Supplementary Materials: Influence of Sample Storage on the Composition of Carbonated Beverages by MIR Spectroscopy

Karma Pearce, Julie Culbert, Diane Cass, Daniel Cozzolino and Kerry Wilkinson

Table S1. Significant changes in titratable acidity (TA) and/or total phenolics of beer and cider following short-term (1 week) refrigeration or freezing or long-term (6 week) freezing.

		Fresh	Refrigerated (1 Week)	Frozen (1 Week)	Frozen (6 Weeks)
Desca	TA (g/L)	1.9 ± 0.1	2.3 ± 0.2	2.1 ± 0.2	2.6 ± 0.4 a
Beer A	Total phenolics (au)	11.7 ± 0.5	11.0 ± 0.3 ^b	11.3 ± 0.2	10.6 ± 1.2 ^b
Beer B	TA (g/L)	2.1 ± 0.1	2.3 ± 0.1	2.3 ± 0.2	2.6 ± 0.3 a
	Total phenolics (au)	15.0 ± 0.1	14.1 ± 0.3	13.5 ± 1.1 ^b	13.8 ± 1.1 ^b
Beer C	TA (g/L)	2.0 ± 0.1	2.2 ± 0.2	1.9 ± 0.2 °	1.7 ± 0.3 a
Beer C	Total phenolics (au)	12.1 ± 0.2	10.1 ± 1.7 a	10.8 ± 1.1	10.9 ± 0.8
Beer D	TA (g/L)	1.4 ± 0.1	1.4 ± 0.1	1.3 ± 0.1	1.2 ± 0.2 b
beer D	Total phenolics (au)	10.5 ± 0.2	10.6 ± 0.3	6.1 ± 2.0 ^a	8.8 ± 0.8 b
Cider A	TA (g/L)	6.7 ± 0.1	6.8 ± 0.1	6.6 ± 0.1	6.9 ± 0.1 ^c
	Total phenolics (au)	17.9 ± 0.2	16.4 ± 0.4	16.6 ± 0.1	16.2 ± 0.2 a
Cider B	Total phenolics (au)	30.8 ± 0.6	29.7 ± 1.3	28.9 ± 1.8 $^{\rm a}$	29.5 ± 1.1 ^b
Cidar C	TA (g/L)	7.2 ± 0.1	7.2 ± 0.1	6.9 ± 0.1 ^b	7.1 ± 0.4 ^c
Cider C	Total phenolics (au)	18.8 ± 0.3	18.7 ± 0.4	17.7 ± 0.1 ^b	17.4 ± 1.3 a
Cider D	TA (g/L)	7.0 ± 0.2	7.1 ± 0.2	6.8 ± 0.2	6.1 ± 0.3 °
Cluer D	Total phenolics (au)	15.1 ± 0.3	14.9 ± 0.2 ^c	14.7 ± 0.3 $^{\rm a}$	14.3 ± 1.1 a

Values are the means from ten experimental replicates (n = 10). All samples were degassed prior to analysis. TA was measured as malic acid equivalents for beer and cider, to endpoints of 8.2. Total phenolics were measured at A₂₈₀. Color was measured at A₄₃₀. Letters indicate significant differences relative to the fresh sample (a: P < 0.001; b: P < 0.01; c: P < 0.05).