Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents
Abstract
:1. Introduction
2. Cells Involved in Wound Healing
2.1. Neutrophils
2.2. Macrophages
2.3. Fibroblasts and Keratinocytes
3. Role of Cytokines and Growth Factors in Wound Healing
4. Gene Expression in Wound Healing
5. Uses of Silver in Wound Healing
6. Properties of a Good Wound Healing Agent
6.1. Antimicrobial Activity
6.2. Anti-Inflammatory Activity
6.3. Antioxidant Activity
6.4. Epithelization
6.5. Biocompatibility
7. Incorporation of the Silver Formulations in Wound Dressings
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AgNP | silver nanoparticle |
CLR | C-type lectin receptor |
CSF-1 | colony stimulating factor-1 |
DAMP | damage associated molecular pattern |
ECM | extracellular matrix molecules |
EGF | epidermal growth factor |
FGF | fibroblast growth factor |
IFN | interferon |
IGF | insulin growth factor 1 |
IL | interleukin |
KGF | Keratinocyte growth factor |
MMP | matrix metalloproteinase |
NLR | NOD-like receptor |
PAMP | pathogen-associated molecular pattern |
PDGF | platelet-derived growth factor |
PRR | pattern recognition receptor |
RLR | Retinoic acid-inducible gene (RIG)-I-like receptor |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
SSD | silver sulfadiazine |
TGF | Transforming growth factor |
TLR | toll-like receptor |
TNF-α | tumor necrosis factor alpha |
VEGF | vascular endothelial growth factor |
References
- Dehkordi, A.N.; Babaheydari, F.M.; Chehelgerdi, M.; Raeisi Dehkordi, S. Skin Tissue Engineering: Wound Healing Based on Stem-Cell-Based Therapeutic Strategies. Stem Cell Res. Ther. 2019, 10, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Enoch, S.; Leaper, D.J. Basic Science of Wound Healing. Surgery 2008, 26, 31–37. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver Nanoparticles: The Powerful Nanoweapon against Multidrug-Resistant Bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minirev. EBSCOhost 2016, 2016, 7614753. [Google Scholar] [CrossRef] [Green Version]
- Naik, K.; Kowshik, M. The Silver Lining: Towards the Responsible and Limited Usage of Silver. J. Appl. Microbiol. 2017, 123, 1068–1087. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Fong, J.; Wood, F. Nanocrystalline Silver Dressings in Wound Management: A Review. Int. J. Nanomed. 2006, 1, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wong, K.K.Y.; Ho, C.; Lok, C.; Yu, W.; Che, C.; Chiu, J.; Tam, P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef]
- Wong, K.K.Y.; Cheung, S.O.F.; Huang, L.; Niu, J.; Tao, C.; Ho, C.-M.; Che, C.-M.; Tam, P.K.H. Further Evidence of the Anti-Inflammatory Effects of Silver. ChemMedChem 2009, 4, 1129–1135. [Google Scholar] [CrossRef]
- Nadworny, P.L.; Wang, J.; Tredget, E.E.; Burrell, R.E. Anti-Inflammatory Activity of Nanocrystalline Silver in a Porcine Contact Dermatitis Model. Nanomedicine 2008, 4, 241–251. [Google Scholar] [CrossRef]
- Tyavambiza, C.; Elbagory, A.M.; Madiehe, A.M.; Meyer, M.; Meyer, S.; Elaissari, A. The Antimicrobial and Anti-Inflammatory Effects of Silver Nanoparticles Synthesised from Cotyledon Orbiculata Aqueous Extract. Nanomaterials 2021, 11, 1343. [Google Scholar] [CrossRef]
- Wright, J.B.; Lam, K.A.N.; Buret, A.G.; Olson, M.E.; Burrell, R.E. Early Healing Events in a Porcine Model of Contaminated Wounds: Effects of Nanocrystalline Silver on Matrix Metalloproteinases, Cell Apoptosis, and Healing. Wound Repair Regen. 2002, 10, 141–151. [Google Scholar] [CrossRef]
- Nqakala, Z.B.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, M.; Onani, M.O.; Madiehe, A.M. Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int. J. Mol. Sci. 2021, 22, 11272. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2018, 99, 665–706. [Google Scholar] [CrossRef]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [Green Version]
- Pittman, K.; Kubes, P. Damage-Associated Molecular Patterns Control Neutrophil Recruitment. J. Innate Immun. 2013, 5, 315–323. [Google Scholar] [CrossRef]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil Migration in Infection and Wound Repair: Going Forward in Reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Ellis, S.; Lin, E.J.; Tartar, D. Immunology of Wound Healing. Curr. Dermatol. Rep. 2018, 7, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.B.; Barroso, W.A.; da Silva, N.N.; Silva, S.D.N.; Borges, A.C.R.; Abreu, I.C.; da Rocha Borges, M.O. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int. J. Inflamm. 2017, 2017, 3406215. [Google Scholar] [CrossRef]
- Beserra, F.P.; Gushiken, L.F.S.; Hussni, M.F.; Pellizzon, C.H. Regulatory Mechanisms and Chemical Signaling of Mediators Involved in the Inflammatory Phase of Cutaneous Wound Healing. In Wound Healing—Current Perspectives; IntechOpen: London, UK, 2018; ISBN 978-1-78985-538-8. [Google Scholar]
- Hu, M.S.; Walmsley, G.G.; Barnes, L.A.; Weiskopf, K.; Rennert, R.C.; Duscher, D.; Januszyk, M.; Maan, Z.N.; Hong, W.X.; Cheung, A.T.M.; et al. Delivery of Monocyte Lineage Cells in a Biomimetic Scaffold Enhances Tissue Repair. JCI Insight 2017, 2, e96260. [Google Scholar] [CrossRef] [PubMed]
- Dipietro, L.A.; Wilgus, T.A.; Koh, T.J. Macrophages in Healing Wounds: Paradoxes and Paradigms. Int. J. Mol. Sci. 2021, 22, 950. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-Wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Yussof, S.J.M.; Omar, E.; Pai, D.R.; Sood, S. Cellular Events and Biomarkers of Wound Healing. Indian J. Plast. Surg. 2012, 45, 220. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Biswas, S.; Shang, Y.; Collard, E.; Azad, A.; Kauh, C.; Bhasker, V.; Gordillo, G.M.; Sen, C.K.; Roy, S. Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice. PLoS ONE 2010, 5, e9539. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, H.N.; Hardman, M.J. Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biol. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Michaeli, S.; Dakwar, V.; Weidenfeld, K.; Granski, O.; Gilon, O.; Schif-Zuck, S.; Mamchur, A.; Shams, I.; Barkan, D. Soluble Mediators Produced by Pro-Resolving Macrophages Inhibit Angiogenesis. Front. Immunol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wojtowicz, A.M.; Oliveira, S.; Carlson, M.W.; Zawadzka, A.; Rousseau, C.F.; Baksh, D. The Importance of Both Fibroblasts and Keratinocytes in a Bilayered Living Cellular Construct Used in Wound Healing. Wound Repair Regen. 2014, 22, 246. [Google Scholar] [CrossRef] [Green Version]
- Piipponen, M.; Li, D.; Landén, N.X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21, 8790. [Google Scholar] [CrossRef]
- Mi, B.; Liu, J.; Liu, G.; Zhou, W.; Liu, Y.; Hu, L.; Xiong, L.; Ye, S.; Wu, Y. Icariin Promotes Wound Healing by Enhancing the Migration and Proliferation of Keratinocytes via the AKT and ERK Signaling Pathway. Int. J. Mol. Med. 2018, 42, 831–838. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. PERSPECTIVE ARTICLE: Growth Factors and Cytokines in Wound Healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Seeger, M.A.; Paller, A.S. The Roles of Growth Factors in Keratinocyte Migration. Adv. Wound Care 2015, 4, 213. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, S.; Brem, H.; Stojadinovic, O.; Tomic-Canic, M. Clinical Application of Growth Factors and Cytokines in Wound Healing. Wound Repair Regen. Off. Publ. Wound Health Soc. Eur. Tissue Repair Soc. 2014, 22, 569. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswami, S.; Ly, Q.P.; Rothman, V.L.; Tuszynski, G.P. Thrombospondin-1 Promotes Proliferative Healing through Stabilization of PDGF. J. Surg. Res. 2002, 107, 124–130. [Google Scholar] [CrossRef]
- Lin, H.; Chen, B.; Sun, W.; Zhao, W.; Zhao, Y.; Dai, J. The Effect of Collagen-Targeting Platelet-Derived Growth Factor on Cellularization and Vascularization of Collagen Scaffolds. Biomaterials 2006, 27, 5708–5714. [Google Scholar] [CrossRef]
- Werner, S.; Grose, R. Regulation of Wound Healing by Growth Factors and Cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [Green Version]
- Traversa, B.; Sussman, G. The Role of Growth Factors, Cytokines and Proteases in Wound Management. Prim. Intent. 2001, 9, 161–167. [Google Scholar]
- Park, J.W.; Hwang, S.R.; Yoon, I.S. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules 2017, 22, 1259. [Google Scholar] [CrossRef] [Green Version]
- Di Vita, G.; Patti, R.; D’Agostino, P.; Caruso, G.; Arcara, M.; Buscemi, S.; Bonventre, S.; Ferlazzo, V.; Arcoleo, F.; Cillari, E. Cytokines and Growth Factors in Wound Drainage Fluid from Patients Undergoing Incisional Hernia Repair. Wound Repair Regen. 2006, 14, 259–264. [Google Scholar] [CrossRef]
- Sogabe, Y.; Abe, M.; Yokoyama, Y.; Ishikawa, O. Basic Fibroblast Growth Factor Stimulates Human Keratinocyte Motility by Rac Activation. Wound Repair Regen. 2006, 14, 457–462. [Google Scholar] [CrossRef]
- Diller, R.B.; Tabor, A.J. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics 2022, 7, 87. [Google Scholar] [CrossRef] [PubMed]
- Deonarine, K.; Panelli, M.C.; Stashower, M.E.; Jin, P.; Smith, K.; Slade, H.B.; Norwood, C.; Wang, E.; Marincola, F.M.; Stroncek, D.F. Gene Expression Profiling of Cutaneous Wound Healing. J. Transl. Med. 2007, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, H.; Hayashi, T.; Ago, K.; Ago, M.; Kanekura, T.; Ogata, M. Temporal Expression of Wound Healing-Related Genes in Skin Burn Injury. Leg. Med. 2014, 16, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lande’n, N.X.; Li, D.; Stahle, M. Transition from Inflammation to Proliferation: A Critical Step during Wound Healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moniri, M.; Moghaddam, A.B.; Azizi, S.; Rahim, R.A.; Zuhainis, S.W.; Navaderi, M.; Mohamad, R. In Vitro Molecular Study of Wound Healing Using Biosynthesized Bacteria Nanocellulose/ Silver Nanocomposite Assisted by Bioinformatics Databases. Int. J. Nanomed. 2018, 13, 5097–5112. [Google Scholar] [CrossRef] [Green Version]
- Pakyari, M.; Farrokhi, A.; Maharlooei, M.K.; Ghahary, A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Adv. Wound Care 2013, 2, 215. [Google Scholar] [CrossRef] [Green Version]
- Evrard, S.M.; Daudigier, C.; Mauge, L.; Israël-Biet, D.; Guerin, C.L.; Bieche, I.; Kovacic, J.C.; Fischer, A.M.; Gaussem, P.; Smadja, D.M. The Profibrotic Cytokine Transforming Growth Factor-Β1 Increases Endothelial Progenitor Cell Angiogenic Properties. J. Thromb. Haemost. 2012, 10, 670–679. [Google Scholar] [CrossRef]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The Role of the TGF-β Family in Wound Healing, Burns and Scarring: A Review. Int. J. Burn. Trauma 2012, 2, 18–28. [Google Scholar]
- Wang, R.; Ghahary, A.; Shen, Q.; Scott, P.G.; Roy, K.; Tredget, E.E. Hypertrophic Scar Tissues and Fibroblasts Produce More Transforming Growth Factor-Β1 MRNA and Protein than Normal Skin and Cells. Wound Repair Regen. 2000, 8, 128–137. [Google Scholar] [CrossRef]
- Schmid, P.; Itin, P.; Cherry, G.; Bi, C.; Cox, D.A. Enhanced Expression of Transforming Growth Factor-Beta Type I and Type II Receptors in Wound Granulation Tissue and Hypertrophic Scar. Am. J. Pathol. 1998, 152, 485. [Google Scholar]
- Khansa, I.; Schoenbrunner, A.R.; Kraft, C.T.; Janis, J.E. Silver in Wound Care—Friend or Foe?:A Comprehensive Review. Plast. Reconsructive Surg. Glob. Open 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Murphy, P.S.; Evans, G.R.D. Advances in Wound Healing: A Review of Current Wound Healing Products. Plast. Surg. Int. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Opasanon, S.; Muangman, P.; Namviriyachote, N. Clinical Effectiveness of Alginate Silver Dressing in Outpatient Management of Partial-Thickness Burns. Int. Wound J. 2010, 7, 467–471. [Google Scholar] [CrossRef]
- Muangman, P.; Pundee, C.; Opasanon, S.; Muangman, S. A Prospective, Randomized Trial of Silver Containing Hydrofiber Dressing versus for the Treatment of Partial Thickness Burns. Int. Wound J. 2010, 7, 271–276. [Google Scholar] [CrossRef]
- Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The Application of Bactericidal Silver Nanoparticles in Wound Treatment. Nanomater. Nanotechnol. 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Singla, R.; Soni, S.; Markand, P.; Kumari, A.; Mahesh, S.; Patial, V.; Padwad, Y.S.; Yadav, S.K. In Situ Functionalized Nanobiocomposites Dressings of Bamboo Cellulose Nanocrystals and Silver Nanoparticles for Accelerated Wound Healing. Carbohydr. Polym. 2017, 155, 152–162. [Google Scholar] [CrossRef]
- Singla, R.; Soni, S.; Patial, V.; Markand, P.; Kumari, A.; Mahesh, S.; Padwad, Y.S.; Yadav, S. International Journal of Biological Macromolecules In Vivo Diabetic Wound Healing Potential of Nanobiocomposites Containing Bamboo Cellulose Nanocrystals Impregnated with Silver Nanoparticles. Int. J. Biol. Macromol. 2017, 105, 45–55. [Google Scholar] [CrossRef]
- Liu, X.; Lee, P.; Ho, C.; Lui, V.C.H.; Chen, Y.; Che, C.; Tam, P.K.H.; Wong, K.K.Y. Silver Nanoparticles Mediate Differential Responses in Keratinocytes and Fibroblasts during Skin Wound Healing. ChemMedChem 2010, 5, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Ngo, Q.D.; Vickery, K.; Deva, A.K. The Effect of Topical Negative Pressure on Wound Biofilms Using an in Vitro Wound Model. Wound Repair Regen. 2011, 20, 83–90. [Google Scholar] [CrossRef]
- Ellenrieder, M.; Redanz, S.; Bader, R.; Mittelmeier, W.; Podbielski, A. Influence of Antimicrobial Coatings of Vacuum-Assisted Closure Dressings on Methicillin-Resistant Staphylococcus Aureus Growth Kinetics: An in vitro study. Surg. Infect. 2015, 16, 139–145. [Google Scholar] [CrossRef]
- Sachsenmaier, S.; Peschel, A.; Ipach, I.; Kluba, T. Antibacterial Potency of V.A.C. GranuFoam Silver 1 Dressing. Injury 2013, 44, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Karr, J.C.; De Mola, F.L.; Pham, T.; Tooke, L. Wound Healing and Cost-Saving Benefits of Combining Negative-Pressure Wound Therapy with Silver. Adv. Skin Wound Care 2013, 26, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Sarheed, O.; Ahmed, A.; Shouqair, D.; Boateng, J. Antimicrobial Dressings for Improving Wound Healing. In Wound Healing: New Insights into Ancient Challenges; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Gray, D. Using PHMB Antimicrobial to Prevent Wound Infection. Wounds Int. 2007, 3, 96–102. [Google Scholar]
- Leaper, D.J. Silver Dressings: Their Role in Wound Management. Int. Wound J. 2006, 3, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.K.; Murthy, N.R.S.; Gill, S.S.; Nagi, O.N. Bacterial Load in Tissues and Its Predictive Value for Infection in Open Fractures. J. Orthop. Surg. 2000, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment Strategies for Infected Wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef] [Green Version]
- Daeschlein, G. Antimicrobial and Antiseptic Strategies in Wound Management. Int. Wound J. 2013, 10, 9–14. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016, 17, 2085. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef] [Green Version]
- Houghton, P.J.; Hylands, P.J.; Mensah, A.Y.; Hensel, A.; Deters, A.M. In Vitro Tests and Ethnopharmacological Investigations: Wound Healing as an Example. J. Ethnopharmacol. 2005, 100, 100–107. [Google Scholar] [CrossRef]
- Mustoe, T. Understanding Chronic Wounds: A Unifying Hypothesis on Their Pathogenesis and Implications for Therapy. Am. J. Surg. 2004, 187, S65–S70. [Google Scholar] [CrossRef]
- Tyavambiza, C.; Dube, P.; Goboza, M.; Meyer, S.; Madiehe, A.M.; Meyer, M. Wound Healing Activities and Potential of Selected African Medicinal Plants and Their Synthesized Biogenic Nanoparticles. Plants 2021, 10, 2635. [Google Scholar] [CrossRef]
- Ghavaminejad, A.; Unnithan, A.R.; Ramachandra, A.; Sasikala, K.; Samarikhalaj, M.; Thomas, R.G.; Jeong, Y.Y.; Nasseri, S.; Murugesan, P.; Wu, D.; et al. Mussel-Inspired Electrospun Nano Fi Bers Functionalized with Size- Controlled Silver Nanoparticles for Wound Dressing Application. Appl. Mater. Interface 2015, 7, 12176–12183. [Google Scholar] [CrossRef]
- Wu, T.; Lu, F.; Wen, Q.; Yu, K.; Lu, B.; Rong, B.; Dai, F.; Lan, G. Novel Strategy for Obtaining Uniformly Dispersed Silver Nanoparticles on Soluble Cotton Wound Dressing through Carboxymethylation and In-Situ Reduction: Antimicrobial Activity and Histological Assessment in Animal Model. Cellulose 2018, 25, 5361–5376. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, M.; Cheng, T.; Qiu, L. Biomaterials Silver Nanoparticles-Doped Collagen—Alginate Antimicrobial Biocomposite as Potential Wound Dressing. J. Mater. Sci. 2018, 53, 14944–14952. [Google Scholar] [CrossRef]
- Dube, P.; Meyer, S.; Madiehe, A.; Meyer, M. Antibacterial Activity of Biogenic Silver and Gold Nanoparticles Synthesized from Salvia Africana-Lutea and Sutherlandia Frutescens. Nanotechnology 2020, 31, 505607. [Google Scholar] [CrossRef]
- Elbagory, A.; Meyer, M.; Cupido, C.; Hussein, A.A. Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts. Nanomaterials 2017, 7, 417. [Google Scholar] [CrossRef] [Green Version]
- Majoumouo, M.S.; Sibuyi, N.R.S.; Tincho, M.B.; Mbekou, M.; Boyom, F.F.; Meyer, M. Enhanced Anti-Bacterial Activity of Biogenic Silver Nanoparticles Synthesized from Terminalia Mantaly Extracts. Int. J. Nanomed. 2019, 14, 9031–9046. [Google Scholar] [CrossRef] [Green Version]
- Mmola, M.; Roes-Hill, M.; Durrell, K.; Bolton, J.; Sibuyi, N.; Meyer, M.; Beukes, D.; Antunes, E. Enhanced Antimicrobial and Anticancer Activity of Silver and Gold Nanoparticles Synthesised Using Sargassum Incisifolium Aqueous Extracts. Molecules 2016, 21, 1633. [Google Scholar] [CrossRef] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nature Medicine 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Stankov, S. V Definition of Inflammation, Causes of Inflammation and Possible Anti-Inflammatory Strategies. Open Inflamm. J. 2012, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Medzhitov, R. Inflammation 2010: New Adventures of an Old Flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pober, J.S.; Sessa, W.C. Inflammation and the Blood Microvascular System. Cold Spring Harb. Perspect. Biol. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Naidu, G. The Role of Danger-Associated Molecular Patterns (DAMPs) in Trauma and Infections. J. Thorac. Dis. 2016, 8, 1406–1409. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef]
- Amarante-Mendes, G.P.; Adjemian, S.; Branco, L.M.; Zanetti, L.C.; Weinlich, R.; Bortoluci, K.R. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front. Immunol. 2018, 9, 2379. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J. Cell Death and Inflammation: The Case for IL-1 Family Cytokines as the Canonical DAMPs of the Immune System. FEBS J. 2016, 283, 2599–2615. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.A.; Vago, J.P.; Perretti, M.; Teixeira, M.M. Mediators of the Resolution of the Inflammatory Response. Trends Immunol. 2019, 40, 212–227. [Google Scholar] [CrossRef]
- Koh, T.J.; DiPietro, L.A. Inflammation and Wound Healing: The Role of the Macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef] [Green Version]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Sci. Transl. Med. 2014, 6, 265sr6. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.A.; Sousa, L.P.; Pinho, V.; Perretti, M.; Teixeira, M.M. Resolution of Inflammation: What Controls Its Onset? Front. Immunol. 2016, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Shedoeva, A.; Leavesley, D.; Upton, Z.; Fan, C. Wound Healing and the Use of Medicinal Plants. Evid. -Based Complement. Altern. Med. 2019, 2019, 2684108. [Google Scholar] [CrossRef] [Green Version]
- Tsourdi, E.; Barthel, A.; Rietzsch, H.; Reichel, A.; Bornstein, S.R. Current Aspects in the Pathophysiology and Treatment of Chronic Wounds in Diabetes Mellitus. BioMed Res. Int. 2013, 2013, 385641. [Google Scholar] [CrossRef] [Green Version]
- Fink, S.L.; Cookson, B.T. MINIREVIEW Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Süntar, I.; Akkol, E.K.; Nahar, L.; Sarker, S.D. Wound Healing and Antioxidant Properties: Do They Coexist in Plants? Free Radic. Antioxid. 2012, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Barku, V.Y. Wound Healing: Contributions from Plant Secondary Metabolite Antioxidants. In Wound Healing Current Perspectives; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Fitzmaurice, S.D.; Sivamani, R.K.; Isseroff, R.R. Antioxidant Therapies for Wound Healing: A Clinical Guide to Currently Commercially Available Products. Ski. Pharmacol. Physiol. 2011, 24, 113–126. [Google Scholar] [CrossRef]
- Ozcan, A.; Ogun, M. Biochemistry of Reactive Oxygen and Nitrogen Species. In Basic Principles and Clinical Significance of Oxidative Stress; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Rex, J.R.S.; Muthukumar, N.M.; Selvakumar, P.M. Phytochemicals as a Potential Source for Anti-Microbial, Anti-Oxidant and Wound Healing—A Review. MOJ Bioorganic Org. Chem. 2018, 2, 61–70. [Google Scholar] [CrossRef]
- Soneja, A.; Drews, M.; Malinski, T. Role of Nitric Oxide, Nitroxidative and Oxidative Stress in Wound Healing. Pharmacol. Rep. 2005, 57, 108–119. [Google Scholar] [PubMed]
- Sanchez, M.C.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, C.K. The General Case for Redox Control of Wound Repair. Wound Repair Regen. 2003, 11, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, T.; Fujii, J. Roles of Antioxidative Enzymes in Wound Healing. J. Dev. Biol. 2015, 3, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Barku, V. Wound Healing: Contributions from Medicinal Plants and Their Phytoconstituents. Annu. Res. Rev. Biol. 2018, 26, 1–14. [Google Scholar] [CrossRef]
- Shetty, B.S. Wound Healing and Indigenous Drugs: Role as Antioxidants: A Review. Res. Rev. J. Med. Health Sci. 2013, 2, 5–16. [Google Scholar]
- Paul, M.; Londe, Y.V. Pongamia Pinnata Seed Extract—Mediated Green Synthesis of Silver Nanoparticles: Preparation, Formulation and Evaluation of Bactericidal and Wound Healing Potential. Appl. Organomet. Chem. 2018, 33, e4624. [Google Scholar] [CrossRef]
- Hashmi, U.M.; Khan, F.; Khalid, N.; Shahid, A.A.; Javed, A.; Alam, T.; Jalal, N.; Hayat, Q.M.; Abbas, R.S.; Janjua, A.H. Hydrogels Incorporated with Silver Nanocolloids Prepared from Antioxidant Rich Aerva Javanica as Disruptive Agents against Burn Wound Infections. Colloids Surf. A 2017, 529, 475–486. [Google Scholar] [CrossRef]
- Hajji, S.; Khedir, B.S.; Hamza-mnif, I.; Hamdi, M.; Jedidi, I.; Kallel, R.; Boufi, S.; Nasri, M. BBA—General Subjects Biomedical Potential of Chitosan-Silver Nanoparticles with Special Reference to Antioxidant, Antibacterial, Hemolytic and in Vivo Cutaneous Wound Healing Effects. BBA Gen. Subj. 2019, 1863, 241–254. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Tan, S.T.; Dosan, R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. Open Dermatol. J. 2019, 13, 34–40. [Google Scholar] [CrossRef]
- Ben Amar, M.; Wu, M. Re-Epithelialization: Advancing Epithelium Frontier during Wound Healing. J. R. Soc. Interface 2014, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Woodley, D.T.; Wysong, A.; Declerck, B.; Chen, M.; Li, W. Keratinocyte Migration and a Hypothetical New Role for Extracellular Heat Shock Protein 90 Alpha in Orchestrating Skin Wound Healing. Adv. Wound Care 2015, 4, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, S.; Chen, L.; Dipietro, L.A.; Reifman, J.; Mitrophanov, A.Y.; Finley, S.D. Predictive Approach Identifies Molecular Targets and Interventions to Restore Angiogenesis in Wounds with Delayed. Health Front. Physiol. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chai, S.; Wang, Y.; Qiao, Y.; Wang, P.; Li, Q.; Xia, C.; Ju, M. Journal of Photochemistry & Photobiology, B: Biology Bio Fabrication of Silver Nanoparticles as an e Ff Ective Wound Healing Agent in the Wound Care after Anorectal Surgery. J. Photochem. Photobiol. B Biol. 2018, 178, 457–462. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. A Pharmacological and Toxicological Profile of Silver as an Antimicrobial Agent in Medical Devices. Adv. Pharmacol. Sci. 2010, 2010, 910686. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, K.; Mostafavi, E.; Afifi, A.M.; Izadiyan, Z.; Jahangirian, H.; Rafiee-Moghaddam, R.; Webster, T.J. Wound Dressings Functionalized with Silver Nanoparticles: Promises and Pitfalls. Nanoscale 2020, 12, 2268–2291. [Google Scholar] [CrossRef]
- Frazer, J.F.; Cuttle, L.; Kempf, M.; Kimble, R.M. Cytotoxicity of topical antimicrobial agents used in burn wounds in Australasia. ANZ J. Surg. 2004, 74, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Poon, V.K.M.; Burd, A. In Vitro Cytotoxity of Silver: Implication for Clinical Wound Care. Burns 2004, 30, 140–147. [Google Scholar] [CrossRef]
- Talapko, J.; Matijevi, T.; Juzbaši, M.; Antolovi, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef] [PubMed]
- Tortella, G.R.; Rubilar, O.; Durán, N.; Diez, M.C.; Martínez, M.; Parada, J.; Seabra, A.B. Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. J. Hazard. Mater. 2020, 390, 121974. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic Potential of Silver Nanoparticles. Yonsei Med. J. 2014, 55, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharm. Sci. 2014, 103, 1931–1944. [Google Scholar] [CrossRef]
- McShan, D.; Ray, P.C.; Yu, H. Molecular Toxicity Mechanism of Nanosilver. J. Food Drug Anal. 2014, 22, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res. Lett. 2020, 15, 115. [Google Scholar] [CrossRef]
- Naskar, A.; Kim, K. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020, 12, 499. [Google Scholar] [CrossRef]
- Mabrouk, A.; Boughdadi, N.S.; Helal, H.A.; Zaki, B.M.; Maher, A. Moist Occlusive Dressing (Aquacel W Ag) versus Moist Open Dressing (MEBO W) in the Management of Partial-Thickness Facial Burns: A Comparative Study in Ain Shams University. Burns 2011, 38, 396–403. [Google Scholar] [CrossRef]
- Sangaonkar, G.M.; Pawar, K.D. Colloids and Surfaces B: Biointerfaces Garcinia Indica Mediated Biogenic Synthesis of Silver Nanoparticles with Antibacterial and Antioxidant Activities. Colloids Surf. B Biointerfaces 2018, 164, 210–217. [Google Scholar] [CrossRef]
Growth Factor/Cytokine | Function | Reference |
---|---|---|
IL-1β, TNF-α and IL-6 | Inflammation | [34] |
PDGF | Chemotaxis of neutrophils and macrophages. Proliferation of fibroblasts. Induces myofibroblasts differentiation. Upregulates the production of insulin growth factor 1 (IGF-1). Stimulate angiogenesis. | [35,36] |
TGF-beta | Chemotaxis of neutrophils and macrophages. Fibroblast proliferation. Myofibroblast differentiation. Stimulate re-epithelialization. Stimulate angiogenesis. | [25,37] |
TGF-alpha | Stimulates proliferation and migration of keratinocytes. Induces angiogenesis. | [38,39] |
bFGF (FGF-2) | Increases keratinocyte motility. Promotes the migration of fibroblasts and aids in tissue remodeling. | [2,40,41] |
KGF | Stimulate keratinocyte differentiation and proliferation. | [25,39] |
EGF | Promotes fibroblast and keratinocyte growth. Stimulate the proliferation and migration of keratinocytes. | [38,39] |
IGF | Increases keratinocyte motility and promotes fibroblast growth. | [35] |
VEGF | Increases endothelial cell migration and proliferation. Promotes angiogenesis. | [32,40] |
Wound Healing Agent | Function in Proliferation and Maturation Phase | References |
---|---|---|
Hydrogels (prepared from bamboo cellulose nanocrystals impregnated with AgNP) | Improved epithelialization. Improved collagen formation. Increased expression of collagen and growth factors (FGF, PDGF, VEGF). Improved vasculogenesis. | [57,58] |
Pongamia pinnata seed extract-AgNPs loaded gel | Shortened wound healing time compared to other groups. Showed injury recuperating action, which might be because of their angiogenic and mitogenic potential | [113] |
Muslin cloth coated with Delonix elata-AgNPs | Showed rapid wound epithelialization compared with the control. | [121] |
Partially carboxymethylated cotton gauze (PCG) with AgNPs | Promotes fibroblast generation. Promotes neovascularization. Promotes formation of granulation tissue. Enhances epithelialization. | [77] |
AgNP-solution-coated dressing | Increased keratinocyte proliferation and migration. Facilitates fibroblasts differentiation. Shortened wound healing time compared to other groups. | [59] |
Electrospun nanofibres (MADO) integrated with AgNPs | The wound treated with MADO-AgNPs showed a complete glandular cavity, thickened epidermis, granular tissue formation, and keratinocyte restoration. | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyavambiza, C.; Meyer, M.; Meyer, S. Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering 2022, 9, 712. https://doi.org/10.3390/bioengineering9110712
Tyavambiza C, Meyer M, Meyer S. Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering. 2022; 9(11):712. https://doi.org/10.3390/bioengineering9110712
Chicago/Turabian StyleTyavambiza, Caroline, Mervin Meyer, and Samantha Meyer. 2022. "Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents" Bioengineering 9, no. 11: 712. https://doi.org/10.3390/bioengineering9110712
APA StyleTyavambiza, C., Meyer, M., & Meyer, S. (2022). Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering, 9(11), 712. https://doi.org/10.3390/bioengineering9110712