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Abstract: Bone is a highly hierarchical complex structure that consists of organic and mineral compo-
nents represented by collagen molecules (CM) and hydroxyapatite crystals (HAC), respectively. The
nanostructure of bone can significantly affect its mechanical properties. There is a lack of understand-
ing how collagen fibrils (CF) in different orientations may affect the mechanical properties of the
bone. The objective of this study is to investigate the effect of interaction, orientation, and hydration
on atomic models of the bone composed of collagen helix (CH) and HAC, using molecular dynamics
simulations and therefrom bone-related disease origins. The results demonstrate that the mechanical
properties of the bone are affected significantly by the orientation of the CF attributed to contact
areas at 0◦ and 90◦ models. The molecular dynamics simulation illustrated that there is significant
difference (p < 0.005) in the ultimate tensile strength and toughness with respect to the orientation
of the hydrated and un-hydrated CF. Additionally, the results indicated that having the force in
a longitudinal direction (0◦) provides more strength compared with the CF in the perpendicular
direction (90◦). Furthermore, the results show that substituting glycine (GLY) with any other amino
acid affects the mechanical properties and strength of the CH, collagen–hydroxyapatite interface,
and eventually affects the HAC. Generally, hydration dramatically influences bone tissue elastic
properties, and any change in the orientation or any abnormality in the atomic structure of either the
CM or the HAC would be the main reason of the fragility in the bone, affecting bone pathology.

Keywords: bone tissue; calcium; collagen fibril; hierarchical; hydroxide; hydroxyapatite; mineral surface

1. Introduction

Bone tissue contains mineral phase (70%) represented by hydroxyapatite (HAC),
organic phase (30%) represented by collagen (CO), non-collagenous proteins, bone cells,
and water with different percentages [1–3]. These contents form the complex structure
and provide the material properties of the bone. Investigating the bone at the nano level
(<1 µm) considers the architecture of the collagen fibrils alignment. Investigating and
understanding damage development in a bone at nano level is as important as the macro
and micro levels.

The bone mainly is composed of type I collagen, which as a triple helix protein has
the ability to be organized into fibers that provide strength and flexibility to the bone. At
the molecular level, the collagen fibril is a triple helix that includes one α2-chain and two
α1-chains that are composed of glycine (GLY), proline (PLY) and hydroxyproline (HYP) [4–7].
Type I collagen can be found in other tissues such as ligaments, tendons, and skin [3].
Osteocalcin, which is another non-collagenous organic protein, has a significant role in new
bone mineralization. According to Burr and Allen (Eds.) (2019, p. 127), hydroxyapatite,
which is the main component of the mineral phase, is composed of calcium, phosphate,
and hydroxide, where the average hydroxyapatite crystal size is 50 × 25 × 2~3 nm [4]. The
mineral and collagen orientation significantly affects the mechanical properties of the bone,
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where bone stiffness primarily depends on the mineral phase, as the mineral density is
highly correlated to the strength of the bone [4].

There are different bone diseases that affect the molecular structure of the tissue.
Osteogenesis imperfecta (OI) is a genetic disorder that affects bone strength as a result of
mutation in the genes (COL1A1/COL1A2) responsible for collagen type I production [8–13].
It occurs as a result of the substitution of GLY with valine, arginine, aspartic acid, glutamic
acid, and cystine. This substitution affects the mechanical properties and strength of the
collagen helix, collagen–hydroxyapatite interface, and eventually affects the mineral part. In
general, the abnormality in the atomic structure of either the collagen or the hydroxyapatite
is the main reason of the fragility in OI bone tissues.

There are several techniques that are used to characterize the orientation of the collagen
fibrils. Some of these techniques are polarized Raman spectroscopy [14,15], polarized
Fourier transform infrared spectroscopy [16], polarized second harmonic generation [17,18],
small-angle light scattering spectroscopy [19–22], elastic scattering spectroscopy [23,24],
electron transmission diffraction [25,26], electron backscatter diffraction [27], magnetic
resonance imaging [28], and microwave method [29]. The main limitations with these
techniques are the limited resolution, they are time consuming, costly, and lack the ability
to visualize the three-dimensional orientation. Additionally, none of these techniques
had the ability to provide a quantitative representation of the bone. In the current study,
X-ray based technique is used to observe the bone at the nano level. The orientation of
the collagen can be observed by using the X-ray based technique. A molecular dynamics
simulation can be used to investigate the mechanical behavior of the bone at the nano
level and the collagen helix (CH) and HAC oriented in different modes depending on the
orientation observed using the X-ray-based technique.

Experimental and theoretical studies have been performed to understand the atomic
structure of the bone [30–41]. Experimentally, it is still a challenge to characterize bone
atomic and structural integrity at the nano level. Additionally, most studies were focused
on investigating CF and fibers under tension [30,31], and investigating the effect of bone
structure at nano level on bone failure [32,33]. On the other hand, the theoretical work
has been performed mostly to understand the effect of the CM and HAC structure and
properties on biomaterials design, such as bone scaffold hierarchical design [34–37]. A
molecular dynamics simulation was exploited to investigate the variation in the material
properties of the bone at the molecular level assemblies [38–40], and how changing the
residue sequence of the collagen helix affects the molecular mechanical properties of the
bone [41], and how hydration significantly affects the bone at nano level [42]. To the best of
our knowledge, there is a lack in understanding the mechanical properties of the bone at
the nano level with respect to CO and HAC orientation. HA surface, hydration, and the
chemical environment are important features that need to be investigated. The objective of
this study is to elucidate the unique contributions that nano-modeling of the bone provides
in the framework of collage orientation and the effect on the bone mechanical properties.
The CO-HAC interface is of fundamental importance in investigating bone under healthy
and pathological status. In this study, an attempt was made to create a new model for
the collagen fibrils of the bone from Swiss Light Source (SLS) data, provided by the Paul
Scherrer Institute (PSI) [6], that maps the collagen order and to understand the change in
the architecture of the CF and HAC configuration with damage propagation. The ADF
2019.3 modeling suite was used to perform the molecular dynamics simulation.

2. Materials and Method

SLS data was used to map the collagen order; then a computational three-dimensional
modeling was performed using MIMICS 22.0 (Materialise—Software Mimics Innovation
Suite, Leuven, Belgium) program. A molecular dynamics 3D simulation was performed to
investigate the effect of the interaction, orientation, and hydration of the atomic models of
the bone composed of CH and HAC. Finally, numerical analysis was performed to inves-
tigate the impact of various factors on the mechanical properties of the atomic models of
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the bone composed of collagen and hydroxyapatite. The statistical analysis was performed
using SAS software (SAS Institute Inc. 2015. SAS® 12 JSL Syntax. SAS Institute Inc., Cary,
NC, USA) and JMP (SAS Institute Inc., Cary, NC, USA). One-way ANOVA test was applied
in the analysis. The three factors that were considered in the analysis were the collagen
fibril orientation, mineral surface, and hydration. Modulus of elasticity (E) was calculated
using MATLAB R2021b (The MathWorks Inc., Natick, MA, USA).

2.1. Computational 3D Modeling at Nano Level

SLS technology uses three-dimensional scanning small angle X-ray scattering, as shown
in Figure 1. The images that were used were for a small bone sample (1 × 1 × 2.5 mm3)
extracted from a T12 human vertebra of a 73 year old man, shown in Figure 2. The ImageJ
program was used to calculate the frequency of different orientation angles, and those were
(0◦, 20◦, 30◦, 45◦, 60◦ and 90◦). Figure 3 illustrates the defining of the material properties
of the bone at nano level depending on the orientation of CF. Highly-oriented vs. weakly-
oriented fibrils provide anisotropic or isotropic material properties, respectively. On the
other hand, previous studies proposed isotropic material properties for the bone at the micro
and nano levels [43,44]. The atomic models of CH, HAC, and bone comprised of CH and
HAC were modeled.
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Figure 1. Nano-modeling for the collagen fibrils of the bone using 3D scanning small-angle X-ray
scattering. (A) The two-dimensional mapping of the 3D organization of the collagen fibrils, (B) The
region of interest of the trabecular bone, (C) The three-dimensional structure of that bone, (D) The
three dimensional scanning small-angle X-ray scattering information [45].
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Figure 2. Mapping the order and alignment of the CF for a small bone sample (1 × 1 × 2.5 mm3)
from human vertebra using Mimics.
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Figure 3. The frequency of collagen fibrils orientation angles.

2.2. Molecular Dynamics Simulation (MDS)

In this study, a molecule of CO-HA composite simulation is presented, and a series
of simulations were carried out to investigate the mechanical properties of the bone at
nano level. Our attempt was to design a realistic representation of bone and expose it to
uniaxial tensile loading. We investigated the properties of CO-HA interface and analyzed
the deformation associated with both hydrated and un-hydrated conditions. Our model
aimed to be as accurate as possible a representation of bone tissue at the atomic level,
taking into consideration the influence of the nano level on upper micro and macro level
mechanical behavior, in order to understand the complex structure of the bone. Figures 4
and 5 show the structure of collagen triple helix and hydroxyapatite, respectively.
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2.3. Forcefield

In order to perform the simulation, we developed a forcefield file that includes a
previously used HA forcefield [46,47] combined with a CHARMM22 forcefield [48]. The
CHARMM forcefield was used previously and has shown it is an adequate representation
for the behavior of the bone at the atomic level [49–53]. All the molecular dynamics
simulations were performed in an ADF package that has the capabilities to simulate
enormous biomolecules. Van der Waals parameters were used to describe the CO-HA
interaction. Equation (1) [47] was used to define the potential energy:

E = EINTRA + EINTER (1)

where
EINTRA = ∑ kb(ri j− ro)2 +∑ kθ (θi jk− θo)2+∑ kUB(rik− ro)2

+∑|kϕ| − kϕ cos(nϕ)2 +∑ kω(ω−ωo)2 (2)
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and

EINTER = ∑
1

4πεo

qiqj

ri,j
+ ∑ εij

(Rmin,i,j

ri,j

)12

− 2

(
Rmin,i,j

ri,j

)6
 (3)

The definitions of all the parameters are shown in Table 1.

Table 1. Forcefield Parameters.

Forcefield Parameters Definition

kb, kθ, kUB, kω, kϕ Force constants

ro i and j equilibrium bond length

θo Equilibrium bond angle

ro i and k equilibrium bond length

ωo Equilibrium improper torsion angle

ri,j i and j distance

ri,k i and k distance

θi jk i, j and k bond angle

ϕ Dihedral angle

ω Improper torsion angle

qi, q j ith and jth particles charges

εo Vacuum dielectric constant

εi j Minimum of the van der Waals term

Rmin,i,j Zero of the van der Waals term

Each CH is composed of three chains and 1014 residues, while each HA unit cell
is composed of forty-four atoms with the lattice parameters shown in Table 2. Different
orientations are proposed in the current study. The chain sequence of α1 and α2 type 1
collagen is shown in Table 3. These orientations are defined with respect to SLS results
of collagen orientation. Each HA crystal has the same dimension and geometry, where
its height is 1.6 nm. Additionally, each collagen helix length is 14.9 nm, and 1.5 nm in
diameter.

Table 2. Lattice parameters of hydroxyapatite.

Parameter Values

a 9.4214 A◦

b 2a

c 6.8814 A◦

γ 120◦

Table 3. The chain sequence of α1 and α2 type I collagen.

The Amino Acids Sequence

α1
PRO HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP GLY GLU LYS GLY PRO

HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP GLY

α2
PRO HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP GLY GLU LYS GLY PRO

HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP GLY PRO HYP
Where the amino acids: PRO, HYP, GLY, GLU, and LYS are proline, hydroxyproline, glycine, glutamic acid, and
lysine, respectively.
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To develop the model, each HA unit cell was duplicated 20, 2, and 4 times in the X,
Y, and Z directions, respectively. The literature proposed that interaction with different
planes of HA plays a significant role in the morphology of the material [54]. To further
understand the CO-HA surface interaction, we investigated the effect of CO vs. OH planes
on the total mechanical properties of the bone at nano level and how much difference the
interaction plane can cause. The interface of the nano constituents was modeled. Python
code was used to extract the stress–strain data for each simulation. Once the stress–strain
curve was plotted, the mechanical properties were calculated. The collagen helix and HA
were oriented in different modes and the simulation was performed to investigate the
effect of orientation on the bone mechanical properties. Bone damage was investigated by
introducing bone disease (OI) to the model, where the GLY amino acid in the collagen helix
was substituted with valine, arginine, aspartic acid, glutamic acid, and cystine. We also
introduced a crack with different geometries. In both methods, the mechanical properties
were calculated.

3. Results and Discussion

The current research focuses on understanding how the change in collagen fibrils orien-
tation can improve or deteriorate the structure of the bone. The MDS revealed that having
different orientations of CH and HA significantly (<0.001) affect the mechanical properties
of the bone. Figure 6 presents a schematic of the bone structure at each hierarchical level,
illustrating the change in the modulus of elasticity.
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Figure 6. The hierarchical structure of the bone starts at the femoral bone macrolevel [55] and ends
with the nanostructure and molecular level.

The MDS illustrated that there is a significant difference (p < 0.005) in the ultimate
tensile strength (UTS) and E with respect to the orientation of the hydrated and un-hydrated
CF, as shown in Figure 7. The results show that having the force in a longitudinal direction
(0◦) provides more strength and toughness compared with the CF in the perpendicular
direction (90◦). The effect of hydration was observed, and the results showed that the
stiffness of the CF increased in un-hydrated models. This means that the loss of water
increases the rigidity of the CF and eventually makes the bone more susceptible to fracture.
Figure 8 shows the molecular structure of the CF at the initial and failure stages. In general,
the simulation illustrated that hydration (tightly bound water) decreases the ultimate
tensile strength (UTS), toughness, and E of the CF. The MDS points to a loss of water in the
collagen causing an increase in the UTS of bone. The simulation illustrated that there is
a significant difference (p < 0.005) in UTS with respect to the orientation of the hydrated
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and un-hydrated collagen fibrils, as shown in Figure 9. However, there was no significant
difference (p > 0.05) in the results with respect to the calcium vs. hydroxide mineral surfaces,
as shown in Figure 10. The simulation demonstrated that the modulus of elasticity (E)
calculated from the slope of a linear fit of the stress–strain curves (Table 4). The results
showed that E was the was higher in un-hydrated simulations (2.29 ± 0.78 GPa) when
compared with the hydrated simulations (1.99 ± 0.74 GPa). The results indicated that E
was the highest in the longitudinal direction (3.53 GPa) when compared with the CF in the
perpendicular direction (1.54 GPa). However, having different mineral surfaces showed
no significant difference in E (p > 0.05), as shown in Figures 11 and 12. The constitutive
equations of modulus of elasticity with respect to collagen fibril orientation is as follows:
with OH mineral surface:

E = −0.0227× θ + 3.2177 For Un− hydrated CF

E = −0.0226× θ + 2.9231 For Hydrated CF

with Ca mineral surface:

E = −0.023× θ + 3.2159 For Un− hydrated CF

E = −0.022× θ + 2.8943 For Hydrated CF
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tensile load was applied on the CF while the other end was fixed.
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90◦ 1.543 1.080 1.519 1.137
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Figure 11. Collagen fibril modulus of elasticity with different orientations having calcium (Ca) as the
mineral surface.



Bioengineering 2022, 9, 677 11 of 19

Bioengineering 2022, 9, x FOR PEER REVIEW 10 of 18 
 

Table 4. Change in the modulus of elasticity (GPa) for hydrated vs. un-hydrated collagen fibril with 
different orientations with respect to mineral surface. 

 Ca OH 
Orientations Un Hydrated Hydrated Un Hydrated Hydrated 

0°  3.526 2.972 3.516 2.945 
20° 2.804 2.608 2.819 2.628 
30° 2.443 2.272 2.425 2.222 
45° 1.782 1.674 1.761 1.709 
60° 1.645 1.388 1.622 1.339 
90° 1.543 1.080 1.519 1.137 

 
Figure 11. Collagen fibril modulus of elasticity with different orientations having calcium (Ca) as 
the mineral surface. 

 
Figure 12. Collagen fibril modulus of elasticity with different orientations having hydroxide (OH) 
as the mineral surface. 

y = − 0.023x + 3.2159
R² = 0.8509

y = − 0.022x + 2.8943
R² = 0.9323

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90

M
od

ul
us

 o
f E

la
st

ic
ity

 (G
pa

)

Orientation (Degree)

Ca Mineral Surface

Un-Hydrated

Hydrated

y = − 0.0227x + 3.2177
R² = 0.8499

y = − 0.0226x + 2.9231
R² = 0.9468

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90

M
od

ul
us

 o
f E

la
st

ic
ity

 (G
pa

)

Orientation (Degree)

OH Mineral Surface

Un-Hydrated

Hydrated

Figure 12. Collagen fibril modulus of elasticity with different orientations having hydroxide (OH) as
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The MDS with proposed OI bone disease revealed that having different amino acids
in the collagen helix significantly (<0.001) affects the mechanical properties of the bone.
The MDS illustrated that there is a significant difference (p < 0.005) in the ultimate tensile
strength and toughness with respect to different amino acids. The results show that
substituting GLY with any other amino acid affects the mechanical properties and strength
of the CH, collagen–hydroxyapatite interface, and eventually affects the HAC, as shown in
Figures 13 and 14. In general, the abnormality in the atomic structure of either the collagen
or the hydroxyapatite is the main reason of the fragility in OI bone tissues.
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3.1. Validation with Experimental Work

A comparison between the MDS results and previous experimental results was evalu-
ated. Gupta et al. [56] investigated 36 bone samples (29 wet samples and 7 dry samples).
The dimens(13.9 ± 3.4 GPa)ion of each sample was 50 µm × 150 µm × 3 mm, and a tensile
test was performed on all the models. The comparison shows agreement between the cur-
rent MDS results and the experimental testing, as the dry samples showed higher modulus
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than the wet samples (11.5 ± 3.7 GPa). Note that the MDS show relatively good correlation
with the results obtained by Liu, Y. et al. [57], where they investigated 12 samples with
305 ± 79 nm diameter and 12.7 9 ± 8.1 µm length, as shown in Figures 15 and 16. The
simulation was compared with Yamamoto, N. [58] experimental results. In this study, ten
samples with 410 ± 60 nm were investigated. As can be seen from Figure 17, there was an
agreement between the simulation and the previous experiment results in terms of ultimate
tensile strength.
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et al. [57], and Yamamoto, N. [58].

The numerical analysis was performed to understand the impact of various factors
on the mechanical properties of the atomic models of the bone composed of collagen and
hydroxyapatite. The three factors that were considered in the analysis were the collagen
fibril orientation, mineral surface, and hydration. The F-test from the ANOVA indicates that
the p-value < 0.05 and it is small and close to zero. This means that there is evidence to reject
the claim that the ultimate tensile strength is similar for all the factors and at least one of
them is different. The analysis showed that the collagen fibril orientations have a significant
effect (p < 0.0001) on the ultimate tensile strength of the atomic models of the bone, and the
LSMeans (least square means) differences Student’s t-test connecting letter report showed
that the ultimate tensile strength is significantly different in terms of orientation. Hydration
showed a significant effect as well (p < 0.0001), where un-hydrated models ultimate strength
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was significantly higher than hydrated models. The LSMeans differences Student’s t-test
connecting letter report showed no significant difference between Ca and OH mineral
surfaces. In general, the statistical analysis showed the collagen fibril orientation and the
hydration have significant effects on the ultimate tensile strength, but the mineral surface
does not have any significant effect.

3.2. Prediction Equation

A prediction equation was developed to predict the ultimate tensile strength with
respect to different orientations of the collagen fibrils as follows:

Ultimate Tensile Strength
= 100.12452− 1.1096903×Orientation
+0.0134039× (Orientation− 40.8333)2

+0.0002412× (Orientation− 40.8333)3

Table 5 shows the prediction equations of stress vs. strain for each collagen fibril
orientation. Figure 18 shows the bivariate fit of ultimate tensile strength by orientation,
where the ultimate tensile strength is the highest for 0◦ and decreases as the orientation
angle increases until reaching the minimum at 90◦.

Table 5. The constitutive equations for each collagen fibril orientation.

Orientation Angle (Degree) Hydration R-Square

Hydrated

0◦ σH= 299029 ε5 − 327803 ε4 + 118125 ε3 −
17037 ε2 + 1333.9 ε− 8.3447 R2 = 0.863

20◦ σH= −8E+0 ε6 + 9E+06 ε5 − 3E+06 ε4 +
624853 ε3 − 52197 ε2 + 1993 ε− 3.8355 R2 = 0.6849

30◦ σH= −24472 ε4 + 15814 ε3 − 3823.3 ε2 +
632.3x − 4.9454 R2 = 0.6584

45◦ σH= −30209 ε5 + 14289 ε4 − 545.52 ε3 −
613.53 ε2 + 183.59 ε− 0.4357 R2 = 0.6857

60◦ σH= 95635 ε5 − 104759 ε4 + 37683 ε3 −
5406.7 ε2 + 421.3 ε− 2.5951 R2 = 0.8649

90◦ σH= 49348 ε5 − 53425 ε4 + 18394 ε3 −
2668 ε2 + 330.08 ε− 1.7434 R2 = 0.7265

Un-hydrated

0◦ σU= −623239 ε6 + 836039 ε5 − 418899 ε4 +
98072 ε3 − 11933 ε2 + 1087.6 ε− 3.508 R2 = 0.9771

20◦ σU= −946926 ε6 + 1E+06 ε5 − 628493 ε4 +
143193 ε3 − 15405 ε2 + 996.93 ε− 1.2921 R2 = 0.8991

30◦ σU= −432187 ε6 + 554374 ε5 − 264362 ε4 +
57925 ε3 − 6458.1 ε2 + 628.91 ε+ 0.1731 R2 = 0.9134

45◦ σU= −431354 ε6 + 573149 ε5 − 280753 ε4 +
61933 ε3 − 5812.1 ε2 + 233.81 ε− 1.4616 R2 = 0.8757

60◦ σU= −451836 ε6 + 619088 ε5 − 317077 ε4 +
75162 ε3 − 8279.7 ε2 + 490.36 ε− 3.6675 R2 = 0.9745

90◦ σU= 260216 ε6 − 444112 ε5 + 270952 ε4 −
72211 ε3 + 7979.6 ε2 − 125.77 ε+ 2.9277 R2 = 0.819
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A regression model was developed for CF model ultimate tensile strength with re-
spect to strain and the orientation angle using MATLAB. 

The regression model is: 

𝜎𝜎𝑈𝑈 = 1.936 − (0.4391 ∗ θ) + (557.1 ∗ 𝜀𝜀𝑈𝑈) + (0.03543 ∗ θ2) + (286.7 ∗ θ ∗ 𝜀𝜀𝑈𝑈) − (8.73 ∗ 𝜀𝜀𝑈𝑈2)
− (0.0005823 ∗ θ3) − (0.1433 ∗ θ2 ∗ 𝜀𝜀𝑈𝑈) + (55.63 ∗ θ ∗ 𝜀𝜀𝑈𝑈2) − [(1.181 ∗ 1004) ∗ 𝜀𝜀𝑈𝑈3]
+ [(2.72 ∗ 10−06) ∗ θ4] + (0.000296 ∗ θ3 ∗ 𝜀𝜀𝑈𝑈) + (0.3112 ∗ θ2 ∗ 𝜀𝜀𝑈𝑈2) − (121.9 ∗ θ ∗ 𝜀𝜀𝑈𝑈3)
+ [(3.551 ∗ 1004) ∗ 𝜀𝜀𝑈𝑈4] + [(1.954 ∗ 10−05) ∗ θ4 ∗ 𝜀𝜀𝑈𝑈] − (0.008862 ∗ θ3 ∗ 𝜀𝜀𝑈𝑈2)
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A regression model was developed for CF model ultimate tensile strength with respect
to strain and the orientation angle using MATLAB.

The regression model is:
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(
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3.343e + 04 ∗ ε5

U
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(4)

where σU is the stress in un-hydrated environment, εU is the strain, and θ is the orientation
angle, with SSE: 1.473× 104 , R-square: 0.9324, Adjusted R-square: 0.9267, and RMSE: 8.074.
This regression model can be used to predict the ultimate tensile strength of the CF with
respect to different orientations. The sensitivity analysis demonstrated the relationship
between the maximum stress of the un-hydrated CO-HA composite with OH mineral
surface vs. the strain, and the orientation of CF obtained from the constitutive equations
for each CF orientation shown in Table 5. The analysis showed the stresses were higher
when CF was in the parallel direction (0◦) with maximum stress (125.12 MPa). On the other
hand, the stresses were the least when the CF was in the perpendicular direction (90◦) with
maximum stress (60.03 MPa). In general, the sensitivity analysis (Figure 19) illustrates
that the orientation has a significant effect on stress vs. strain distribution where the stress
decreases as the angle increases to reach the least at 90◦.
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The analysis illustrates that the orientation has a significant effect on stress vs. strain distribution
where the stress decreases as the angle increases to reach the least at 90◦.

4. Conclusions

The current investigation suggests that the mechanical properties of the bone are
affected significantly by the orientation of the CF. Any change in the structure of the
collagen–HAC composite would lead to variable bone diseases (OI). These results provide
significant insight into the behavior of the collagen–HAC interface and represent a leap
in understanding of bone material performance at the nano level. Any change in the
orientation would lead to variable bone diseases. The MDS illustrated that there is a
significant difference (p < 0.005) in the ultimate tensile strength, toughness, and modulus
of elasticity with respect to the orientation of the hydrated and un-hydrated collagen
fibrils. Additionally, the results show that having the force in a longitudinal direction (0◦)
provides more mechanical properties compared with the collagen fibril in the perpendicular
direction (90◦). The main reason for that difference is the fact that longitudinal orientation
with 0◦ models had more contact areas than the perpendicular orientation with 90◦ models.
Furthermore, validation showed agreement between the current MDS and the experimental
testing. The effect of hydration was observed, and the results showed that the stiffness of
the CF increased in un-hydrated models. This means that the loss of water increases the
rigidity of the CF and eventually makes the bone more susceptible to fracture. Generally,
the water content dramatically influences the elastic properties of the tissues. Additionally,
substituting GLY with any other amino acid affects the mechanical properties and strength
of the CH, collagen–HAC interface, and eventually has effects on the HAC. Consequently, it
has been evidenced that the abnormality in the atomic structure of either the collagen or the
hydroxyapatite is the main reason of the fragility in OI bone tissues. Further investigation
is needed to understand the effect of the atomic structure and nano level mechanical
properties on higher micro and macro levels of bone tissue. This study represents a step
toward a deeper understanding of the structure–mechanical function relationship of the
bone.
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