC) endothelium of the conventional
outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is
actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall
tissues. The resistance effect implies the presence of a fluid–structure interaction (FSI) coupling
between the outflow tissues and the aqueous humor. However, the biomechanical interactions
between viscoelastic outflow tissues and aqueous humor dynamics are largely unknown. Methods:
A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex was
constructed with elastic and viscoelastic material properties for the bulk extracellular matrix and
embedded elastic cable elements. The FE models were subjected to both idealized and a physiologic
IOP load boundary using the FSI method. Results: The elastic material model for both the idealized
and physiologic IOP load boundary at equal IOPs showed similar stresses and strains in the outflow
tissues as well as pressure in the aqueous humor. However, outflow tissues with viscoelastic material
properties were sensitive to the IOP load rate, resulting in different mechanical and hydrodynamic
responses in the tissues and aqueous humor. Conclusions: Transient IOP fluctuations may cause a
relatively large IOP difference of ~20 mmHg in a very short time frame of ~0.1 s, resulting in a rate
stiffening in the outflow tissues. Rate stiffening reduces strains and causes a rate-dependent pressure
gradient across the outflow tissues. Thus, the results suggest it is necessary to use a viscoelastic
material model in outflow tissues that includes the important role of IOP load rate.

Keywords: trabecular meshwork; juxtacanalicular tissue; Schlemm’s canal; viscoelastic material
model; transient IOP fluctuations; fluid–structure interaction

1. Introduction

The aqueous humor outflow resistance in the conventional outflow pathway is the
primary determinant of intraocular pressure (IOP) [1–4]. Dysregulation in the balance
between the aqueous inflow and outflow can result in an IOP elevation that is associated
with primary open-angle glaucoma (POAG) [5–12]. Aqueous humor passes through the
trabecular meshwork (TM) and the juxtacanalicular connective tissue (JCT). After crossing
the TM, JCT, and inner wall endothelium of Schlemm’s canal (SC), aqueous humor enters
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the SC lumen and eventually flows circumferentially to the collector channels leading to
the aqueous and episcleral veins [13–17].

Transient IOP fluctuations [12,18–24] result in a dynamic mechanical environment
in the outflow pathway that actively affects the geometry and cellular mechanotransduc-
tion of the outflow tissues [25–27] as well as the outflow resistance [28]. Active outflow
resistance regulation in the conventional outflow pathway results in a dynamic outflow
pressure gradient across the outflow tissues [9,29,30]. The TM responds mechanically to
IOP fluctuations by undergoing geometric changes, resulting in an interaction between the
outflow tissues and aqueous humor [29]. Cell and tissue constituents of the TM, JCT, and
SC respond to the pressure gradient by adjusting the tissue and cellular elasticity [17]. Thus,
TM/JCT/SC motion and its resulting mechanisms of aqueous outflow resistance [31,32]
mainly depend on the biomechanical properties of outflow tissues [33–36]. The pulsatile
motion of the TM reflects the tissue’s deformability in response to the cardiac-induced
ocular pulse amplitude [37], and the TM’s stiffness is a key parameter in determining
TM pulsatile motion [38]. It has been shown that the TM experiences different displace-
ments with IOP fluctuation [31,32] that demonstrate the viscoelasticity of the TM tissue.
However, one may argue that these displacements in the TM relate to the ocular pulse
since a significant correlation has been reported between the TM displacement and ocular
pulse amplitude [31]. However, Li and colleagues used phase-sensitive optical coherence
tomography (PhS-OCT) to show that TM displacement is strongly IOP load rate-dependent
at a constant ocular pulse amplitude in ex vivo nonhuman primate eyes (Macaca nemestrina).
Thus, as load rate increases, the same IOP pulse amplitude results in progressively smaller
displacements of the TM [33], indicating that the TM is viscoelastic.

To date, experimental [38–40] and numerical [40,41] TM biomechanics studies have
been limited to using isotropic elastic and hyperelastic mechanical properties to model the
TM, and yet soft biological tissues are generally both anisotropic and viscoelastic [42–47].
Elastic materials restore the specimen to its initial configuration by releasing stored energy
from loading. In contrast, viscoelastic materials dissipate some stored energy [48], causing
a load rate-dependent mechanical response. IOP causes microscopic mechanical defor-
mations in the extracellular matrix of the TM, JCT, and SC inner wall tissues [27,49–51].
Soft biological tissues such as those in the outflow pathway are typically viscoelastic and
their mechanical responses depend on the load rate. Therefore, it is reasonable to speculate
that the outflow pressure gradient across the TM/JCT/SC inner wall complex depends
on the rate of change in IOP (load), which may result in dynamic changes in outflow
resistance. However, the dynamics of aqueous humor interactions with the local and global
biomechanical responses of the outflow pathway tissues are largely unknown.

Karimi and colleagues recently calculated the viscoelastic mechanical properties of the
TM/JCT/SC complex [52] using a finite element (FE)-optimization method and dynamic
SC pressurization experimental setup [53]. We showed that the elastic material model
was unable to capture the time-dependent mechanical response of the outflow tissues. In
contrast, the viscoelastic material model successfully captured the tissues’ dynamic motion
and resulted in a good match with spectral domain PhS-OCT imaging data [53]. Applying
the viscoelastic material model allows us to include the important effect of dynamic IOP
changes across the outflow pathway. The model can then simultaneously assess the
hydrodynamics and the resultant stresses and strains of the outflow tissues [48,54–56]. The
findings may significantly enhance the accuracy of the modeling results. It is suggested that
there must be an active fluid–structure interaction (FSI) providing coupling between the
outflow tissues and outflow resistance that actively contributes to IOP regulation [57,58].
Experimental studies also showed a significant correlation between cyclic responses that
affect the biomechanics of the outflow tissues and the resultant balance of aqueous inflow
and outflow [59]. Doubling the inflow rate resulted in an immediate ~2-fold IOP elevation,
which returned to baseline regulation after several days of continued perfusion [57].

Karimi [60] recently developed a 3D FSI microstructural model of a healthy human
conventional outflow pathway. We showed a larger aqueous humor pressure drop across



Bioengineering 2022, 9, 672 3 of 17

the outflow pathway with stiffer tissues. However, we used a simple elastic material
model with an idealized IOP load boundary that may not fully represent the dynamic
biomechanical behavior seen with a physiologic load boundary. While great strides have
been made in understanding the mechanisms that regulate aqueous outflow resistance in
the conventional outflow pathway [3,4,28,58,61–65], the mechanism of outflow resistance
regulation with a dynamic physiologic IOP load boundary is largely unknown. Although
it has been shown experimentally [38,66] and numerically [60] that increased TM stiffness
causes increased outflow resistance, it remains unclear how viscoelastic outflow tissues
with a physiologic IOP load boundary may affect outflow resistance. To date, clinical
and experimental techniques have been unable to quantify the biomechanical stresses and
strains in the outflow tissues considering their time-dependent mechanical properties and
transient IOP fluctuations. Numerical approaches, such as the FSI, allow us to calculate the
local resultant stresses and strains across the TM, JCT, and SC inner wall tissues, as well as
hydrodynamics of the aqueous humor. FSI studies can estimate the regions with relatively
higher shear stresses that are thought to play an important role in IOP regulation through
the endothelial nitric oxide pathway [67–69] and include the biomechanical interaction of
aqueous humor with the deformable tissue walls that can advance our understanding of
IOP regulation [19,27,53,60]. We can thereby conceptualize new approaches for diagnostic
and therapeutic methods to cope with ocular hypertension and glaucoma [31].

In this study, we constructed a microstructural TM/JCT/SC complex FE model of
a normal human eye [60] using the elastic and viscoelastic extracellular matrix of the
outflow tissues with embedded elastic cable elements that represent the directional stiffness
imparted by anisotropic collagen fibrils [53]. The tissues were subjected to an idealized and
physiologic IOP load boundary by means of controlling steady state or pulsatile aqueous
humor inflow. The resultant stresses and strains in the outflow tissues and hydrodynamics
in the aqueous humor were calculated using the FSI method, and results were compared.

2. Materials and Methods
2.1. Human Eye Imaging, FE Reconstruction, Cable Elements Distribution, Material Models,
Hydraulic Conductivity, and Boundary Conditions

The FE model of the TM/JCT/SC complex consisting of the sclera, outflow system, and
cornea was obtained as described in our prior publication [70]. The imaging, segmentation,
and volume meshing methods of the TM/JCT/SC complex FE model were fully explained
in our prior publications [53,60]. A wedge of the anterior segment was imaged and [71]
volume meshed [70,72]. The model [73] was separated into the TM with adjacent JCT
(~10 µm [71]) and SC inner wall (~5 µm [30]) regions as shown in Figure 1. Idealized
µm-sized pores were distributed in the SC inner wall [74] with a pore density and diameter
of 835 pores/mm2 [30] and 1.3 µm [75], respectively (Figure 1a inset). Element quality
assessment was conducted using Ansys (Ansys Inc., Pittsburgh, PA, USA) [52,73,76–78]
to make sure the Jacobian ratio, aspect ratio, warping factor, and skewness were within
the acceptable ranges for a good quality element (Ansys Inc.). Mesh density analyses were
performed for the FE model described in our prior publications [53,60].

The cable elements were distributed in the extracellular matrix of the TM and JCT
(Figure 1b) using a mesh-free, penalty-based, cable-in-solid coupling algorithm [52] to
represent the directional stiffness imparted by anisotropic collagen fibril orientation in
those tissues [17,79–86]. The cable elements were modeled with an elastic material, and the
extracellular matrix was modeled with elastic and viscoelastic materials using 8-noded hexa-
hedral solid elements with a fully integrated element formulation [87]. The elastic modulus
of the sclera was 2.93 MPa [88] and nearly incompressible (Poisson’s ratio, ν = 0.495) [89,90].
The elastic modulus of the TM/JCT/SC complex was 0.148 MPa, nearly incompressible
(Poisson’s ratio, ν = 0.495), with the cable element elastic modulus of 1280 MPa as calcu-
lated in our prior publication using an FE-optimization algorithm matched with spectral
domain PhS-OCT imaging data [53]. In the viscoelastic model, the material parameters
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were G0 (short-time shear modulus) = 6.36 MPa, G∞ (long-time shear modulus) = 1.08 MPa,
β (decay constant) = 999.25 1/s, and cable element elastic modulus = 2814 MPa [53].
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Figure 1. (a) The 3D microstructural FE model of the TM/JCT/SC complex and aqueous humor with
(b) embedded elastic cable elements [60].

The hydraulic conductivities of 2.0µL/min/mmHg/cm2 [91], 2.5 mmHg/µL/min/cm2 [92],
and 9000 × 10−11 cm2 s/g [28] were programmed into the model for the TM, JCT, and SC
inner wall extracellular matrix [60]. The TM, JCT, and SC inner walls were treated as tissues
with the same mechanical properties but different hydraulic conductivities.

A pre-tension force of ~500 µN [93] was induced in the TM/JCT/SC complex local
nodes to mimic the ciliary muscle movement during IOP fluctuation [17], which also helps
to prevent sudden excessive dynamic response in the cables [52]. Aqueous humor with a
physiologic IOP load boundary adopted from a living non-human primate (Figure 2a,b)
and an idealized IOP load boundary (Figure 2c) were flowed into the outflow pathway.
Due to the limitation in our computational power, only a 400 ms range of physiologic IOP
(Figure 2a) was selected and applied to the model (Figure 2b).
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Figure 2. (a) Transient IOP fluctuations in a non-human primate (a rhesus macaque aged 4, male,
right eye). (b) Physiologic and (c) idealized IOP load boundary with an IOP pre-load applied to the
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2.2. Fluid–Structure Interaction

The FSI formulations were fully explained in our prior publication [60]. Briefly, the
solid and fluid domains representing the TM/JCT/SC complex and aqueous humor were
defined using an arbitrary Lagrangian–Eulerian (ALE) approach [94,95]. The multi material
ALE (Ansys/LS-DYNA, Pittsburgh, PA, USA) automatic mesh refinement algorithm helped
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to enhance the modeling robustness and accuracy of Lagrangian and Eulerian mesh motions
within the same framework, enhancing the modeling ability for curved surfaces of a
complex geometry [96,97]. Aqueous humor was modeled as homogeneous, Newtonian, and
viscous [98], with the density and dynamic viscosity of 1000 kg/m3 and 0.7185 mPa·s [99],
respectively.

The pre-load was achieved by a linear IOP elevation to 10 mm Hg for 200 ms (time-
step: 10 ms), then kept at 10 mmHg for 200 ms, and finally elevated to 26.54 mmHg
for 200 ms. The pre-load was followed by a physiologic IOP load boundary for 400 ms
(Figure 2b) [23,100]. An idealized IOP load boundary was also applied within 400 ms after
the pre-loading to mimic the same maximum and minimum IOP magnitudes (Figure 2c)
that occur in the physiological IOP load boundary (Figure 2b). An explicit dynamic solver
was used to solve the problem. The elastic and viscoelastic FSI simulations on average took
~250 and ~436 h, respectively, to run on our workstation.

3. Results

The first principal (tensile) stresses and strains in the TM/JCT/SC complex with
idealized and physiologic IOP load boundary and elastic and viscoelastic material models
at three different pressures are shown in Figures 3 and 4, respectively.

The maximum shear stresses and strains in the TM/JCT/SC complex with idealized
and physiologic IOP load boundary and elastic and viscoelastic material models at three
different pressures are shown in Figures 5 and 6, respectively.

The pressure in the aqueous humor across the TM/JCT/SC complex with idealized
and physiologic IOP load boundary and elastic and viscoelastic material models at three
different pressures is shown in Figure 7.
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The resultant displacement in the TM/JCT/SC complex at the IOP of 10 mmHg is
shown in Figure 8.
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Figure 8. The displacement in the TM/JCT/SC complex with (a) elastic and (b) viscoelastic material
model at the IOP of 10 mmHg.

The volumetric average stresses and strains in the TM/JCT/SC complex, as well as
the average volumetric pressure in the aqueous humor across the TM/JCT/SC complex,
are summarized in Table 1.

Table 1. Volumetric average stresses and strains in the TM/JCT/SC complex and volumetric average
pressure in the aqueous humor.

Simulations 1st Principal Stress
(kPa)

1st Principal Strain
(%)

Max Shear Stress
(kPa)

Max Shear Strain
(%)

AH Pressure
(mmHg)

Idealized IOP Load Boundary—Elastic Material Model
Pressure #1 −3.18 4.83 0.68 4.55 13.88
Pressure #2 −1.17 1.22 0.35 1.95 4.02
Pressure #3 −3.17 4.83 0.69 4.55 13.88

Physiologic IOP Load Boundary—Elastic Material Model
Pressure #1 −3.18 4.83 0.68 4.55 13.88
Pressure #2 −1.17 1.22 0.35 1.95 4.02
Pressure #3 −3.17 4.83 0.69 4.54 13.88

Idealized IOP Load Boundary—Viscoelastic Material Model
Pressure #1 −4.95 2.15 9.84 7.66 12.01
Pressure #2 −3.12 0.92 4.12 2.29 3.98
Pressure #3 −6.12 2.22 10.65 4.55 11.11

Physiologic IOP Load Boundary—Viscoelastic Material Model
Pressure #1 −4.95 2.15 9.84 7.66 12.01
Pressure #2 −2.99 0.79 4.75 2.93 4.35
Pressure #3 −5.41 2.33 11.59 3.89 11.42
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4. Discussion

Characterizing the mechanical behavior of the outflow tissues with a dynamic IOP load
boundary may significantly contribute to our understanding of IOP regulation in the human
eye [17]. Aqueous outflow resistance in the conventional outflow pathway is the predomi-
nant parameter in providing a balance between the average rate of aqueous inflow and out-
flow to maintain IOP within the normal physiologic range [59]. Experimental [59,74,101–105]
and numerical [106–108] studies to date, and reviews of their findings [9,10,17,109–115],
have all contributed greatly to our understanding of the mechanism of outflow resistance
in the conventional outflow pathway. However, the active biomechanical response of the
outflow tissues and their interaction with aqueous humor outflow dynamics have not been
determined. The outflow pathway pressure provides a very dynamic mechanical environ-
ment that actively affects the tissues’ geometry [59,116] and causes a time-dependent pres-
sure gradient across the outflow tissues [9,29]. Outflow resistance is affected by alterations
in tissue geometry [117], so there must be a coupling between outflow hydrodynamics
(fluid) and the biomechanics of the TM, JCT, and SC inner wall (structure) in the form of
a fluid–structure interaction [58]. This coupling has been proven through experimental
studies showing a correlation between the biomechanics of the outflow tissues and the rate
of the aqueous outflow [57,59], suggesting that the outflow resistance actively contributes
to aqueous outflow regulation to maintain an IOP within the normal range. In this study,
a 3D FE microstructural model of the human TM/JCT/SC complex was constructed [60]
(Figure 1) and subjected to an aqueous inflow with an idealized (steady flow) and physio-
logic IOP (pulsatile flow) load boundary (Figure 2). Outflow tissues were treated as elastic
and viscoelastic. The material parameters were obtained from our prior study using an
FE-optimization algorithm for healthy eyes matched with PhS-OCT imaging data [53].

Elastic materials behave the same regardless of time and loading rate, so the final
resultant strain will be the same when load rate or time change [118]. As such, the first
principal (tensile) stresses and strains in the TM/JCT/SC complex model with the elastic
material model were similar regardless of the rate of the applied IOP load (Figures 3 and 4;
Table 1). The viscoelastic FE model showed larger stresses but smaller strains across the
TM/JCT/SC complex than the elastic model (Figures 3 and 4; Table 1). Transient IOP
fluctuations cause a relatively large IOP difference (~20 mmHg) in a very short time frame
(~0.1 s) (Figure 2a) that may result in viscoelastic rate stiffening in the outflow tissues.
Rate stiffening reduces strains and causes a rate-dependent outflow pressure gradient
across the outflow tissues, as observed in our modeling results (Figure 4 and Table 1). In
the elastic TM/JCT/SC complex FE model, the strain appears immediately once the IOP
load boundary is applied to the tissues. The strain is larger (Figures 3 and 4; Table 1) and
proportional to the applied IOP load boundary, which is different than the results from the
viscoelastic model (Table 1). The viscous component of the viscoelastic material deforms
slowly when exposed to an external force. Once a deforming force has been removed,
the elastic portion of the material returns the tissue to its original configuration [119].
Viscoelastic materials present a reversible response depending on the rate of the applied
load as they can return to the initial state [120–122], and this is why the resultant stresses and
strains across the outflow connective tissues are IOP load rate-dependent (Figures 3 and 4;
Table 1).

TM biomechanics appears to be a key regulator of mechanosensing within the conven-
tional outflow pathway [108]. When the TM expands with IOP elevation, it stretches the
TM lamellae [2,29,57,123,124] and induces shear stress (Figure 5) and strain (Figure 6) in the
SC endothelial cells due to circumferential flow through a narrowing SC lumen [125,126].
Calculating the shear stress of a viscoelastic outflow tissue with a physiologic IOP load
boundary may significantly contribute to our understanding of IOP regulation through the
endothelial nitric oxide pathway [67–69]. Viscoelastic outflow tissues showed a larger shear
strain than elastic tissues (Figure 6 and Table 1). Shear strain in the viscoelastic FE model at
pressure #1 was larger than in pressure #3 (Figure 6 and Table 1). While the magnitude of
the pressure at these two points was the same at 26.5 mmHg, the IOP history was different
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(Figure 2b), which affects the tissue’s shear strain. In response to a shear strain, SC cells
actively upregulate nitric oxide production, relaxing neighboring TM cells and increasing
the permeability of the SC inner wall [67–69].

The TM/JCT interface and the inner wall of SC as well as distal to the outer wall of
SC are predominantly responsible for ~50–75% and ~25–50% of the outflow resistance,
respectively [58,62,127–130]. While the outflow resistance in the elastic FE model mainly
resides within the TM/JCT, in the viscoelastic model, the JCT and the immediate vicinity of
the SC inner wall are the main site of the outflow resistance (Figure 7). Aqueous outflow
resistance results in a pressure gradient [9,30] in the outflow tissues that impacts the outflow
system homeostasis and contributes to maintaining IOP in the normal range [131,132]. The
pressure gradient also changes the outflow tissues’ geometry [25–27], which in turn affects
the loading regime across the tissues, as well as the outflow resistance [28].

Li and colleagues showed that at a constant ocular pulse amplitude, the resultant
TM displacement is IOP magnitude-dependent, whereby a larger IOP causes smaller dis-
placement in the TM [33]. The smaller displacement suggests that the TM tissue must be
viscoelastic. Li showed the average TM displacement of ~1.6 µm at an IOP of 10 mmHg [33].
In our study, the elastic and viscoelastic models resulted in the nodal-averaged TM dis-
placements of ~2.0 and 1.5 µm at an IOP of 10 mmHg (Figure 8). Li [33] used nonhuman
primate eyes (Macaca nemestrina) and we modeled human eyes, so the difference in TM
displacements we report could be due to species-related differences in biomechanical tissue
properties.

Limitations

First, the geometries of the JCT and SC inner wall were considered as part of the
segmented, reconstructed TM FE microstructure. However, we did not have any eye-
specific dimensions for the JCT and SC inner wall, so they were reconstructed based on
their average thicknesses from the literature: ~10 µm [71] and ~5 µm [30] for the JCT
and SC inner wall, respectively. In addition, the µm-sized pores in the SC inner wall
were not eye-specific and were distributed based on the data available in the literature
with the density and size of 835 pores/mm2 [30] and 1.3 µm [75], respectively. While this
study assumes pores are not artifactual, some may have different opinions and say pores
are artifacts due to fixation. It has been shown that pore density in the SC inner wall
decreases with reduced fixation time [30,75,112,133]. However, the in vivo existence of SC
inner wall pores may need further clarification [112], which is outside of the scope of this
study. Outflow is segmental with high- and low-flow regions, and one proposed route
for the aqueous humor drainage across the inner wall is through giant vacuoles. Studies
hypothesize that aqueous then passes through intercellular and intracellular pores [134].
An alternative to pores as a mechanism of aqueous passage from the JCT region to SC has
been documented in multiple studies [17,135,136]. Funnel-like conduits arise from the SC
inner wall endothelium and cross the SC to attach to the external wall. These aqueous
flow conduits connect the TM and distal pathways, leading to TM and distal pathway
synchronous motion [17]. Evidence suggests that modeling flow pathways distal to the TM
would be valuable, but that is outside the scope of the current study.

Second, the same mechanical properties were used for the TM, JCT, and SC inner wall,
but they have different properties. Although the differences could be a limitation of this
study, the viscoelastic mechanical properties of the TM, JCT, and SC inner wall as separate
tissues are still unknown. In a future study, we will calculate the mechanical properties of
the TM, JCT, and SC inner wall separately using the FE-optimization algorithm matching
with PhS-OCT imaging data.

Third, only one IOP cycle was simulated herein; the resultant stresses and strains may
show larger differences if the simulation is performed in several loading cycles. In future
studies, we will attempt to perform simulations with several IOP cycles.

Finally, this pilot study explored the feasibility of characterizing the viscoelasticity
and dynamic IOP relationships and their resultant stresses and strains. Future studies
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will benefit from a larger cohort of healthy eyes to better generalize the tissues’ accurate
geometry and biomechanical responses.

5. Conclusions

A 3D eye-specific elastic and viscoelastic microstructural FE model of a healthy human
outflow pathway was established and subjected to both idealized and physiologic IOP
load boundaries. This model allowed us to calculate the stresses and strains in the outflow
tissues and the hydrodynamics of the aqueous humor. The results revealed that while the
viscoelastic material model includes the IOP load rate in the resultant stresses and strains
across the outflow pathway, the elastic material model results in the same stresses and
strains regardless of the IOP load rate. The outflow pathway is subjected to a very dynamic,
physiologic IOP load boundary and these model results suggest that the parameters should
include and consider the applied IOP load rate to better estimate the stresses and strains
in the outflow tissues and the hydrodynamics of the aqueous humor. The improved
understanding may contribute to our knowledge of aqueous outflow dynamic regulation
in the conventional outflow pathway.
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