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Abstract: The aim of this study was to evaluate the effects of high fat diet with or without grape
juice during the pregnancy on gestational weight gain, biochemical parameters, and oxidative stress
in plasma and liver from Wistar rats. Forty-nine rats were divided into four groups: control diet
group (CD), high fat diet (HFD), grape juice and control diet (PGJCD), and grape juice and high
fat diet (PGJHFD). During the treatment the weight gain of the rats was tracked. They had free
access to their respective diets during 42 days of treatment. After offspring weaning, the mother
rats were euthanized and blood and liver were collected. The high fat diet increased the total
cholesterol and triglycerides serum levels as well as carbonyl levels in the liver, however this diet
reduced the high-density lipoprotein (HDL) and urea levels in serum. Grape juice consumption
reduced gestational body weight gain. In liver, the juice consumption increased sulfhydryl levels
and reduced the superoxide dismutase (SOD) activity and TBARS level, in serum the consumption
reduced aspartate aminotransferase (AST) and TBARS. We can conclude that the consumption of a
diet rich in fat can promotes harmful effects on health during pregnancy, however the consumption
of grape juice seems to be an important alternative to prevent oxidative damages and to promote the
improvement of health.
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1. Introduction

Pregnancy is a process that causes various changes in the maternal physiological state, since
this is necessary due to the greater demand for nutrients essential for proper fetal development [1].
A hyperlipidic diet is defined by the above average fat intake of 30 to 45% of the total daily calories [2].
There is a relationship already evidenced in epidemiological studies, as well as in the animal model,
that the consumption of a diet rich before and during gestation promoted the development of metabolic
disorders, such as adipogenesis, stimulation of chronic inflammation, and oxidative cellular imbalance,
factors associated with gestational obesity [3,4]. In addition, excess weight gain during pregnancy
may be associated with gestational diabetes, birth difficulties, and even health risks to the fetus during
the perinatal period into adult life [5]. Recently studies showed that paternal and maternal obesity
increase the chance of breast cancer in female offspring [6–8].

As a consequence of these and other modifications, pregnant women, mainly obese ones, are more
exposed to deleterious actions that free radicals (FR) and/or reactive species (RE) can cause in an
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organism [9]. This process known as oxidative stress (OE) is established when the antioxidant defenses
are not equivalent or sufficient in relation to the reactive species and their substrates [10]. Still,
according to the literature, EO has been frequently related to the etiology of pathological processes
that affects the reproductive process [11,12]. In view of this, the consumption of grape derivatives
such as grape juice can be an alternative to combat OE due to the presence of nutrients and bioactive
compounds with antioxidant action in their composition [13–15].

As previously mentioned, among the metabolic and biochemical changes that may be present
during gestation, obesity, diabetes, and liver disorders are the ones with the highest incidence in
this population [1,5,12]. Pregnancy cholestasis is a heterogeneous disease specific for pregnancy
characterized by hepatic dysfunction and intense pruritus [16]. Among the main laboratory findings
reported are the plasma increase of hepatic transaminases [17]. In addition to causing harm to maternal
health, it is also linked to an increase in fetal morbidity and mortality, and medium-risk perinatal
complications such as preterm birth to more severe complications such as fetal uterine death [16–18].

Studies from our group have already proven the hepatoprotective effects after the consumption of
this beverage [15,19], one of those studies demonstrated that grape juice intake was able to decrease fat
accumulation in hepatocytes in a high fat diet model [19]. In addition, a recent study by Wohlenberg
et al. (2015) demonstrated that grape juice consumption during the pregnancy and lactation time
promoted an antioxidant and hepatoprotective effects in Wistar rats [20].

Maternal obesity is becoming an increasing public health issue, and it is known that nutrition
and metabolism play a crucial role in the health and well-being of both mother and fetus [21].
Considering the high fat diet is a common choice in this population, and deleterious effects were already
observed [7,22], associated with the findings about the health benefits from grape juice consumption,
this study aims to evaluate the gestational weight gain, biochemical profile, and parameters of EO in
the serum and liver of Wistar rats. At the time of writing this paper, there were no other studies in the
literature demonstrating the possible protective effects that grape juice consumption could promote
against the deleterious effect from high fat diet during pregnancy.

2. Methodology

2.1. Grape Juice

Purple grape juice Vitis labrusca L. variety Bordo was kindly provided by Fante drinks. The juice
was from the harvest of 2015 and all from the same lot.

2.2. Analysis of Phenolic Compounds

Juice samples were diluted 1:100 in water for Folin-Ciocalteau analysis and 1:2 in 40% ethanol for
total flavonoids. For HPLC analysis, the pure samples were filtered on 45 m pore Nylon membranes.
The total content of phenolic compounds of the grape juices were measured using the colorimetric
modification of Folin-Ciocalteau method, as described by Singleton, (1999). Two hundred microliters
of grape juice was assayed with 1000 µL of Folin–Ciocalteu reagent and 800 µL of sodium carbonate
(7.5%, w/v). After 30 min, the absorbance was measured at 765 nm, and the results were expressed as
mg/L catechin equivalent.

The analysis of phenolic compounds was performed on an HP model 1100 HPLC, Lichrospher
RP18 column (5 µm) equipped with a 210 nm UV detector and quaternary pump system. The reverse
phase analysis consisted of: solvent A, water with 1% phosphoric acid, and solvent B, Acetonitrile.
The pumping system of the mobile phase was gradient, with 90% of solvent A from 0 to 5min, 60% of
A from 5 to 40 min and 90% of A from 45 to 50 min. The standard flow was maintained at 0.5 mL/min
according to Morelli (2011). The samples were filtered on Nylon membranes, 0.45 µm in pore diameter.
The phenolic compounds were identified according to their elution order and by comparing their
retention time with those of their pure standards. The quantification was performed by the external
standardization method, by correlating the area (mAU*s) of the compound peak to the standard curve
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performed with each standard evaluated (gallic acid, catechin, chlorogenic acid, epicatechin, rutin,
ferulic acid, naringin, hesperidin, myricetin, resveratrol, quercetin, and vitexin).

2.3. Diets

The nutritional composition from conventional and high fat diet are presented at Table 1. The
high-fat diet was acquired ready and its composition was provided by the manufacturer as follows:
corn starch (14.95%), casein (20.00%), dextrinized starch (10.00%), saccharose (10.00%), lard (31.00%),
soy oil (4.00%), microcrystalline cellulose (5.00%), L-cystine (0.30%), choline bitartrate (0.25%),
BHT (0.0010%), mineral mix ain 93 g (3.50%), and vitamin mix (1.00%). The diet was purchased
from Pragsoluções Biosciences (Jau, Sao Paulo, SP, Brazil) and this information was provided by
this company.

Table 1. Nutritional composition at two different diets, conventional and high fat diet (100 g).

Content
Conventional Diet High Fat Diet

Calories Gram Calories Gram

Carbohydrates 240 66 100 25
Protein 88 22 80 20
Lipids 36 4 450 50
Total 364 630

2.4. Animals

Initially, we used 78 Wistar female and 39 male Wistar rats, 12 weeks old and weighing
approximately 290 g from the bioterium of the IPA Methodist University. These animals were placed
in a ratio of 2 mating females for each one (2:1), had free access to their respective diets, and were
maintained in a light–dark cycle of ±12 h at a temperature of 22 ◦C ± 1 ◦C. The entire experiment
was conducted with the approval of the Ethics Committee on Animal Use (ECAU) of the Methodist
University Center-IPA (number 019/2014 e 009/2015).

2.5. Treatment

During pregnancy (approximately 21 days) and lactation (approximately 21 days), damns were
divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice
(PGJCD), and purple grape juice and high-fat diet (PGJHFD). Dams had free access to water and
feed according to the diet of the defined group. The pregnant rats had free access to water and diet,
according to the group. All groups received water, however the purple grape juice groups received the
juice plus. The daily consumption of grape juice was of approximately 72.02 ± 31.94 mL (PGJCD) and
48.51 ± 23.14 mL (PGJHFD). Also during treatment, the gestational weight gain of these animals was
monitored 3 times a week with a digital scale balance (Crystal 200, Gibertini, Italy). After lactation, the
animals were euthanized by decapitation. Trunk blood was collected which was centrifuged to obtain
the serum and stored at about 0 ◦C. The liver of these animals was also removed, homogenized in 1.5%
KCl, and refrigerated at −20 ◦C until the moment of analysis.

2.6. Biochemical Parameters Evaluated in Serum

Total cholesterol (TC) (mg/dL), triglycerides (TG) (mg/dL), and HDL (mg/dL) were used
as biochemical markers for assessing lipid profile. Liver function was analyzed using alanine
aminotransferase (ALT) (U/L) and aspartate aminotransferase (AST) (U/L). Urea (mg/dL) and
creatinine (mg/dL) were used as kidney function markers. Assays were performed in serum by
automation (BioclinBS120).
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2.7. Oxidative Stress

Oxidative stress parameters were evaluated in serum and liver. The test that evaluates reactive
substances to hiobarbituric acid (TBARS) was used to measure levels of lipid peroxidation, as
previously described by Wills (1996). [23]. TBARS was determined by absorbance at 535 nm. The results
were expressed in nmol/mg protein. Oxidative damage to proteins was measured by determining the
carbonyl groups and it is based on the reaction with dinitrophenylhydrazine (DNPH) according to
Levine et al. (1990) [24]. The results were expressed in nmol/mg protein. The non-enzymatic defenses
were determined by sulfhydryl technique. This assay is based on the reduction of 5,5′-dithio-bis
(2-nitrobenzoic acid) (DTNB) by thiol groups, yielding a yellow compound (TNB) which has its
absorbance determined with a spectrophotometer at 412 nm [25]. The sulfhydryl content is inversely
correlated to the protein oxidative damage. The results were expressed in nmol/mg protein.

The activity of superoxide dismutase (SOD) was determined with a spectrophotometer
by measuring the inhibition of adenocromo autocatalytic formation rate at 480 nm (SP-2200
Spectrophotometer, Bioespectro Curitiba, Brazil) in a reaction environment containing 1mM adrenaline
and 50 mM glycine [26]. The results were expressed as U SOD/mg protein. Catalase activity (CAT) was
assessed according to the method described by Aebi (1984), which determines the rate of decomposition
of H2O2 at 240 nm (SP-2200 Spectrophotometer, Bioespectro). The results were expressed as U CAT/mg
protein [27].

2.8. Protein Determination

Protein concentration was determined according to the method described by Lowry et al.
(1951) [28].

2.9. Statistical Analysis

Results were expressed as mean and standard error of the mean, and the normality of the data was
assessed by the Kolmogorov-Smirnov test, checking normal distribution of data. Differences between
groups were analyzed using ANOVA two-way (factor group and factor handling), followed by post
Holm-Sidak-test, with p < 0.05 considered significant. All analyses were performed using the statistical
softwares Statistical Package for Social Sciences (SPSS) version 17.0 (International Business Machines
Corporation, New York, NY, USA) and SigmaStat (Jandel Scientific Software, San Jose, CA, USA).

3. Results

The total phenolic compounds of grapevine Vitis labrusca L. were quantified by Folin-Ciocalteau
and the majority compounds were identified by high-performance chromatography (HPLC) with pure
standards of resveratrol, catechin, epicatechin, naringin, gallic acid, chlorogenic acid, and ferulic acid
(Table 2).

Table 2. Total phenolic content and majority compounds in purple grape juice by HPLC.

Phenolic Compounds (mg/L) Average Standard Deviation

Total phenolic compounds 2796.57 11.20
Total flavonoids content 77.27 2.10

Resveratrol 0.506 0.01
Epicatechin 1.95 0.04

Naringin 3.37 0.11
Rutin 17.41 0.25

Chlorogenic acid 12.37 0.12

We monitored weight gain during pregnancy and observed a significant difference in measures
eight (p = 0.031), nine (p = 0.006), ten (p < 0.001), and eleven (p < 0.001), corresponding respectively to 16,
18, 24, and 26 days of treatment, where the groups consuming grapes presented lower weight than the
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control groups, and the PGJCD group had the lowest weight among all the related groups (Figure 1).
Also, when evaluating the gestational weight gain (final weight–initial weight), we observed that the
beverage factor promoted a reduction in gestational weight gain, where the groups that consumed the
juice presented values lower than the control groups (Figure 2).
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Figure 2. Weight gain during pregnancy (kg) in rats from different groups (kg). * Statistically differences
by two-ways ANOVA, pos hoc Holm-Sidak (p < 0. 05). CD: control diet; HFD: high fat diet; PGJCD:
purple grape juice and control diet; PGJHFD: purple grape juice and high fat diet.

We observed that the diet was determinant for the alterations in lipidic profile. CT and TG have
increased levels, and HDL levels have been reduced in dams who consumed a high fat diet with or
without grape juice consumption (Table 3). In order to evaluate hepatic function through AST level,
we observed statistically differences in type of drink (water = 266.54 ± 8.670, juice = 234.28 ± 10.50)
and with the diet factor (control = 265.69 ± 9.16, high fat diet = 235.12 ± 10.10). The rats from PGJCD
and PGJHFD groups showed the lowest levels if comparing with other groups (Table 3). The high fat
diet was the factor that caused increases in ALT level (Table 3). As for renal markers, the dams who
consumed a high fat diet during the gestation reduced urea level (Table 3), no differences in serum
creatinine levels were observed (Table 3).
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Table 3. Biochemistry parameters in serum of female Wistar rats (n = 49) treated with high fat diet or
control diet, and with or without grape juice during pregnancy and lactation times (p < 0.05).

Parameters
Group

CD HFD PGJCD PGJHFD

Total cholesterol (mg/dL) 69.43 ± 3.87 81.67 ± 4.17 * 69.80 ± 4.57 97.33 ± 5.90 *
Triglycerides (mg/dL) 65.20 ± 10.59 115.67 ± 9.66 * 79.75 ± 11.83 138.67 ± 13.67 *

HDL (mg/dL) 39.71 ± 2.33 26.67 ± 2.52 * 36.80 ± 2.76 33.50 ± 3.08 *
AST (U/L) 268.57 ± 11.82 264.50 ± 12.77 262.80 ± 13.99 205.75 ± 15.64 *,#

ALT (U/L) 115.43 ± 6.69 74.83 ± 7.43 * 123.80 ± 8.14 69.00 ± 9.10 *
Urea (mg/dL) 79.00 ± 3.30 44.50 ± 3.56 * 75.80 ± 3.90 44.25 ± 4.36 *

Creatinine (mg/dL) 0.46 ± 0.030 047 ± 0.03 0.52 ± 0.03 0.52 ± 0.04

Values expressed in mean± EPM. * Statistically differences (p < 0.05) by two-way ANOVA with Holm-Sidak pos hoc
from the control (CD). # p < 0.05 vs. HFD. HDL: High Density Lipoprotein; Alanine transaminase (ALT); Aspartate
transaminase (AST); CD: control diet; HFD: high fat diet; PGJCD: purple grape juice and control diet; PGJHFD:
purple grape juice and high fat diet.

Regarding lipid peroxidation levels, we observed that the beverage consumption alters this
parameter in liver and serum. In serum, the females from grape juice group had lower TBARS levels
(2.57 ± 0.44) than the non-consumers (3.69 ± 0.42) (Figure 3A). In hepatic tissue, the lower lipid
damages were also observed in rats consumed the grape juice during pregnancy (2.57 ± 0.21) when
compared to the non-consumers rats (3.44 ± 0.24) (Figure 3B).
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Figure 3. Levels of TBARS (nmol/mg of protein) in serum (A) and liver (B) in female rats after the
lactation period from different groups. The results are expressed as mean± SEM. * Statistical difference
according to ANOVA two-way, followed by post-test Holm-Sidak (p < 0.05). CD: control diet; HFD:
high fat diet; PGJCD: purple grape juice and control diet; PGJHFD: purple grape juice and high fat diet.
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Regarding protein oxidation (carbonyl levels), no significant differences in serum were observed
between the treated groups (p > 0.05) (Figure 4A). When evaluated in the liver, we found that mothers
who consumed a high fat diet had higher protein damage in the liver (107.29 ± 13.37) than the control
group (60.72 ± 11.37) (Figure 4B).
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Figure 4. Levels of Carbonyl (nmol/mg of protein) in serum (A) and liver (B) in female rats after the
lactation period from different groups. The results are expressed as mean± SEM. * Statistical difference
according to ANOVA two-way, followed by post-test Holm-Sidak (p < 0.05). CD: control diet; HFD:
high fat diet; PGJCD: purple grape juice and control diet; PGJHFD: purple grape juice and high fat diet.

We did not observe difference in the factors interactions (beverages and diets) in plasma thiols
(sulfhydryl) levels (p > 0.05) (Figure 5A). On the other hand, dams who consumed grape juice during
pregnancy presented increased levels of these groups in the liver (30.39 ± 1.29) when compared to
the control groups (21.88 ± 1.43) (Figure 5B). As for antioxidant activity, we observed that grape juice
consumption had a lower SOD activity in the liver (22.81 ± 9.07) compared to than the non-grape juice
consumers (57.80 ± 9.67) (Table 4). In CAT activity no significant differences were found in the liver
among the groups of dams (p > 0.05) (Table 4).
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Table 4. Determination of antioxidant enzymes activity in liver of Wistar dams (n = 49) treated with
control or high fat diet and with or without grape juice during pregnancy and lactation periods
(p < 0.05).

Enzymes Actvity C HFD PGJCD PGJHDF

SOD (U SOD/mg) 45.45 ± 13.35 70.13 ± 14.00 23.25 ± 12.28 * 22.38 ± 13.35 *
CAT (U CAT/mg) 3.95 ± 0.76 2.91 ± 0.84 3.29 ± 0.66 3.07 ± 0.80

Values expressed in mean ± EPM. * Statistically differences (p < 0.05) by two-way ANOVA with Holm-Sidak pos
hoc. CD: control diet; HFD: high fat diet; PGJCD: purple grape juice and control diet; PGJHFD: purple grape juice
and high fat diet.

Beverages 2018, 4, x  8 of 14 

 

consumption had a lower SOD activity in the liver (22.81 ± 9.07) compared to than the non-grape juice 

consumers (57.80 ± 9.67) (Table 4). In CAT activity no significant differences were found in the liver 

among the groups of dams (p > 0.05) (Table 4). 

Table 4. Determination of antioxidant enzymes activity in liver of Wistar dams (n = 49) treated with 

control or high fat diet and with or without grape juice during pregnancy and lactation periods (p < 

0.05). 

Enzymes actvity C HFD PGJCD PGJHDF 

SOD (U SOD/mg) 45.45 ± 13.35 70.13 ± 14.00 23.25 ± 12.28 * 22.38 ± 13.35 * 

CAT (U CAT/mg) 3.95 ± 0.76 2.91 ± 0.84 3.29 ± 0.66 3.07 ± 0.80 

Values expressed in mean ± EPM. * Statistically differences (p < 0.05) by two-way ANOVA with Holm-

Sidak pos hoc. CD: control diet; HFD: high fat diet; PGJCD: purple grape juice and control diet; 

PGJHFD: purple grape juice and high fat diet. 

 

Figure 5. Levels of Sulfidryl (nmol/mg of protein) in serum (A) and liver (B) in female rats after the 

lactation period from different groups. Results are expressed as mean ± SEM. * Statistical difference 

according to ANOVA two-way, followed by post-test Holm-Sidak (p < 0.05). CD: control diet; HFD: 

high fat diet; PGJCD: purple grape juice and control diet; PGJHFD: purple grape juice and high fat 

diet. 

4. Discussion 

Our study aimed to evaluate the influence of treatment with a high fat diet and grape juice (Vitis 

labrusca L) consumption on gestational weight gain, biochemical parameters, and oxidative stress in 

Figure 5. Levels of Sulfidryl (nmol/mg of protein) in serum (A) and liver (B) in female rats after the
lactation period from different groups. Results are expressed as mean ± SEM. * Statistical difference
according to ANOVA two-way, followed by post-test Holm-Sidak (p < 0.05). CD: control diet; HFD:
high fat diet; PGJCD: purple grape juice and control diet; PGJHFD: purple grape juice and high fat diet.

4. Discussion

Our study aimed to evaluate the influence of treatment with a high fat diet and grape juice (Vitis
labrusca L.) consumption on gestational weight gain, biochemical parameters, and oxidative stress
in the serum and liver. Maternal nutrition is of extreme importance to fetus health and to guarantee
adequate gestational development, since the nutritional source of the fetus is exclusively derived from
the mother’s alimentary ingestion [21]. Excessive weight gain during pregnancy has been associated
with the development of gestational diabetes, labor difficulties, and risk to the fetus in the perinatal
period [5].
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Our results showed that mothers who consumed grape juice during pregnancy had lower weight
gain when compared to mothers in the control groups. Some studies in the literature show that
resveratrol, a compound found in grape juice, was able to decrease the adipocyte leptin secretion
in vitro and in vivo in rats fed a high fat diet, reducing food intake [29,30]. In addition, corroborating
our results, studies from our group demonstrated that adult rats treated with grape juice associated
with a high fat diet presented lower body weight gain when compared to the control group also
submitted to the same type of diet, thus evidencing the benefits that the consumption of grape juice
can bring about the reduction of gestational body weight gain [19,31].

The analysis of biochemical parameters enables us to detect stress conditions, which can be caused
by multiple factors [32]. Through the results of our experiment, we verified that diet was the decisive
factor for the changes observed in the lipid profile, due to the increase in the TC, TG, and the reduction
of the HDL from mothers who received a high fat diet associated or not with juice consumption of
grape. Previous studies, in animal models, have also shown these same deleterious effects on the lipid
profile as a consequence of the intake of a high-fat diet observed in our experiment [33–35]. Although
the consumption of grape juice during gestation did not reduce the damages caused by the high fat
diet on lipid profile, studies with grape derivatives have already shown a positive influence on these
parameters [36,37]. In a study with rodents submitted to a hypercholesterolemic diet and treated
with a fraction of non-alcoholic ethyl acetate (EAF) of a wine produced from V. labrusca L. grapes,
reductions in CT and TG levels were observed [36]. Also, another experiment with hyperglycemic
hamsters treated with non-alcoholic red wine evidenced a reduction in the CT and LDL levels of these
animals [37]. Still, several studies have demonstrated significant increases in HDL after treatment with
different types of grape juice [38–40].

The AST and ALT markers were used to evaluate the hepatic function of pregnant rats. Both
factors (drink and diet) influenced AST enzyme alterations. However, the lowest values were observed
in grape juice consumers groups. Our results are in accordance with a study with grape juice from
the Turkish variety Vitis vinifera. In this study the consumption was able to reduce the increase of
AST caused by CCl4, emphasizing the relevant beneficial results of the juice on this enzyme [41]. The
diet factor altered ALT levels, and grape juice consumption was not able to prevent the significant
reduction of this enzyme caused by the high fat diet. A similar result was also observed in a study
with alcoholic extract of V. vinifera leaf in its (n-BuOH) fraction; in that study the extract decreased the
levels of ALT and AST [42]. However, in a study involving a diabetic rat model, Vitis labrusca L. grape
leaf extract did not cause significant changes in ALT [43].

Regarding renal function, a high fat diet, with or without grape juice, reduced urea levels. Changes
in urea caused by the consumption of a high-fat diet were also observed in other studies, but in these
studies the phenolic compounds were able to revert the damage caused by diet, restoring urea levels
to normal [44,45]. Still regarding the renal profile, in our study there were no significant differences
regarding creatinine levels. The same was observed in a study conducted with grape seed extract,
where it did not reduce this parameter in Wistar rats with renal injury induced by gentamicin [46].

Because of the physiological changes caused by gestation, there is a higher consumption of
O2 as well as changes in the consumption of energy substrates, resulting in a greater exposure to
OE [47]. Not only the OE have been contributing to the development of diseases, but high fat diet
consumption has been a strong influence on the etiology of diseases [22,48,49]. Lipid peroxidation and
protein oxidation in serum and liver of Wistar rats after gestation and lactation were measured, and
we observed that the mothers who consumed grape juice during pregnancy (PGJCD and PGJHFD)
showed lower levels of lipoperoxidation than non-consumers. These results are similar to a study
with organic and conventional grape juice, in which the groups that consumed the juice had lipid
peroxidation reduced in the liver of rats submitted to a high fat diet [19]. Also corroborating with our
results, the levels of lipid peroxidation were reduced in the plasma of pregnant sheep in a study using
diet supplemented with polyphenols (51). Furthermore, a clinical study with subjects who consumed
grape juice for two weeks demonstrated the reduction of TBARS in serum and plasma (52).
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According to Barakauskas et al. [50] in a study about the effects of sub-chronic clozapine and
haloperidol administration on brain lipid level, the lipid peroxidation may be influenced by availability
of peripheral lipids. This is accordance with our study. We observed that the groups with the highest
cholesterol level showed the highest lipid peroxidation level. The high-fat diet (HFD) and the positive
energy balance result in a large stock of triacylglycerol (TG) in the adipose cells, especially in the
visceral fat, leading to adipocyte hypertrophy [51]. This dysfunctional (hypertrophic) adipocyte may
lose its ability to store more lipids, leading to ectopic fat accumulation in other tissues such as the liver.
It has been postulated that increased adiposity in obesity are key mediators of oxidative stress that
may play a causal role in multiple forms of obesity-associated complications such as insulin resistance
and type 2 diabetes [52]. According to da Costa et al. [51] it is important to identify new strategies
that can effectively address obesity-related complications such as hyperglycemia, inflammation, and
oxidative stress as well as reduce the risk of obesity-associated diseases. These authors showed
that polyphenol-rich extract from Vitis vinifera L. grape skin prevented the oxidative stress and
inflammation in liver and adipose tissue.

In this sense, previous studies have already shown alterations in protein oxidation provoked
by organic and conventional purple grape juice consumption, with a reduction in protein oxidation
levels in plasma and serum Wistar rats [15,20,53]. In the liver, we verified that the intake of grape juice
was not able to reduce the levels of protein oxidation elevated by a high fat diet. In contrast, another
study from our group showed that a high fat diet, despite increasing lipid peroxidation, did not affect
the protein oxidation in the liver of rats [19]. Furthermore, it has been demonstrated grape juice has
hepatoprotection effects where it was able to reduce the liver damage caused by different drugs [53].
When evaluating the protein damage in the serum of the mothers, no significant differences were
observed. This difference between liver and serum response could be explain because the liver is
more sustainable in this model with high fat diet, according to HFD feeding caused inflammation and
oxidative stress in the liver of rats [54].

As previously mentioned, the amount of sulfhydryl groups is inversely correlated with protein
damage [25]. At the serum level, in our experiment no significant differences were observed between
groups on the quantification of thiol grouping levels. Similar findings were observed in a study
by Wohlenberg (2015), where gestational consumption of grape juice did not cause changes in
non-enzymatic defense [20]. However, grape juice consumption increased this parameter level in the
liver. Several studies with grape derivatives have demonstrated the ability of these products to increase
non-enzymatic antioxidant defenses against OE damage in both serum and liver of rats [19,43,53].

Among the body’s primary antioxidant defense lines, we can highlight the SOD and CAT
enzymes [55]. Among the groups evaluated, the grape juice consumption reduced the SOD activity in
the hepatic tissue, whereas no significant differences were observed in the levels of CAT enzymatic
activity. A previous study of our group had already observed the reduction of SOD in the group of
mothers who received grape juice throughout gestation via gavage. Also, during this same experiment
no differences were observed in CAT activity in liver [20]. On the other hand, supplementation with
grape juice became effective reversed the decrease in SOD activity impaired by the use of radiation in
the liver of rodents [56]. Also, unlike our findings, there was an increase in CAT activity in the liver of
animals that consumed organic grape juice [15] and, in contrast to this, another study demonstrated a
reduction of this enzyme in the hepatic tissue of rodents that received a single dose of PTZ [53].

5. Conclusions

We can observe the importance of maternal nutritional choices. Consumption of grape juice can
reduce weight gain during pregnancy, ensuring the health of the mother and the development of
her offspring. Also, the juice was effective mainly on serum levels of AST and on lipid peroxidation,
reducing these damages in both serum and liver and promoting the increase of non-enzymatic defenses
in the liver tissue. These findings, together with those in the literature, reinforce the protective effect of
grape juice in relation to OE. In spite of this, more studies are needed to better elucidate and understand
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the primary and secondary mechanisms that may be involved in this process, including the possible
transgenerational effects on the health of offspring in the short and long term.
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