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yeerolto Liycerol barbonate as a After preliminary evaluation, Gly-urea mixtures were processed within the DoE do-

main, that is: reactor temperature from 175 to 195 °C, recirculation time from 90 to 210
o min, urea:Gly MR from 1.2 to 1.8. After solvent extraction (EtOAc:Et20 4:1) and drying, a
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httpsy/doi.org/ colorless oil was obtained. This raw material was directly analyzed with '"H NMR spec-

10.3390/bioengineering9120778 troscopy and two main groups of signals were detected:
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e aset of signals (Figure S1) was assigned to GC;
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Figure S1. Typical '"H-NMR spectra (CDCls, 400 MHz) of a GC-rich raw mixture.

e asecond set of signals was assigned to DGTC. DGTC was always detected
as contaminant of the main product (GC) and its identity was gathered from
the literature [94-96]. In Figure S2 is shown a typical !H NMR spectra of a

DGTC-rich raw mixture.
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Figure S2. Typical "H NMR spectra (CDCls, 400 MHz) of a DGTC-rich raw mixture.

As DGTC was the only recurring and largely predominant detected side-product, we
approximated the raw (extracted) reaction mixture as a binary mixture. Given that, GC
molar selectivity was calculated from the integrated area of isolated -CH-CH2-OH signals
(c in Figg S1 and S2) of the desired product (GC, dd at d 3.99 ppm, 1H) and the contami-

nant (DGTC, dd at 0 3.82 ppm, 2H), as follows:

100 - Area (5 3.99 ppm)

GC Sel % =
Area (5 3.99 ppm) + (Area (5 3.82 ppm) /2)

Figure S2 depicts the 'H NMR spectra of the raw mixture obtained after solvent ex-
traction from experiment n. 3 (Table 2). In this case, the calculated value for GC selectiv-

ity% equals to 68 (= 100-(1.00/1.00+(0.92/2))).



