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Abstract: Probiotic features and the ability of two oenological lactic acid bacteria strains
(Pediococcus pentosaceus CIAL-86 and Lactobacillus plantarum CIAL-121) and a reference probiotic strain
(Lactobacillus plantarum CLC 17) to metabolize wine polyphenols are examined. After summarizing
previous results regarding their resistance to lysozyme, gastric juice and bile salts, the three strains
were assessed for their ability to release phenolic metabolites after their incubation with a wine
phenolic extract. Neither of the two bacteria were able to metabolize wine polyphenols, at least in the
conditions used in this study, although a certain stimulatory effect on bacterial growth was observed
in the presence of a wine-derived phenolic metabolite (i.e., 3,4-dihydroxyphenylacetic acid) and a
wine phenolic compound (i.e., (+)-catechin). Bacteria cell-free supernatants from the three strains
delayed and inhibited almost completely the growth of the pathogen E. coli CIAL-153, probably due
to the presence of organic acids derived from the bacterial metabolism of carbohydrates. Lastly, the
three strains showed a high percentage of adhesion to intestinal cells, and pre-incubation of Caco-2
cells with bacteria strains prior to the addition of E. coli CIAL-153 produced a notable inhibition of
the adhesion of E. coli to the intestinal cells.
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1. Introduction

Probiotics are live microorganisms that promote healthy gastrointestinal microbiota and boost the
immune response [1]. The main probiotic strains belong to the genera Lactobacillus and Bifidobacterium
and were mainly isolated from dairy products or the human gastrointestinal tract. Some studies have
evaluated the probiotic potential of bacterial strains isolated from alcoholic fermented beverages such
as cider [2] and wine [3]. Recently, the probiotic features of strains of lactic acid bacteria (LAB) from
an oenological bacteria collection, including Lactobacillus spp., Pediococcus spp. and Oenococcus oeni,
have been assessed, although their mode of action is still poorly understood [4]. On the other hand,
consumption of probiotics, which are able to metabolize polyphenols into physiologically active
metabolites, has been proposed as a nutritional approach to improve the bioavailability of these
phytochemicals, which would, in turn, enhance the health effects attributed to them [5,6].

Beneficial health effects derived from the moderate consumption of wine and its bioactive
compounds, especially polyphenols, have been evidenced mainly in relation to diseases associated
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with oxidative stress and inflammation [7,8]. Currently, the beneficial effects of wine polyphenols
on intestinal microbiota growth and functionality is a topic that is attracting research [9,10].
Wine polyphenols include benzoic and cinnamic acids, phenolic alcohols and stilbenes among the
non-flavonoids and anthocyanins, and flavan-3-ols, flavonols and others among the flavonoids.
Most of them are minimally absorbed in the small intestine but they are extensively metabolized
by enzymes from the colonic microbiota [11,12]. As colonic catabolites could be present in higher
concentrations than the parent compounds, the biological activities attributed to polyphenols seem to
be mainly due to them [13,14]. Therefore, the bioactivity of wine polyphenols is likely to be dependent
on the microbiota activity that shows great human inter-individual differences [12].

On the other hand, numerous studies seem to indicate that phenolic compounds could positively
modulate gut microbiota through prebiotic effects either promoting the growth of beneficial bacteria
or having antimicrobial activity against pathogenic intestinal bacteria [15]. For instance, grape seed
extracts of different flavan-3-ol composition have shown to promote the growth of potentially beneficial
bacteria (Lactobacillus sp.) and decreased undesirable bacteria such as clostridia after batch culture
fermentations [16]. Phenolic compounds contained in a cocoa powder reduced the growth of some
members of the genera Staphylococcus and Clostridium, affecting the intestinal microbiota profile [17].

In this paper, we aimed to investigate more deeply the properties of potentially probiotic
wine-isolated LAB. Thus, the objectives were: (a) to assess whether LAB were able to degrade wine
polyphenols with the subsequent release of phenolic metabolites; (b) to monitor LAB growth in the
presence and absence of some wine-related phenolic compounds; and (c) to evaluate LAB adherence
to human intestinal cells, also considering the potential inhibition of the adherence of a pathogen
E. coli strain.

2. Materials and Methods

2.1. Materials and Reagents

(+)-Catechin and 3,4-dihydroxyphenylacetic acid were purchased from Sigma-Aldrich
Chemical Co. (St Louis, MO, USA). A commercial wine phenolic extract (Provinols™) was
kindly provided by Safic-Alcan (SAU, Barcelona, Spain). Its total phenolic content was 474
mg of gallic acid per gram, and the main phenolic compounds present in the extract were:
anthocyanins (delphinidin-3-O-glucoside, 0.568 mg/g; cyanidin-3-O-glucoside, 0.265 mg/g;
petunidin-3-O-glucoside, 1.47 mg/g; peonidin-3-O-glucoside, 1.78 mg/g; malvidin-3-O-glucoside,
9.01 mg/g; malvidin-3-O-(6"-acetyl) glucoside, 1.92 mg/g; and malvidin-3-O-(6"-p-coumaroyl)glucoside,
1.24 mg/g), flavan-3-ols (catechin, 9.90 mg/g; epicatechin, 6.87 mg/g; epicatechin-3-O-gallate,
0.226 mg/g; procyanidin B1, 11.1 mg/g; and procyanidin B2, 4.69 mg/g), benzoic acids (gallic
acid, 1.06 mg/g), cinnamates (cutaric acid, 2.00 mg/g; and caftaric acid, 0.192 mg/g), flavonols
(quercetin, 22.4 mg/g; kaempherol, 2.71 mg/g; myricetin, 2.55 mg/g; quercetin-3-O-glucoside,
0.137 mg/g; and quercetin-3-O-galactoside, 0.107 mg/g), stilbenes (resveratrol, 0.427 mg/g; and
resveratrol-3-O-glucoside, 9.17 mg/g) and others (tyrosol 18.9 mg/g) [18]. The wine extract was
dissolved (0.6 mg/mL) in a saline solution (NaCl 0.9%) supplemented with 0.5 g/L of cysteine and
sterilized by filtration.

Formic acid was purchased from Scharlau (Scharlau, Barcelona, Spain). Acetonitrile (HPLC-MS
grade) was purchased from Labscan (POCH S.A., Gliwice, Poland). Ultrapure water was obtained
using a Milli-Q system (Waters Millipore, Milford, MA, USA).

2.2. LAB Strains and E. coli Strain

Two LAB strains (P. pentosaceus CIAL-86 and L. plantarum CIAL-121), previously isolated from
wines [19,20], were selected based on their good probiotic features [4]. Also, a previously characterized
probiotic LAB strain isolated from breast milk (L. plantarum CLC 17) [21] was included as a reference
probiotic strain. The strain E. coli CIAL-153 was isolated from human faeces [4].
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All strains were kept frozen at —70 °C in a sterilized mixture of culture medium and glycerol
(80:20, v/v). Inocula of the three LAB strains and E. coli CIAL-153 strain (108 CFU/mL) were prepared
by growing overnight the contents of thawed cryovials in MRS broth (Pronadisa, Madrid, Spain)
at 30 °C and TSB broth (Scharlau, Barcelona, Spain) at 37 °C, respectively. Bacteria were harvested by
centrifugation (10,000x g, 10 min, 4 °C) and resuspended in Dulbecco’s phosphate-buffered saline
DPBS (DPBS Lonza Walkersville, Inc., USA).

In vitro analyses were previously carried out to evaluate the resistance of LAB strains to conditions
in the gastrointestinal tract including saliva and acid resistance, and bile tolerance [4], and the data
obtained are now summarized in Table 1. All strains showed great resistance to lysozyme (>51%)
and capacity to survive at low pH values (pH 1.8), thereby suggesting good adaptation of the wine
LAB strains to the hostile gastrointestinal environment. Moreover, the growth percentages of both
oenological LAB strains at the maximum concentration of bile assayed (1%) were higher than 84%,
which was even greater than that exhibited by the reference probiotic strain, L. plantarum CLC 17 (73%),
which reflected good bile resistance.

Table 1. Resistance to lysozyme (% Survival), tolerance to simulated gastric juice on the counts
(log CFU/mL) at different pH values and incubation times, and bile resistance (% Growth) of the lactic
acid bacteria (LAB) strains used in this paper [4].

LAB strains

Experimental Time
Conditions (min) P. pentosaceus L. plantarum L. plantarum
CIAL-86 CIAL-121 CLC17
Resistance to lysozyme 30 93.9 65.1 100
(% survival) 120 88.6 50.8 86.0
pH5.0 0 8.47 £ 0.05 8.08 £ 0.07 8.08 & 0.07
Tolerance to gastric pH4.1 20 8.38 £0.11 8.06 + 0.08 8.19 +0.10
juice (log CFU/mL) pH3.0 40 8.41 £ 0.04 8.05 £ 0.13 8.08 £0.11
pH21 60 7.95 £ 0.06 6.20 +£0.28 7.95 £ 0.06
pH18 90 515+0.21 5.05 +0.38 7.31 +£0.12
0.06% 99.1 93.6 93.8
Bile resistance 0.125% 100.0 91.2 89.1
(% growth) 0.25% 88.3 89.0 77.9
0.5% 89.5 89.5 76.8
1.0% 84.1 88.7 73.0

Average values from three independent repetitions are presented.

2.3. Incubations of LAB Strains with Wine Polyphenols

Incubations of bacteria with wine phenolic extract (Provinols™) were carried out as previously
described [22]. Briefly, 1 mL of the wine extract solution (0.6 mg/mL) was mixed with 9 mL of
inocula of each LAB strain (108 CFU/mL) or sterile saline solution (control). Mixtures of each LAB
strain suspension and saline solution (blank) (9:1) were also prepared. The mixtures were incubated
at 0, 6 and 24 h, in duplicate, under anaerobic conditions at 37 °C with continuous stirring. Samples
were centrifuged (10,000 rpm, for 10 min at 4 °C), and supernatants were kept at —20 °C until
undergoing UPLC analyses, which were performed in duplicate.

Phenolic compounds were analysed by UPLC-ESI-MS/MS following the method of
Sédnchez-Patan et al. [23] with some modifications in the composition of the mobile phases:
(a) water/formic acid (99.9:0.1, v/v) and (b) acetonitrile/formic acid (99.9:0.1, v/v). The MS/MS
parameters (cone voltage, collision energy and MRM transition) of the 64 phenolic compounds
targeted in the present study (mandelic acids, benzoic acids, phenols, hippuric acids, phenylacetic
acids, phenylpropionic acids, cinnamic acids, 4-hydroxyvaleric acids, valerolactones and flavan-3-ols)
were previously reported [24]. All metabolites were quantified using the calibration curves of their
corresponding standards.
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2.4. Growth of LAB Strains in the Presence of Phenolic Compounds

Bacterial growth was performed using the method of Garcia-Ruiz et al. [25], slightly modified.
Aliquots of 100 pL of (+)-catechin or 3,4-dihydroxyphenylacetic acid solutions (0, 100, 200 and 500 pM)
were placed in microplate wells with 100 uL of culture medium (MRS). Then, 20 uL of the diluted LAB
strain (inoculum of 1 x 10° CFU/mL) were added to all the microplate wells. The microtitre plates
were incubated at 37 °C for 24 h in a Biotek Synergy H1™ multi-mode microplate reader (Winooki, VT,
USA). Bacterial growth was determined by reading the absorbance at 600 nm. Assays were conducted
twice in triplicate.

2.5. Growth of Pathogen E. coli in the Presence of Free Supernatants (CFS) from LAB Strains

Cell-free supernatants (CFS) of each LAB strain were collected from overnight cultures centrifuged
at 4500 rpm for 10 min. After measuring the pH of the CFS (ranging from 5.1 to 5.4), aliquots were
taken and adjusted to pH 7 using 1 M NaOH solution. All supernatants were sterilized by filtration
(Symta, 0.22 um PVDF 17 mm pK100). The bacterial growth in the presence of the CFS was measured
using the microtitre assay described above. Aliquots of 200 pL of culture medium (MRS), CFS or
neutralized CFS were placed in microplate wells. Then, 20 uL of the diluted E. coli strain (inoculum
of 1 x 10° CFU/mL) were added to all the microplate wells. Assays were conducted twice in triplicate.

2.6. Cell Culture Assays: LAB Adhesion and Inhibition of E. coli Adherence to Caco-2 Cells

Caco-2™ cells from human colon adenocarcinoma (Caco-2™ ATCC®) were grown and maintained
in Dulbecco’s Modified Eagle’s medium (DMEM, Sigma-Aldrich), supplemented with 10% (v/v)
foetal calf serum at 37 °C in a 5% CO,/95% air atmosphere. For the adhesion and inhibition
experiments, Caco-2 cells were seeded in 24-well tissue plates at 25,000 cells/m? density and grown
over 15 days to obtain a monolayer of differentiated and polarized cells, as previously described by
Garcia-Ruiz et al. [4]. Cell culture assays were performed in duplicate and three independent
experiments were carried out.

To assess the adhesion of the LAB strains to Caco-2 cells, 0.5 mL of inocula of the LAB strains
(108 CFU/mL) was added to Caco-2 cell monolayers previously washed with PBS. After 1 h of
incubation at 37 °C in a 5% CO, atmosphere, the wells were gently washed three times with PBS
solution to remove unbound bacteria. Caco-2 cells and adhered bacteria were then detached using
a 0.05% trypsin-EDTA solution and bacteria counts were carried out on MRS Agar medium as described
above. The adhesion capacity was expressed as the number of adhered bacteria (CFU/mL) relative to
the total number of bacteria added initially (% Adhesion = (Adhered bacteria/Total of added bacteria) x 100).

In order to study the effects of LAB on the adhesion of E. coli to Caco-2 cells, two different
experiments were carried out: (a) inhibition, to test the ability of the LAB strains to inhibit the adhesion
of E. coli; and (b) competition, to test the ability of the LAB strains to compete with E. coli for adhesion
to Caco-2 cells. For the inhibition experiments, LAB suspension (108 CFU/mL) was firstly added to
Caco-2 cell monolayers, and after 1 h of incubation non-bound bacteria were removed and E. coli
suspension (108 CFU/mL) was added to the wells, and the mixture was again incubated for 1 h. Caco-2
cells and adhered bacteria (LAB/E. coli) were then detached and E. coli counting was carried out on
TSA plates. The inhibition of the adhesion of E. coli was expressed as a percentage using the following
formula: Inhibition of adhesion = 100 x (1 — T1/T2), where T1 and T2 are the percentage of adhesion
by E. coli cells in the presence and absence of LAB strains, respectively. The same experimental protocol
was carried out for the competition experiments, but adding the LAB and E. coli strains simultaneously
(in an initial ratio of 1:1) to the Caco-2 cells followed by incubation for 1 h. Non-bound bacteria were
removed and the bacterial counts were carried out as described above.
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2.7. Statistical Analysis

A paired-sample t-test was used to evaluate whether the changes in phenolic content of the wine
extract (% referred to the values at time 0) after incubations with bacteria was different from 100.
Also, one-way analysis of variance (ANOVA) and Tukey test (at p < 0.05) were used for the comparison
of the mean values of the LAB growth in each time for each one of time-course graphs. The IBM SPSS
program for Windows was used for data processing.

3. Results and Discussion

The selected LAB strains (two oenological LAB strains P. pentosaceus CIAL-86 and L. plantarum
CIAL-121 and reference strain L. plantarum CLC 17) were used in the different designed experiments:
incubations of LAB strains with wine polyphenols (Section 3.1.), growth of LAB strains in the presence
of phenolic compounds (Section 3.2.), and growth of pathogen E. coli and its adherence to Caco-2
cells in the presence of LAB strains (Section 3.3. and Section 3.4.) The three LAB strains used had
previously proven good probiotic features in vitro (Table 1) [4]. Other strains belonging to Lactobacillus
and Pediococcus genera from different origins have also shown good probiotic properties such as
tolerance to gastric conditions and bile tolerance [4,26,27].

3.1. Metabolism of Wine Polyphenols by LAB Strains

The capacity of three selected LAB strains (the probiotic L. plantarum CLC 17, and the oenological
strains P. pentosaceus CIAL-86 and L. plantarum CIAL-121) to metabolize wine polyphenols was
assessed through their incubation with a commercial wine phenolic extract (Provinols™) under
nutrient-restricted culture conditions. Among different phenolic compounds targeted (mandelic acids,
benzoic acids, phenols, hippuric acids, phenylacetic acids, phenylpropionic acids, cinnamic acids,
4-hydroxyvaleric acids, valerolactones and flavan-3-ols), a total of 15 compounds were previously
quantified by UHPLC-MS/MS analysis [22]. Table 2 shows the data corresponding to the sum of
the concentrations of individual compounds at 0, 6 and 24 h of incubation. Out of the three LAB
strains tested, only L. plantarum CLC 17 produced significant increases in the concentration of phenolic
compounds after 24 h of incubation (133.2% in relation to ¢ = 0 h). Therefore, phenolic-degrading
enzymatic activities might be strain-dependent (i.e., L. plantarum CLC 17), as other potential probiotic
bacteria belonging to the same species were not active on wine polyphenols (i.e., L. plantarum
CIAL-121). However, additional studies to shed light on the enzymatic activities of LAB will be
intended to be carried out. Previous studies with the same wine phenolic extract used in this study
also reported release of the same phenolic acids, after batch fermentations [18] or gastrointestinal
digestion simulation [28] inoculated with human faecal microbiota.

Table 2. Sum (}_) of the concentrations (C, ppm) of individual phenolic compounds (gallic acid, caffeic
acid, ferulic acid, protocatechuic acid, vanillic acid, salicylic acid, 3-O-methyl gallic acid, syringic acid,
phthalic acid, 4-hydroxybenzoic acid, p-coumaric acid, (+)-catechin, (—)-epicatechin, procyanidin B1
and procyanidin B2) before and after incubation of the wine extract with LAB strains.

Concentrations of phenolic compounds

Samples
t=0h t=6h t=24h
Y.C (ppm) Y.C (ppm) % ? YC (ppm) % 2
Wine extract 25.6 25.8 100.7 25.3 98.6
L. plantarum CLC 17 + wine extract 24.5 23.0 94.2 325 133.2 **
P. pentosaceus CIAL-86 + wine extract 28.7 27.9 97.4 26.9 93.8
L. plantarum CIAL-121 + wine extract 25.5 226 88.7 25.23 99.1

4 percentage in relation to t = 0 h. ** Mean significantly different from 100 (p < 0.01) using paired-sample t-test.

3.2. Effects of Phenolic Compounds on the LAB Growth

In order to look more deeply into the effects of wine phenolic compounds and their metabolites on
bacteria performance, the growth of the probiotic strain L. plantarum CLC 17 and the two oenological
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LAB strains P. pentosaceus CIAL-86 and L. plantarum CIAL-121 was monitored in the presence
of (+)-catechin, a main phenolic compound present in wine, and 3,4-dihydroxyphenylacetic acid,
a microbial-derived phenolic metabolite whose concentration in faeces had been reported to
significantly increase after moderate consumption of red wine [12]. Time-course graphs indicated a
certain stimulatory effect of the growth of the three strains in the presence of 3,4-dihydroxyphenylacetic
acid (Figure 1). On the other hand, the monomer (+)-catechin only promoted the growth of L. plantarum
CLC 17 (Figure 1). Results of the one way analysis of variance (ANOVA) and Tukey test (at p < 0.05) did
not show significant differences in the most of the mean values, except in the case of the L. plantarum
CLC 17 in the presence of 3,4-dihydroxyphenylacetic acid (50, 100 and 250 uM) in comparison to the
absence of the compound, from 6 to 24 h (Figure 1b). Therefore, our results confirmed that the chemical
structure of polyphenols did indeed influence their effects on bacterial growth. In relation to this, other
authors observed that flavanols with galloyl moiety ((—)-epigallocatechin, (—)-epicatechin-3-gallate
and (—)-epigallocatechin-3-gallate) exhibited more activity on bacteria growth than those without
galloyl moiety (catechins and (—)-epicatechin) [29]. Also, the microbial potency of polyphenols towards
bacteria growth has also been reported to be dependent upon bacterial strain, species and genera [30],
as we have also observed in our study.

L. plantarum CLC 17 L. plantarum CLC 17
—e— (+)-Catechin 0 M —@— 3,4-Dihydroxyphenylacetic acid 0 uM
—e—50uM —e—50uM
14 —e— 100 uM 14 —e— 100 uM
12 250 uM 12 250 uM _—
Y
1.0

g 1.0 /_.—-4 § /
8 0.8
2 0.8 § f
< o6 0.6

0.4 0.4

0.2 0.2

0.0 oo 00 o—o—0—"

0 5 10 15 20 25 0 5 10 15 20 25

P. pentosaceus CIAL-86 P. pentosaceus CIAL-86

1.4 1.4

1.2 1.2

1.0 1.0
Q0.8 8 o 08
3 / 1=

< 06 < 06
0.4 / 0.4
0.2 / 0.2
0.0 4 0.0

0 5 10 15 20 25 0 5 10 15 20 25

L.plantarum CIAL 121 L.plantarum CIAL 121
14 =t 1.4
1.2 / 1.2
1.0
g 1.0 ‘ g
=] 2 0.8
8 0.8 8
< 06 < 06
0.4 0.4
0.2 0.2
00 o Incubation time (h) 0.0 \ﬁx/ Incubation time (h)
0 5 10 15 20 25 0 5 10 15 20 25
(a) (b)

Figure 1. Growth curves of isolated LAB in the absence and presence of (+)-catechin (a) and
3,4-dihydroxyphenylacetic acid (b). The curve was developed from absorbance measures (OD:600) up
to24 h.
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3.3. Effects of the Cell-Free Supernatants (CFS) from the LAB Strains on Growth of Pathogen E. coli

Bacteria cell-free supernatants of LAB strains have been reported to exhibit functions similar
to the living bacteria from which they were derived, and to reduce the infection risk of the use of
probiotic bacteria in patients with depressed immune systems [31]. So, CFS from the LAB strains
were prepared in MRS broth and their antibacterial activity against E. coli CIAL-153 was evaluated
(Figure 2). For the three LAB studied, CFS delayed the bacterial lag phase (from 5 to 12 h), and a strong
inhibition of pathogen bacteria growth was observed (Figure 2a). Other authors have also reported an
extension of the bacterial lag phase and lower growth rates of pathogen bacteria in the presence of the
CFS from strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus
genera [32,33]. In agreement with them, we hypothesized that these antimicrobial effects were mainly
due to the organic acids that were produced in significant quantities (and consequent lowering of pH)
as a result of the ability of LAB strains to ferment carbohydrates. In addition, Gram-negatives
pathogens, such as E. coli, tend to be more sensitive to organic acids than to bacteriocins [33],
which explains the observed strong inhibition. We confirmed that the pH of the CFS from oenological
LAB strains (P. pentosaceus CIAL-86 and L. plantarum CIAL-121), and the probiotic strain (L. plantarum
CLC 17), had acidic pH values of 5.25, 5.14 and 5.11, respectively.

—@—E. coli CIAL 153

—4—CFS L. plantarum CLC 17 + E. coli CIAL 153

~-CFS P. pentosaceaus CIAL-86+ E. coli CIAL 153
14 i~ CFS L. plantarum CIAL-121+E. coli CIAL 153

1.2
1.0

0.8

Absorbance

0.6

0.4

0.2

0.0

S}
w

10 15 20 25

Incubation time (h)
(a)

—o—E. coli CIAL 153
—e—pH7 CFS L.plantarum CLC 17 +E. coli CIAL 153
—e—pH7 CFS P. pentosaceus CIAL-86 + E. coli CIAL 153

14 —e—pH7 CFS L.plantarum CIAL-121 + E. coli CIAL 153

1.2
1.0

0.8

Absorbance

0.6

0.4

0.2

0.0

o
«

10 15 20 25

Incubation time (h)

(b)

Figure 2. Growth curves of E. coli CIAL-153 in the presence of cell-free supernatants of L. plantarum
CLC 17, P. pentosaceus CIAL-86 and L. plantarum CIAL-121 strains before (a) and after (b) being
neutralized at pH 7.
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Moreover, with the aim of researching the effect of other antimicrobial substances, such as
bacteriocins, in addition to organic acids on E. coli growth, CFS were adjusted to pH 7 and their
antibacterial activity against E. coli CIAL-153 was again evaluated (Figure 2b). Neutralization of
the supernatants from all the LAB strains counteracted the antagonistic effects of the acid CFS
against the pathogen strain, so the lag phase was similar to that of a standard growth curve and
a significant increase in the growth of the pathogen was observed. Other authors have also observed
that the neutralization of CFS reduced the antimicrobial activity on pathogen viability and growth, but
they still observed some effects [32,33]. In our case, neutralized supernatants from the L. plantarum
CLC 17 strain still exhibited some inhibition of the growth of E. coli CIAL-153, which suggested that
this strain produces other antibacterial active compounds against E. coli. Arena et al. [34] reported
that antimicrobial activity is mainly strain-specific rather than genus/species-specific and provided
evidence that several of the 79 screened L. plantarum strains possess a significant ability to contrast
various pathogenic bacteria, including both Gram-negative and Gram-positive species.

3.4. Effects of LAB on Adherence of Pathogen E. coli to Caco-2 Cells

An important property of probiotic candidates is their ability to adhere to intestinal mucosa,
which excludes pathogens from cell adherence and infection progression. Initially, we investigated the
ability of the three LAB strains (L. plantarum CLC 17, P. pentosaceus CIAL-86 and L. plantarum CIAL-121)
to adhere to human intestinal Caco-2 cells because this cellular model expresses morphological and
functional differentiation in vitro and shows characteristics of mature enterocytes. Adhesion levels to
Caco-2 cells of the three LAB strains ranged from 8.65% to 10.01% (Figure 3) and were in line with
those obtained previously [4] and in the range of other probiotics previously reported in the literature
under in vitro conditions [35,36].

14.0
12.0
10.0 -

8.0

% Adherence

6.0 -

4.0 4

2.0

0.0 -
L.plantarum CLC 17  P. pentosaceus CIAL-86  L.plantarum CIAL 121

Figure 3. Adherence (%) of P. pentosaceus CIAL-86, L. plantarum CIAL-121 and L. plantarum CLC 17
strains to Caco-2 cells. Results are shown as media + standard deviation.

Having confirmed the ability of LAB strains to adhere to Caco-2 cells, the adhesion of E. coli
CIAL-153 to these intestinal cells was assessed in the presence of the different LAB strains. Initially,
it was found that the adhesion of E. coli CIAL-153 to Caco-2 cells on their own was 8.51% =+ 1.83%.
The inhibition of adherence of E. coli CIAL-153 to Caco-2 cells for probiotic LAB strains in the
anti-adhesion assays (competition and inhibition) is shown in Figure 4. Pre-incubation of Caco-2
cells with LAB strains prior to the addition of E. coli CIAL-153 (inhibition assay) produced a notable
inhibition of the adhesion of E. coli to the intestinal cells for three strains in respect to the control
(absence of LAB strains). P. pentosaceus CIAL-86 was the most effective strain in inhibiting the
adhesion of E. coli CIAL-153 (>35%), while L. plantarum CIAL-121 showed similar inhibition values to
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those observed in the reference probiotic strain, L. plantarum CLC 17 (20.7% and 22.6%, respectively)
(Figure 4). These percentages were similar when Caco-2 cells were incubated at the same time with
both E. coli and probiotic LAB strains (competition assay), ranging from 17% to 22% in respect to the
control (absence of LAB strains). The high values from the inhibition experiment could indicate an
effective competition of LAB strains against E. coli CIAL-153 for common adhesion receptors [37] or
other anti-adhesion factors [38]. Thus, the ability to inhibit the adhesion of E. coli CIAL-153 to Caco-2
cells appeared to be influenced by LAB strains, which suggested a certain pathogen-LAB specificity as
indicated by other authors [35].

0.0 M L. plantarum CLC 17 m P. pentosaceaus CIAL-86 LI L.plantarum CIAL 121

45.0 -
400 -

35.0 -

30.0 -
25.0 -
200 -
15.0 4
10.0 4
5.0 -
0.0 -

INHIBITION COMPETITION

% Inhibition of E.Coli CIAL153

Figure 4. Inhibition (%) of adherence (%) of E. coli CIAL-153 to Caco-2 cells in the presence of
L. plantarum CLC 17, P. pentosaceus CIAL-86 and L. plantarum CIAL-121 in anti-adhesion assays
(competition and inhibition). Results are shown as media + standard deviation.

4. Conclusions

In vivo reports suggest that wine polyphenols exert an essential impact on intestinal microbiota
growth and functionality (see [9] for review). However, an important question that remains unsolved
is whether these benefits may be enhance by the concomitant interactions by wine polyphenols
and probiotics at the gut level. This paper investigates some new metabolic features and probiotic
characteristics of oenological lactic acid bacteria, in particular P. pentosaceus CIAL-86 and L. plantarum
CIAL-121, based on their interaction with polyphenols. Neither of these two oenological bacteria
was able to metabolize wine polyphenols, at least in the conditions used in this study, although this
metabolic potential migth be strain-dependent, as the probiotic reference strain L. plantarum CLC 17
was found to be effective in metabolizing wine polyphenols. However, growth of both oenological
(P. pentosaceus CIAL-86 and L. plantarum CIAL-121) and reference (L. plantarum CLC 17) strains
was stimulated in the presence of wine phenolic compounds (i.e., (+)-catechin) and wine-derived
phenolic metabolites (i.e., 3,4-dihydroxyphenylacetic acid), although no clear dose-dependent effect
was observed. Bacteria cell-free supernatants from the three LAB strains delayed and inhibited almost
completely the E. coli CIAL-153 growth, which may be mainly attributed to the presence of organic
acids derived from the metabolism of carbohydrates by LAB. In relation to their adhesion to intestinal
cells, the three LAB strains showed a high adhesion percentage, especially P. pentosaceus CIAL-86.
Moreover, pre-incubation of Caco-2 cells with LAB strains prior to the addition of E. coli CIAL-153
produced a notable inhibition of the adhesion of E. coli to the intestinal cells. Nevertheless, the effect
of selected lactic acid bacteria on the growth and adhesion to intestinal cells of other gut pathogenic
bacteria should be investigated. To our knowledge, there are very few reports considering probiotic
features of LAB isolated from wine such as the ones investigated here, which emphasizes the novelty
of these results. Overall, these in vitro results confirm the potential of oenological LAB strains as
probiotics, with the aim of developing general nutritional strategies and designing specific dietary
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recommendations based on the combination of active phenolic compounds/extracts and probiotics,
thus contributing to the ultimate goal of promoting intestinal health. Nevertheless, further in vitro
and in vivo investigations are still necessary in order to confirm these potential beneficial effects.
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