
Citation: Anderlini, B.; Ughetti, A.;

Cristoni, E.; Forti, L.; Rigamonti, L.;

Roncaglia, F. Upgrading of Biobased

Glycerol to Glycerol Carbonate as a

Tool to Reduce the CO2 Emissions of

the Biodiesel Fuel Life Cycle.

Bioengineering 2022, 9, 778. https://

doi.org/10.3390/bioengineering9120778

Academic Editors: Indra Neel

Pulidindi, Aharon Gedanken and

Giorgos Markou

Received: 7 November 2022

Accepted: 25 November 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Upgrading of Biobased Glycerol to Glycerol Carbonate as a Tool
to Reduce the CO2 Emissions of the Biodiesel Fuel Life Cycle
Biagio Anderlini 1 , Alberto Ughetti 1, Emma Cristoni 1, Luca Forti 2 , Luca Rigamonti 1,3,4

and Fabrizio Roncaglia 1,3,4,*

1 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia,
Via G. Campi 103, 41125 Modena, Italy

2 Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
3 Interdepartmental Centre H2-MORE, University of Modena and Reggio Emilia, Via Università 4,

41121 Modena, Italy
4 INSTM Research Unit of Modena, Via G. Campi 103, 41125 Modena, Italy
* Correspondence: fabrizio.roncaglia@unimore.it

Abstract: With regards to oil-based diesel fuel, the adoption of bio-derived diesel fuel was estimated
to reduce CO2 emissions by approximately 75%, considering the whole life cycle. In this paper,
we present a novel continuous-flow process able to transfer an equimolar amount of CO2 (through
urea) to glycerol, producing glycerol carbonate. This represents a convenient tool, able to both
improve the efficiency of the biodiesel production through the conversion of waste streams into
added-value chemicals and to beneficially contribute to the whole carbon cycle. By means of a Design
of Experiments approach, the influence of key operating variables on the product yield was studied
and statistically modeled.
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1. Introduction

In addition to different natural dynamics outside of our control, such as solar activity,
developments over the last hundred years have been accompanied by a general and pro-
gressive increase in the mean global temperature, collectively known as ‘global warming’.
This variation is strictly related to several climate alterations such as melting glaciers and
rising sea levels, but also to extreme weather events, a change in wildlife habitats, and an
array of other impacts [1]. Beyond the heating due to direct irradiation from the sun, the
atmosphere plays a determinant role in retaining part of the thermal energy close to the
Earth’s surface [1]. This heat-trapping phenomenon, known as the “greenhouse effect”,
comes from some naturally occurring gases, such as CO2, methane, and nitrous oxides, and
helps our planet to maintain stable conditions for life.

The continuous and ever-increasing exploitation of fossil carbon resources to sustain
our development brought a symmetrical increase in greenhouse gas (GHG) emissions,
especially CO2, which have been linked to an increased greenhouse effect.

More sustainable strategies to drive our development without hampering the progress
of future generations are urgently required and, in this context, a great deal of attention has
recently been devoted to the study and implementation of biorefineries. Biorefineries are
production facilities able to exploit renewable biomass instead of a fossil carbon resource
and convert it into carbon-based products, such materials, fuels, or energy [2]. CO2
fixation during plant growth can considerably reduce the impact on carbon balance when a
vegetable source is exploited. This provides biorefineries with a greatly improved GHG
emissions profile compared to traditional refineries. Among the different biorefinery types,
biodiesel biorefineries focus on the production of carboxylic acid esters that can be directly
blended with regular diesel fuel, starting from vegetable or animal fats. The latter are
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subjected to acid- or base-catalyzed transesterification in the presence of an excess of
a short chain alcohol, to give a mixture of fatty acid methyl (or ethyl) esters, which is
biodiesel. Depending on the triglyceride source, it has been estimated that the adoption of
bio-derived diesel fuel brings between a 63% (energy crops) and 86% (waste fat) reduction
in GHG emission compared to oil-based diesel fuel [3]. Moreover, a common factor in all
transesterification processes is the co-production of glycerol (Gly) that is usually considered
a waste stream, especially in small-scale productions where further refining costs are not
justified. The present crude Gly price is as low as between USD 0.04 and 0.09/lb and it
is expected to decrease further according to the growing industrial availability. Current
global production is approximately 42 billion liters per year [4].

Gly shows some direct potential uses in the pharma, food, cosmetic, and polymer
industries; however, its features (limited miscibility with organics, high boiling point,
chemoselectivity of primary vs. secondary hydroxyl), as well as the presence of contam-
inants in the raw material, pose several barriers to its free applicability. As a result, the
identification of effective processes able to economically convert Gly into value-added
chemicals represents a key development needed to improve the sustainability of the whole
biodiesel industry [5].

Various Gly-derived upgraded structures with enhanced properties and extended
application profiles are well-described. Solketal [6] and other acetals, 1,3-propanediol [7,8]
and dihydroxy acetone [9], represent known examples, and among these, a leading position
is occupied by glycerol carbonate (GC), which represents the main focus of this work.
As a multiple-site electrophile, GC can efficiently and selectively interact with diverse
nucleophiles, such as amines [10–12], amino acids [13,14], phenols [15], carboxylates [16],
and others [17]. The nucleophilic property of the free hydroxyl function can be directly
exploited [18,19] or can be used to obtain a new electrophilic site capable of additional reac-
tivity [20,21]. Valuable GC-derived oligomers or polymers, especially polyglycerols [22,23],
polycarbonates, and polyesters [24], find application in biomedical tissue engineering [25]
and in the controlled release of active pharmaceutical ingredients [26]. Polyglycerols
are also applied in water-dispersible polymers, adhesives [27,28], and bio-based surfac-
tants [16]. As a building block, GC has been included in diverse classes of polymeric materials,
such as acrylates [29,30], polyesters [31–33], isocyanate-free polyurethanes [33–37], hybrid struc-
tures [38,39], and others [40,41]. Finally, GC can also be used as a carbonate carrier able to
transfer the same function to other polyols, including sugars [42,43], through transcarbony-
lation processes. The carbonate function can also be considered as a precursor to highly
electrophilic (and valuable) epoxy function [44,45].

Thanks to the excellent properties of GC, a number of methods able to convert Gly
into GC were devised [46,47]. Based on the nature of the main interacting reagent involved,
they can be divided into three groups, as follows:

(i). processes using activated phosgene-sourced reagents, such as phosgene itself, chloro-
formates, or carbonyldiimidazole;

(ii). processes using activated reagents not sourced from phosgene, such as dialkyl car-
bonates, diaryl carbonates, or CO + O2;

(iii). processes using non-activated CO2-sourced reagents, such as CO2 itself or urea.

Class (i) processes are characterized by high Gly conversion and product selectivity,
but also by health and environmental issues due to the toxicity of the involved reagent (or
precursor). The reactivity of class (ii) reagents allows high efficiency as well and, thanks
to the better sustainability profile, the related processes are the most investigated [48–50].
Different implementations of these processes are described, extending through various
catalysts and plant engineering, including continuous-flow techniques [51,52]. Organic
carbonates can, in principle, be prepared from CO2, however, aside from promising research
advancements [53,54], no industrial process is currently available, possibly due to known
issues such as process reversibility and hydrolytic instability of the product [55].

Dealing with class (iii) reagents, CO2 certainly represents the more atom economical
choice, but the same hurdles described to form alkyl carbonates also hamper the direct
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carbonylation of glycerol to GC [56,57]. The option to use highly toxic glycidol as an
activated Gly-sourced substrate [58,59] able to overcome the chemical inertness of CO2
presents critical toxicity features similar to phosgene or gaseous CO [60]. To pursue
chemical upgrading routes characterized by a non-toxic and stable reactant as well as
featuring high atom economy, our attention was devoted to urea. Urea is a white crystalline
solid containing 46 wt% of nitrogen and, being non-toxic, is largely used as an animal
feed additive and fertilizer [61]. It is even more resonance-stabilized [62] than CO2, thus,
its reactivity with polyols is expected to not be very manifest; in fact, thermally stable
mixtures between urea and polyols are well-described [63] and are used as deep eutectic
solvents. What makes urea an attractive carbonylation agent is its multi-basic nature [64],
which makes the coordination of metal cations possible [65]. These urea–cation complexes
are the key to converting urea into a highly electrophilic “masked” isocyanate species [66,
67], where the resonance is strongly reduced by the interaction with the metal center.
This allowed the easy nucleophilic attack by Gly, as shown in Figure 1. The process is
reversible [68] and proceeds stepwise, with the formation of a carbamic acid intermediate
(I) (Figure 1) [69], which is converted in the final product through the elimination of a
second ammonia molecule [70].
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Figure 1. Metal-catalyzed carbonylation of Gly with urea.

Urea is industrially prepared from ammonia and CO2 [71], therefore, it can be consid-
ered a CO2 carrier [72] and promises additional advantages regarding the overall carbon
balance, especially when the proper recycling of ammonia is implemented. In other words,
the upgrading of Gly to GC involves the fixation of one mole of CO2 per mole of vegetable
oil (i.e., ~5 wt%, when 880 g/mol is taken as a mean molecular mass of a vegetable oil),
a fact that, together with refined farming practices [3], can give additional support to
reducing GHG emissions within the whole biodiesel industry.

In this paper, we present a novel continuous-flow process able to convert Gly into GC.
The influence of key operating variables, such as time, temperature, and urea/Gly molar
ratio (MR), on the product yield and selectivity are studied and statistically modeled by
means of a Design of Experiments (DoE) approach.

2. Materials and Methods
2.1. General Information

Solvents and reagents were commercial grade and used as received. Glycerol (from
vegetable source) was purchased from Merck (Milano, Italy). ZnSO4·H2O was obtained by
heating ZnSO4·7H2O overnight in an oven at 130 ◦C, which was then stored in a desiccator.
Gly was vacuum dried for 4 h in the rotavapor (water bath 40 ◦C) and stored in a capped
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bottle. Urea was dried at 65 ◦C overnight and stored in a desiccator. 1H NMR spectra were
acquired with a Bruker Avance 400 spectrometer (Billerica, MA, USA).

2.2. Procedure for Preliminary Batch Reactions

In a 10 mL Schlenk tube with a screw cap and equipped with a stirring bar, Gly (1.0 g,
10.9 mmol), solid catalyst (0.05 mol/mol Gly, see later), and urea (0.82 g, 13.65 mmol,
1.25 mol/mol Gly) were inserted. A membrane vacuum pump was connected through the
side arm and the vacuum was set at 400 mmHg. The capped tube was inserted in an oil
bath (pre-heated at 150 ◦C) and stirred for 4 h. The crude reaction mixture, once cooled
to room temperature (r.t.), was extracted with EtOAc:Et2O (4:1 mixture, 3 × 5 mL), and
the crude colorless product, obtained from the dried organic phase, was analyzed with 1H
NMR using CDCl3 or D2O as the solvent.

2.3. Procedure for Continuous Flow Reactions

The plant assembly is depicted in Figure 2. The reacting mixture was continuously
recirculated through a heated tubular reactor (R) by means of a Bellco (model: BL 758,
Mirandola, Italy) peristaltic pump (P). A mixing chamber (M), composed of a 25 mL two-
necked round bottom flask, was heated and stirred through a standard stirring plate and
an oil bath. A three-arm distillation connector acted as an expanding chamber (E) and
connected the reactor output to an air-cooled condenser (A, also connected to M) and a
vacuum line, set at 400 mm Hg. The said reactor was composed of a metallic AISI 316
stainless steel tube (1/16 in od × 1.2 mm id, 3 m long, ~4 mL internal volume, sourced from
Restek, Milano, Italy) coiled around a 4 cm diameter cylindrical aluminum block, featuring
a slot for a heating resistor and temperature sensor. Both of these heating and measuring
elements were connected to a PID controller (Rex-C100, sourced from RobotDigg, Shangai,
China), which allowed for setting and maintaining the desired temperature. Some thermal
insulation (not shown in figure) was wrapped around the external side of the reactor.
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Gly (11.0 g, 0.119 mol), ZnSO4·H2O (0.643 g; 3.58 mmol, 0.03 mol/mol Gly), and urea
(e.g., 8.97 g, 0.149 mol for 1.25:1.00 urea:Gly molar ratio) were stirred at 65 ◦C within the
mixing chamber (M, Figure 2) until a homogeneous solution was obtained. By that time,
the temperature of the coiled reactor (R) was set at the desired value. Then, the peristaltic
pump was started at constant flow (3.0 mL/min), and the mixture was recirculated for
the desired time. To assess yield and conversion of each experiment, a 2.0 g portion of
the crude reaction mixture was extracted with EtOAc:Et2O (4:1 mixture, 3 × 5 mL), and
the raw colorless product, obtained from the organic phase, was carefully dried at the
rotavapor. Purity was directly assessed with 1H NMR spectroscopy (see Supplementary
Materials). GC gave the following signals (Figure S1): 1H NMR (400 MHz, CDCl3, 298 K):
δH (ppm) = 4.81 (1H, CH, m), 4.49 (2H, CH2, m), 3.99 (1H, CH2, dd, J = 12.84 Hz; 3.1 Hz),
3.72 (1H, CH2, dd, J = 12.84; 3.5 Hz), 2.21 (1H, OH, br). The metal catalyst and some
carbamic acid intermediates (currently not characterized) constituted the denser, polar
phase insoluble in the extracting mixture. No residual Gly was detected.

2.4. Design of Experiments (DoE)

Nineteen experiments were suggested, and the relative output data were statistically
analyzed by means of Design Expert® v.12 software (Stat-Ease Inc., 1300 Godward Street
NE, Suite 6400, Minneapolis, MN 55413 USA). A three-level face-centered cubic design
with five replicates of the central point was implemented. The investigated independent
parameters were time (90–210 min), temperature (175–195 ◦C), and urea/Gly ratio (1.2–1.8),
while output parameters were GC yield (%) and GC selectivity (%). Reagent flow was
demonstrated to be not significant during the preliminary experiments, therefore, it was
kept constant at 3.0 mL/min. Pressure was set to 400 mmHg because of hardware technical
limits (squeezing of peristaltic pump tube) as well as urea losses through sublimation.

3. Results

Gly carbonylation with urea commonly involves solventless operation, temperatures
ranging from 120 ◦C to 160 ◦C, reaction times from 3 to 24 h, and the presence of a catalyst
(metal salt or metal oxide). Some degree of vacuum is also commonly applied in order
to favor the removal of ammonia, obtaining a desired equilibrium shift [73,74] (Figure 1).
A number of catalysts were described for this transformation [75–78] and, among these,
zinc-containing species are by far the most active and popular. Irrespective of its initial
form, soluble zinc-based catalysts are expected to give the same performance thanks to the
formation of the metal glycerolate [79–81], while insoluble forms [67,82–84] are involved in
heterogeneous reactions.

It is interesting to note that most of the recent papers have focused on an accurate
description of the catalyst but have not given enough attention to the separation and
isolation of GC, which represent key steps for considering the industrial feasibility of the
chemical process [74].

Our investigations started with some preliminary experiments in which mixtures
composed of Gly:urea:catalyst in a 1.00:1.25:0.05 molar ratio (MR) were heated in batch
at 150 ◦C for 4 h, keeping the pressure at 400 mmHg (see materials and methods). After
extraction with organic solvents, the amount of GC was evaluated with 1H NMR spec-
troscopy [85]. This screening, of which the results are collected in Table 1, let us draw
some general observations, such as (i) yields are limited to 30%; (ii) longer reaction times
do not improve the result (entry 3 vs. 2, Table 1); (iii) temperatures higher than 150 ◦C
induce degradation (reaction mixture became brown and lower yields of GC were ob-
tained); (iv) pressures lower than 400 mmHg induce urea losses through sublimation [86];
(v) catalyst anhydrification is beneficial (entry 2 vs. 1).
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Table 1. Screening of alternative catalysts in the batch conversion of Gly to GC a.

Entry Catalyst Isolated Yield (%)

1 ZnSO4·7H2O 27

2 ZnSO4·H2O 30

3 b ZnSO4·H2O 27

4 ZnCl2 30

5 FeCl3 20

6 MgO 22
a Gly (1.00 g, 10.9 mmol), urea (0.815 g, 13.6 mmol), catalyst (5 mol% resp. to Gly), 150 ◦C, 4 h, 400 mmHg.
b reaction time extended to 6 h.

Cheap and easily available ZnSO4·H2O was chosen as the reference catalyst, especially
because of its ability to give homogeneous mixtures that, being simpler reacting systems,
let us focus on engineering approaches towards process improvement.

Some attempts to set up a reactive distillation [87] were carried out, however, the
high boiling point of GC (~140 ◦C at 0.5 mmHg) was a considerable hurdle to its isolation.
Better success comes from the known implementation of microwave-heated batch reactors,
giving improved isolated yields and reduced reaction times [88,89]. As this suggests, a
main problem of the batch process featuring traditional heating is likely to be the supply of
thermal energy to the reacting mixture that, being subjected to an endothermic event [73],
is affected by self-cooling, especially in the core (far from the heating bath). Therefore, to
improve such heat transfer limitations, our focus was directed to the implementation of a
high area-to-volume ratio reactor, such as a small diameter tubular reactor, together with a
continuous flow of reactants inside it.

Solventless operation is a valuable feature of this process, but the high viscosity of
Gly/urea mixtures poses serious troubles concerning their pumpability. Different HPLC
pumps were not able to give a reliable flow, possibly due to the inability of check valves
to promptly block the backflow. The addition of a high boiling point solvent such as
DMSO was proposed as a solution [90], but we judge this practice undesirable as it nullifies
the “solventless advantage” and makes the isolation of reaction products troublesome.
Fortunately, the use of a peristaltic pump in addition to a heated mixing chamber (M,
Figure 2) allowed us to obtain a steady flow of reactants. In fact, by keeping the Gly/urea
mixture at 65 ◦C, a useful reduction in viscosity was observed and, more importantly, the
precipitation of urea within the tubes was avoided.

Using the flow chemistry technique in small volume reactors, thanks to strongly
increased heat and mass transfer, typically benefits enhanced reaction control with respect
to batch processes, especially in fast reactions [91]. Nevertheless, the process under study
(Figure 1) features slow kinetics as evidenced by the long reaction times required for
complete conversion, such as 2 h at 150 ◦C with microwave irradiation [89]; the meagre
conversion obtained with reaction times of a few minutes, even with the implementation
of a capillary reactor [90], gives evidence of that. Using a coiled 3 m long tubular reactor,
we first tried to get the best conversion through a single pass, keeping flow at a minimum
(0.2 mL/min) and evaluating increased temperatures. Unluckily, unsatisfactory conversion
was obtained even at 195 ◦C, while greater temperatures resulted in brown (degraded)
mixtures, containing low amounts of GC. A possible solution was to consider multiple
passes through the reactor, thus, a recirculating layout was set up, as shown in Figure 2.

Gly, urea, and the catalyst were stirred at 65 ◦C in the mixing chamber (M, Figure 2)
to obtain a homogeneous mixture. This was continuously pumped through the heated
coiled tubular reactor (R, Figure 2) and the outflow was recirculated through an air-cooled
condenser (A) into the mixing chamber. The total volume of the reacting mixture was set
to ~1.2 times of the total piping volume (reactor and interconnections) to maximize the
number of passes through R. The entire system was maintained at reduced pressure by
a membrane pump connected to E. At time intervals, a sample of reacting mixture was
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withdrawn from the mixing chamber to assess conversions and yields. Several trials let us
delineate the general features of the system, as follows:

• temperatures greater than 175 ◦C resulted in better GC yields;
• a minimum time of 90 min was required to obtain complete conversion of Gly;
• pressures lower than 400 mmHg resulted in unreliable flow due to peristaltic pump

malfunction (tube squeezing) and minor urea losses due to sublimation;
• yields were unaffected by changes in flow rate, within the range from 0.5–5.0 mL/min;
• yields were unaffected by changes in catalyst amount, within the range from

0.03–0.05 molZnSO4·H2O/molGly;
• diglycerol tricarbonate (DGTC) was identified as the main by-product [23].

In order to get a better understanding of the influence of multiple process parameters,
we decided to implement a multivariate statistical evaluation based on a DoE approach.
In particular, a three-level face-centered central composite design (CCD) was chosen and
was used to define an appropriate number of experiments within the variable domains
arising from the above observations. The included independent variables were the reactor
temperature (ranging from 175 to 195 ◦C), the recirculation time (from 90 to 210 min), and
the urea:Gly MR (from 1.2 to 1.8); while the other process parameters such as pressure,
flow, amount of catalyst, and mixing chamber temperature were fixed at 400 mmHg,
3.0 mL/min, 0.03 molZnSO4·H2O/molGly, and 65 ◦C, respectively. As suggested by the DoE
CCD model, we planned nineteen experiments, with five replicates of the central point, as
shown in Table 2. All the experiments were conducted by the same operator to minimize
systematic errors, while the order of experiments was randomized. The two monitored
responses were GC yield and GC purity. A quantitative evaluation of the reaction selectivity
(100·mol GC/(mol GC + mol DGTC)) was obtained by the integration of isolated 1H NMR
signals of the product and isolated 1H NMR signals of the main by-product (DGTC), as
described in the Supplementary Materials (Figure S2). This was supported by the fact that
the 1H NMR signals due to other substances always presented at a very low intensity.

Table 2. Experiments suggested by the DoE model a.

Exp. n. Temperature (◦C) Urea:Gly MR Time (min) GC Yield (%) GC Selectivity (%)

1 195 1.8 210 25.8 57

2 175 1.2 90 33.6 93

3 175 1.8 210 37.9 68

4 185 1.5 210 35.2 85

5 185 1.2 150 40.3 91

6 175 1.2 210 37.9 90

7 195 1.2 90 41.9 86

8 185 1.5 150 42.9 88

9 185 1.8 150 42.3 80

10 175 1.8 90 33.4 82

11 195 1.2 210 27.0 84

12 185 1.5 150 45.1 88

13 185 1.5 150 45.7 86

14 185 1.5 150 42.8 89

15 185 1.5 150 41.3 89

16 195 1.8 90 38.7 64

17 175 1.5 150 39.0 87

18 185 1.5 90 41.0 82

19 195 1.5 150 40.3 83
a. fixed parameters: P = 400 mmHg; flow = 3.0 mL/min; catalyst amount 0.03 molZnSO4·H2O/molGly.
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4. Discussion

The ability to statistically evaluate the interrelation between process variables is one of
the main advantages offered by the DoE approach. For instance, the influence of the three
independent variables on the output responses are shown in Figure 3. GC-isolated yields
(Figure 3a–c) strongly depends upon recirculation time and reactor temperature, while less
marked is the influence of the urea:Gly MR. Best GC yields are obtained at temperatures
between 180 and 190 ◦C, times between 110 and 160 min, and for urea:Gly MR in the
range from 1.3–1.7. GC selectivity (Figure 3d–f) strongly depends upon urea:Gly MR and
reactor temperature, while recirculation time is found to be the less influent parameter. Best
selectivities are obtained at lower temperatures, lower urea:Gly MR, and times between
110 and 170 min.
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Figure 3. All factors graphs. (a) GC yield% vs. temperature, (b) GC yield% vs. urea/Gly MR,
(c) GC yield% vs. recirculation time, (d) GC selectivity% vs. temperature, (e) GC selectivity% vs.
urea/Gly ratio and (f) GC selectivity% vs. recirculation time. Dashed blue lines refers to minimum
and maximum values of the data set. Continuous black lines refers to the mean values.

The simultaneous influence of two independent variables on each physical property is
of particular value. Figure 4 shows some “two factors response surfaces”, which put into
evidence the dependency of GC yield% (left of Figure 4) from time–temperature or urea:Gly
MR–time couples. On the right of the same figure, the influence of time–temperature or
ratio–temperature couples on GC selectivity% are shown.
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Finally, both GC yield% and GC selectivity% response parameters can be conveniently
composed in a single factor, called “desirability”, which is able to describe the best process
conditions in a simple and effective way. In the present case, desirability is obtained by the
product of the said response parameters, normalized to unity. A desirability of 1.0 means
that both parameters are maximized, while the lowest desirability (0.0) describes conditions
where both responses are at minimum levels. In Figure 5, some contour heatmap plots of
desirability as a function of independent variable couples are shown.
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The strong reduction in process performance at high urea:Gly MR (Figure 5a,b) comes
from a loss of selectivity (see also Figure 3b,e), meaning an increased formation of DGTC.
This behavior is not surprising, as DGTC is described as an overreaction product of GC
when the carbonylation reagent is in high molar excess [23,92,93]. This also suggests
good potential for DGTC production as a possible future implementation of the process.
The significant yield decrement at high times and temperatures (Figures 3 and 5c) found
good correlation with the experimental observation of the brownish color acquired by
the reacting mixture in these circumstances, a sign of partial degradation. Overall, best
operating conditions of the process were found to be a reactor temperature from 180 to
185 ◦C, a recirculation time from 120 to 150 min, and a urea:Gly MR of 1.25.

Regarding the potential risk of isocyanic acid emission coming from carbamate de-
composition [94,95], the process conditions (low operating temperatures, low urea:Gly MR,
presence of glycerol) make this event highly unlikely. As an additional safety measure, it
might be considerable, for further developments, to add a “water trap” on the output of
the vacuum pump.

5. Conclusions

The most challenging issue we faced during the development of the process was the
pumping of the viscous reacting mixture. This was solved by means of a peristaltic pump (P,
Figure 2) and by a heated mixing chamber (M) able to lower the viscosity and increase urea
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solubility. The technical limits of this implementation were evidenced when we attempted
to operate at a pressure lower than 400 mmHg. This pressure constraint is thought to be
one of the factors limiting the GC-isolated yield to ~42%; therefore, the employment of
different pumping hardware could significatively improve performance. Moreover, to the
best of our knowledge, this is the first example of a multiple pass tubular reactor applied to
the conversion of Gly into GC. This plant layout (Figure 2) allowed for the management
of a kinetically slow process within a confined, highly thermally controlled reactor (R).
The same layout also features a closed loop with a single evacuation point (E), which has
the particular advantage of collecting the co-produced ammonia and recycling it to urea
(Figure 1). This feature, coupled with the modest molar excess of urea required for the
transformation, demonstrate the opportunity to sustainably transfer an equimolar amount
of CO2 to Gly, beneficially contributing to the entire carbon cycle of the biodiesel industry.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/bioengineering9120778/s1, Figure S1: Typical 1H NMR spectra
(CDCl3, 400 MHz) of a GC-rich raw mixture; Figure S2: Typical 1H NMR spectra (CDCl3, 400 MHz)
of a DGTC-rich raw mixture.
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