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Abstract: The anti-oxidant properties of vitamin C and of phenolic compounds of citrus fruits are
well established. However, the evaluation of the anti-inflammatory and antithrombotic potential
of both vitamin C and of the more amphiphilic and lipophilic components of citrus fruits needs
further attention. In this study, the anti-inflammatory and antithrombotic properties of vitamin C
and of freshly squeezed juices and their lipid bioactives from the Navalina and Sanguine orange
varieties and the Clementine variety of mandarins, as well as from their remaining by-products, were
evaluated against the inflammatory and thrombotic pathways of the platelet-activating factor (PAF)
and thrombin in platelets, as well as against PAF-biosynthesis in leukocytes. The non-oxidized juices
of these citrus fruits and a vitamin C supplement showed stronger anti-PAF and antithrombin effects
than their oxidized versions through their general anti-oxidant effect in platelets. The total lipids
(TLs) and the HPLC-derived fractions of phenolic compounds and of polar lipid bioactives from
both juices and their peels’ by-products showed a more specific stronger inhibitory effect against
the inflammatory and thrombotic pathways of PAF and thrombin in platelets, while these bioactives
strongly inhibited also the specific enzyme activities of the main biosynthetic enzymes of PAF in
leukocytes. The stronger bioactivity of the dietary bioactives found in the juices of these citrus fruits
against specific biochemical pathways of inflammation and thrombosis seems to act with synergy
with the anti-oxidant potential of their vitamin C content, which further supports the notion that
these juices are functional foods with anti-inflammatory protective health benefits. In addition, the
presence of these dietary bioactive phenolic compounds and polar lipid bioactives in the remaining
peels’ wastes further enhance the valorization of such food industry by-products as potential sources
of anti-inflammatory bioactives to be used as ingredients for novel functional products.

Keywords: orange; sanguine; clementine; anti-inflammatory; antithrombotic; PAF; thrombin; platelets;
leukocytes; PAF-synthesis; vitamin C

1. Introduction

Inflammation and thrombosis are important physiological procedures against tissue
damage and insults from external agents. However, unresolved and chronic inflammatory
and thrombotic manifestations are associated with several chronic disorders, including
cardiovascular disorders (CVD) and cancer [1,2]. Platelet activation and aggregation and
specific inflammatory and thrombotic mediators, such as the platelet-activating factor
(PAF), and thrombin, which activate platelets and other important inflammatory cells, play
a crucial role in the onset and development of such chronic disorders [1–3]. Moreover,
during chronic inflammatory manifestations, the PAF-related inflammatory pathways and
cytokines are induced by the observed increased levels of PAF due to a continuous cycle of
PAF-synthesis activation in several cells, including cells of endothelium and leukocytes,
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associated with subsequent thrombo-inflammatory procedures taking place usually at the
development of a dysfunctional endothelium [1–3].

Nevertheless, a great number of important epidemiological studies, such as the Lyon
Diet Heart Study, the Nurses’ Health Study (NHS), the European Prospective Investigation
into Cancer and Nutrition (EPIC) study, and several other studies, along with updated
outcomes from randomized trials have highlighted the health benefits associated with
adherence to healthy dietary patterns, such as the Mediterranean diet, which are rich in
foods with strong anti-inflammatory dietary bioactives, anti-oxidants, and vitamins, with
strong preventative and protective benefits against inflammation and associated chronic
disorders [1,2,4–7].

Citrus fruits are among the fruits included in such diets with several proposed health
benefits. The main benefits of citrus fruits were initially attributed to their richness in
vitamin C content and their strong anti-oxidant potential. Healthy diets such as the
Mediterranean diet are abundant in citrus fruits juices on a daily basis, which seems to
provide the main dietary source for natural vitamin C. Apart from the classic anti-oxidant
potency of vitamin C against free radicals, it should also be stressed out that its anti-
oxidant capacity can be extended against the situation where oxidative stress is linked
with inflammation [8]. However, several studies have highlighted that apart from vitamin
C, other citrus phytochemicals and bioactives seem to contribute to their health benefits
through several effects and not only their anti-oxidant potency. For example, even though
the inhibition of cancer cell proliferation by extracts of berries, fruits, and citrus juices
has been correlated with their levels in carotenoids and vitamin C; however, the same
inhibition of cell proliferation could not be found by the ascorbate standard alone, which
suggested that a synergistic effect of vitamin C with other substances of these fruits exist,
such as anthocyanins, flavonoids such as hesperidin, hesperetin, and naringenin, and other
compounds that have anti-cancer activity and that may act synergistically with both the
fruits’ flavonoids and vitamin C [9,10]. This synergism may be due to the fact that the
compounds are exerting their inhibitory effects by different mechanisms and not only by a
general anti-oxidant effect.

For instance, dietary supplementation with vitamin C prevents the formation and
accumulation of oxidized phospholipids that mimic PAF, which are also called PAF-like
lipids and are usually produced during oxidative stress (inflammatory phospholipid ox-
idation products), such as that imposed by cigarette smoking, and thus vitamin C can
prevent in this way the cigarette smoke-induced leukocyte adhesion to the vascular wall
and formation of leukocyte-platelet aggregates and smoking-related CVD [8]. Similarly,
phospholipid oxidation products with PAF-receptor agonistic inflammatory properties
are also produced during oxidative inflammatory responses that take place in chronic
disorders, such as renal ischemia–reperfusion and renal disorders in general, as well as
during UVB irradiation, while anti-oxidant treatment with vitamin C inhibited both ROS
and PAF-R agonistic activity produced by the oxidative inflammatory response or by UVB
irradiation, and thus ameliorated the consequences of these inflammatory manifestations
too [11,12].

Hesperetin, a dietary bioactive of citrus fruits such as oranges, is another candidate
that may benefit the cardiovascular system since, apart from its classic anti-oxidant capacity,
hesperetin also possesses strong anti-platelet effects against collagen and arachidonic-
acid-induced platelet aggregation, with little effects however on thrombin- or U46619-,
a Thromboxane A2 (TXA2) mimic, mediated platelet aggregation [13]. The ability of
citrus hesperetin to selectively inhibit collagen- and arachidonic acid-mediated signal
transduction through inhibition of Phospholipase C-gamma2 (PLCγ) phosphorylation
and cyclooxygenase-1 (COX-1) activity seems to contribute to the beneficial effects of
grapefruits and oranges on the cardiovascular system [13]. Other similar citrus dietary
bioactives, such as hesperidin and naringin, have also been found to inhibit human platelet
aggregation too, at least partly through the inhibition of PLCγ and Protein kinase B (Akt)-
associated signaling, leading to a decrease in Thromboxane B2 (TXB2) formation, adenosine
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5′ diphosphate (ADP) release and granule secretion [14]. Citrus extracts with strong anti-
oxidant activity and high content in phenolics also showed strong anti-platelet effects
against collagen-induced aggregation of platelets [15]. On the other hand, 10 mL of citrus
(orange/grapefruit) juice/kg had no significant effect on platelet activity induced by
collagen in dogs and monkeys (Macaca fasciularis) [16].

As far as we know, there is not any study so far evaluating the anti-inflammatory and
antithrombotic potency of citrus fruits lipid extracts and of their amphiphilic and lipophilic
compounds against the PAF and Thrombin-associated pathways of platelets’ activation,
as well as against the inflammatory synthesis of PAF. Furthermore, little is known about
the anti-platelet and anti-inflammatory potency of lipid extracts and of amphiphilic and
lipophilic compounds from the wastes remaining after squeezing citrus fruits to produce
juices. Citrus fruits’ peels can be exploited for extricating essential oils and flavonoids
associated with anti-oxidant activity through various extraction processes [17–21]. Some
essential oils and terpenes such as orange-derived limonenes, sesquiterpenes, and sesquiter-
penoids have shown strong anti-inflammatory, anti-platelet, and antitumor potential [22,23];
however, more research is needed to fully evaluate the citrus industry wastes as sustainable
sources of natural amphiphilic and lipophilic lipid bioactives.

In the present study, the anti-inflammatory and antithrombotic potency of lipid bioac-
tives extracted and separated from fresh juices produced by squeezing oranges of the
Navalina and Sanguine varieties and the Mediterranean mandarins that are also called
clementines, as well as from their remaining by-products (peels’ wastes), were assessed for
the first time against platelet activation induced by the well-established inflammatory and
thrombotic mediators, PAF and thrombin, as well as against PAF-synthesis in leukocytes,
in order to evaluate the contribution of amphiphilic and lipophilic lipid bioactives in the
anti-inflammatory benefits observed by citrus fruits’ consumption, as well as for study-
ing the potential valorization of the lipid bioactives present in citrus fruits by-products
(peels’ wastes).

2. Materials and Methods
2.1. Samples Preparation and Lipids’ Extraction

Freshly squeezed juices were produced from Navalina and Sanguine orange (Citrus
sinensis) varieties as well as from Mediterranean mandarines-clementines (Citrus reticulata)
that were cultivated in Argolida, Greece, by using a Citrus Juicer Kenwood JE290A with a
stainless steel filter. Total lipids (TLs) from all juices and their remaining wastes (squeezed
peels) were extracted according to the Bligh and Dyer extraction method [24], as previously
described [25,26]. Briefly, all samples were dissolved and homogenized in a monophasic
mixture of solvents, chloroform/methanol/water in a 1:2:0.8 (v/v/v) ratio. The extraction
of lipids from juices was conducted just after their production without adding any water
into this mixture since the water content of the juices directly served as the 0.8 ratio of the
water volume of this monophasic mixture. In contrast, water was added to the mixture of
solvents with a 0.8 ratio for extracting the peels, which were firstly homogenized in such a
monophasic system of solvents by using appropriate stainless steel blender.

The homogenized samples of both the juices and the peels were then filtrated under
vacuum conditions by pumping in a Buchner-based filtering device with a 110 mm What-
man filter paper (Whatman, Maidstone, UK), as previously described [25,26]. Then, the
filtrates from the homogenized juices and peels were transferred to separatory funnels,
where appropriate volumes of water and chloroform were added in order for a new ratio
of solvents to be achieved, containing a chloroform/methanol/water system with a ratio
of 1:1:0.9 (v/v/v), in which after thorough shaking phase separation was achieved. The
extracted total lipids (TLs) are present in the lower chloroform phases after some time in
which phase balance was achieved. These organic phases from each extraction process
of each sample were finally collected in separate round-bottom flasks, and the solvents
were evaporated from the samples using flash rotary evaporation. Then, the remaining
lipid extracts in the glass of the flasks were re-dissolved in small volumes of a chloro-
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form/methanol solution, at a ratio of 1:1 (v/v), by which they were transferred into small
pre-weighed glass vials, where all the remaining solvents were further evaporated under
a stream of nitrogen. The obtained TL extracts were weighed and immediately used for
further analysis and testing after being again re-dissolved either in 1 mL of the same chloro-
form/methanol solution of 1:1 (v/v) ratio for the HPLC analysis or in a saline-based bovine
serum albumin (BSA) solution for the platelet aggregometry assays and the enzymatic
assays in the leukocytes homogenates. The concentrations of these TLs were expressed as
mg of extracted TLs per ml of the solution in which they were re-dissolved in each case.
When the weighted TLs were not used immediately, they were stored dried in nitrogen
stream at −20 ◦C until further analysis was needed.

2.2. Determination of Vitamin C

Vitamin C content in the fresh and oxidized juices and dissolved supplement was
determined using a direct iodometric titration, as previously described [27]. Aliquots of
25 mL of fresh juices were placed in a 250 mL erlenmeyer flask, where 2 mL of starch
indicator was added. Then, 0.01 N iodine solutions were used to titrate the samples. These
iodine solutions were previously standardized with sodium thiosulfate in the matrix of
potassium iodide. The sodium thiosulfate solution was standardized before use with a
primary standard solution of potassium iodate in acidic environment. A blank titration was
performed prior to titration of each sample (n = 3). Each ml of 0.01 N iodine is equivalent
to 0.8806 mg ascorbic acid. Results were calculated as mg of L-ascorbic acid per 100 mL of
juice. Each sample was prepared and analyzed in duplicate.

2.3. HPLC Analysis and Separation of Bioactive Lipid Molecules from Orange, Sanguine and
Clementine Juices and Peels

The TL extracts obtained from the extractions of Navalina and Sanguine orange juices,
as well as from Clementines’ juices and their peels, were further separated into several
amphiphilic and lipophilic subclasses/fractions by a novel lipid-separation HPLC method
of analysis, which separates several amphiphilic and lipophilic compounds from a lipid
extract in a one-step procedure on a semi-preparative reversed-phase column Luna 5u
C8(2) 100A of Phenomenex, with the use of a mobile phase being a gradient distribution
of acetonitril (ACN) and distilled water (W), at room temperature (20 ◦C), as previously
described [28–31]. The analysis was performed in a Hewlett-Packard series 1100 (Avondale,
PA, USA), equipped with a G1314A HP UV spectrophotometer.

2.4. Biological Assays on Washed Rabbit Platelets

The inhibitory effects (antagonistic effects) against PAF and thrombin biological activi-
ties on platelets and/or the PAF-like activity for activating platelets (agonistic effects) of
the controls and of the re-dissolved in BSA (2.5 mg BSA/mL saline; Sigma, St. Louis, MO,
USA) TLs from Navalina and Sanguine orange juices, as well as from Clementines’ juices
and their peels, and each of the HPLC lipid fraction obtained as described above, were eval-
uated by biological assays based on PAF/Thrombin-induced aggregation of washed rabbit
platelets (WRP), as previously described [28–30]. Commercially purchased effervescent
tablets of 135 mg vitamin C (Cebion®), also containing Sucrose, Saccharin sodium, Sodium
hydrogen carbonate, Yellow orange S (E110), Citric acid anhydrous, Adipic acid, Orange
flavor, were dissolved in saline just before and after 4 h of testing to evaluate the effects of
oxidation on the anti-platelet properties of vitamin C.

The organic solvents of aliquots of a standard PAF solution (Sigma, St. Louis, MO,
USA) in glass tubes were evaporated under a stream of nitrogen and re-dissolved in BSA
(2.5 mg BSA/mL saline; Sigma, St. Louis, MO, USA) to obtain several concentrations (from
2–3 × 10−8 to 2–3 × 10−11 mol/L) prior testing. Ginkgolide B (BN 52021; Sigma, St. Louis,
MO, USA) was used as a positive inhibitory control since it is a well-established specific
PAF-antagonist for the PAF receptor and thus inhibits specifically the binding of PAF on its
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receptor and thus PAF activity. Standard active thrombin (Sigma, St. Louis, MO, USA) was
dissolved in saline prior testing.

The ability of each selected sample to cause inhibition of PAF/Thrombin-induced
aggregation of platelets was studied by adding various concentrations of each sample into
WRP suspensions present in specific aggregometer cuvettes in a Chrono-Log aggregometer
(model 400) (Havertown, PA, USA) coupled to a Chrono-Log recorder (Havertown) at 37 ◦C
with constant stirring at 1200 min−1, 1–3 min prior to adding each of the inflammatory and
thrombotic platelet agonist, PAF or thrombin.

More specifically, 250 µL of WRP suspensions were transferred to an aggregometer
cuvette, at 37 ◦C, with a continuous stirring at 1200 rpm and were always calibrated prior
to testing with a blank containing 250 µL of saline buffer. By adding PAF at approximately
2–3 × 10−11 M final concentration or active thrombin at approximately 0.001–0.04 IU/mL
in the aggregometer cuvette, the maximum-reversible (or the minimum-irreversible) PAF-
induced/thrombin-induced platelet aggregation was determined as the 100% aggregation,
which was also used as the baseline of inhibition (0% inhibition). In order to assess the
ability of each sample (the dissolved vitamin C supplement, the freshly squeezed juices,
the oxidized supplement and juices, the lipid extracts of the citrus fruits juices and of their
peels’ wastes, as well as their HPLC-derived fractions) to inhibit PAF/Thrombin induced
aggregation of platelets, each WRP suspension was pre-incubated- in the presence of a
variety of concentrations of the tested sample, and after 1–3 min of this incubation the ap-
propriate amount of PAF/thrombin (needed for maximum reversible platelet aggregation)
was added in each cuvette, and the inhibition of platelet aggregation was calculated. Within
a range of 20–80% inhibition against PAF/Thrombin-induced aggregation of platelets, a
linear curve to the concentrations of each sample with inhibitory potency was deduced.
From this curve, the amount (µg) of the sample that led to 50% of inhibition of platelet
aggregation induced by PAF or thrombin in WRP suspensions of 0.250 mL was calculated as
the 50% inhibitory concentration value (half maximal inhibitory concentration; IC50 value)
for each sample (Figure 1). The resulting IC50 values were expressed as a mean value of
the mass (µg) of lipid or vitamin C in the aggregometer cuvette ± standard deviation (SD).
Biological assays were performed several times (n > 6) to ensure the validity of results. It
should also be stressed that the lower the IC50 value for a sample, the stronger its inhibitory
effect against the PAF and/or thrombin pathway.

Some samples were able to induce platelet aggregation when assessed in much higher
amounts than those of their IC50 values. The aggregatory (agonistic) effect of such samples
on platelets was also studied in WRP suspensions in aggregometer cuvettes, as previously
described [28–30]. Briefly, various concentrations of each sample were added to the aggre-
gometer cuvette, and the aggregation of platelets induced by the sample was measured in a
similar way to the aggregation of platelets induced by PAF/Thrombin. A linear relationship
was found between the concentration of the sample (usually higher than its IC50 value)
that induces platelet aggregation within the range of 20 to 80% of the maximum-reversible
aggregation of platelets. The amount in mg of the sample needed to induce 50% of platelet
aggregation is defined as the EC50 value (half maximal effective concentration). The lower
the EC50 value, the stronger its agonistic effect on platelet aggregation. In desensitization
(a) and cross desensitization (b) experiments, platelets were activated by the addition of
the test sample (a) or PAF (b) to the platelet suspension at a concentration that caused
reversible aggregation. Stimulation with the test sample (a) or PAF (b) with the same or
reversed order was performed immediately after complete disaggregation in each case, as
previously described [28–30].
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Figure 1. A representative chromatograph of the HPLC-separation of the TL extracts from fresh
squeezed juices of Navalina and Sanguine orange varieties and of Clementine mandarins, as well
as from their remaining by-products (peels’ wastes). The more polar phenolic compounds from all
these TL extracts are eluted first (at 2–8 min) followed by the amphiphilic polar lipids (PL), such as
glycolipids (at 8–14 min) and L-PC, SM and PC (at 14–30 min). The elution of the more Neutral lipids
(NL) starts after 30 min, with essential citrus oils being the first to be eluted (30–40 min) followed by
fatty acids, mono-/di/alcylglycerols (MAG and DAG), triglycerides and fatty/sterol esters. Radioac-
tive 3H-PAF and standard semi-synthetic cold PAF are usually eluted at RT of 23–28 min respectively,
while PC-molecules with PAF-like activity are eluted at similar RT (23–30 min), depending on the
length of the carbon chains of their fatty acids. Elution times of standard phospholipids subclasses
are also shown (PC: Phosphatidylcholine, L-PC: Lyso- Phosphatidylcholine, SM: Sphingomyelin).

2.5. Enzymatic Assays of PAF-CPT and Lyso-PAF-AT in Rabbit Leukocytes
2.5.1. Isolation of Rabbit Leukocytes

In each case, the isolation of rabbit plasma, leukocytes, and platelets from rabbit blood
was performed as previously described [32]. Briefly, an amount of 9.0 mL of blood from
healthy New Zealand white rabbits was obtained from each rabbit in tubes containing
1.0 mL of an anticoagulant solution of 0.085 M sodium citrate/0.065 M citric acid. Rabbit
leukocytes were isolated from the erythrocytes in dextran solution, while any contaminat-
ing erythrocytes that may have migrated in the sediment pellet of leukocytes were lysed by
adding a lysis buffer, and the lysed solution was discarded as the supernatant of centrifu-
gation. The remaining leukocyte pellets were washed with saline and re-suspended in Tris
buffer. The re-suspended pellet of leukocytes was sonicated and then centrifuged at 500 g
for 10 min at 4 C. Total protein was determined in the supernatant that contains leukocyte
homogenates, according to the method of Bradford [33], with BSA as the protein standard.
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2.5.2. DTT-Insensitive PAF-Cholinephosphotransferase (PAF-CPT) Activity Assays

The assay was performed in the presence or the absence (control) of vitamin C and of
the TL extracts of the juices from Navalina and Sanguine oranges and from Clementines, as
well as of their peels wastes and the most bioactive HPLC-derived lipid fractions of each
sample, as previously described [34]. Briefly, the reaction was carried out at 37 ◦C for 20 min
in a final volume of 200 µL containing 100 mM Tris-HCl (pH 8.0), 15 mM dithiothreitol,
0.5 mM EDTA (Sigma, St. Louis, MO, USA), 20 mM MgCl2 (Sigma, St. Louis, MO, USA),
1 mg/mL BSA, leukocytes homogenates 0.1 mg in total protein, as well as the substrates
100 µM 1-O-alkyl-2-sn-acetylglycerol (AAG) dissolved in 2 µL of absolute ethanol and
100 µM CDP-Choline, in the absence or the presence of several concentrations (mg/mL) of
the aforementioned citrus lipid bioactives. Both substrates were added to the assay just
30 s after the addition of the leukocytes homogenates, which was the time of initiation of
the enzyme reaction. Apart from AAG, which was purchased from BIOMOL International
LP (Exeter, UK), all the other aforementioned reagents and substrates for this assay were
purchased from Sigma (St. Louis, MO, USA).

The assay was stopped after 20 min of its initiation by adding 0.5 mL of cold methanol
(2% in acetic acid). The lipid products were extracted into chloroform according to the
method of Bligh and Dyer [24]. The lipid products were further separated by thin-layer
chromatography, and the PAF fractions were scrapped off and again extracted by the
Bligh–Dyer method, while after evaporation of the solvents under a stream of nitrogen,
the produced PAF was dissolved in BSA and determined by the washed rabbit platelet
aggregation assay. Specific enzyme activities of PAF-CPT are expressed as nmol of produced
PAF/min/mg of leukocytes homogenates protein present in each assay. The inhibitory
effect of each bioactive (vitamin C, TL extracts, and lipid bioactives of HPLC-derived
fractions) are expressed as IC50-values (half maximal inhibitory concentration) measured
as µg of the bioactive needed for inhibiting 50% the specific enzyme activity of PAF-CPT of
platelet leukocytes.

2.5.3. Lyso-PAF-AT Activity Assays

The assay was performed in the presence and in the absence (control) of vitamin C
and of TL extracts from Navalina and Sanguine oranges and from Clementines, as well as
of their most bioactive HPLC-derived lipid fractions as previously described [35]. Briefly,
the reaction was carried out at 37 ◦C for 30 min in a final volume of 200 µL containing
50 mM Tris-HCl (pH 7,4), 0.25 mg/mL BSA, 20 µM Lyso-PAF, and 200 µM acetyl-CoA
and leukocytes homogenates of 0.25 mg in total protein, in the absence or the presence
of several concentrations (mg/mL) of the aforementioned citrus lipid bioactives. The
reaction was started by the addition of the leukocytes homogenate and was stopped
after 30 min by adding 2% acetic acid methanol, and the extraction, purification, and
determination of the produced PAF were carried out similarly to the aforementioned
procedure in the PAF-CPT-assay.

Specific enzyme activities of Lyso-PAF-AT are expressed as nmol of produced PAF/min/
mg of leukocytes homogenates protein present in each assay. The inhibitory effect of
each bioactive (vitamin C, TL extracts, and lipid bioactives of HPLC-derived fractions)
are expressed as IC50-values (half maximal inhibitory concentration) measured as µg
of the bioactive needed for inhibiting 50% the specific enzyme activity of PAF-CPT of
platelet leukocytes.

2.6. Statistical Analysis

The significant differences (p < 0.05) between the IC50-values against PAF and/or
thrombin for each tested sample were defined by the one-way analysis of variance (ANOVA)
test. The data were analyzed using a statistical software package (IBM-SPSS statistics 26 for
Windows, SPSS Inc., Chicago, IL, USA).
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3. Results and Discussion
3.1. Anti-Inflammatory and Antithrombotic Potency of TLs from Juices of Oranges and
Mandarines and from Their by-Products in Platelets

In the present study, the anti-inflammatory and antithrombotic potency of dietary
lipophilic and amphiphilic lipid bioactives extracted and separated from fresh juices pro-
duced by squeezing specific citrus fruits that are thoroughly used in the food industry, such
as the Navalina and Sanguine orange varieties and the Mediterranean type of mandarins-
clementines, as well as from their remaining peels’ wastes, against the pathways of platelet
activation and aggregation induced by the well-established inflammatory and thrombotic
mediators, PAF and thrombin, were assessed for the first time, and in comparison to
the same effects studied for vitamin C. The potency of the antagonistic inhibition of the
lipid bioactives from these samples against PAF/thrombin-activities, as well as the anti-
platelet effect of vitamin C, were defined by their IC50-values (half maximal inhibitory
concentration) measured in mass (µg) of lipid sample or vitamin C content needed for a
50% of inhibition of the PAF/Thrombin-induced aggregation of WRP by 50% in each case
(Table 1). It should be noted here that the lower the IC50-value for a dietary bioactive against
PAF/Thrombin, the stronger its antagonistic inhibitory effect against the inflammatory and
thrombotic activities of these mediators.

Table 1. In vitro bioactivities (antagonistic/inhibitory effects) of vitamin C and of the TL ex-
tracts from citrus fruits’ fresh squeezed juices and from their by-products (peels’ wastes), against
PAF/Thrombin-induced platelet aggregation. Biological assays were performed several times to
ensure reproducibility.

Samples
IC50-Valuesa against Platelet

Aggregation Induced by PAF 1

IC50-Valuesa against
Platelet Aggregation

Induced by Thrombin 1

Platelet
Aggregation—Cross

Desensitization Tests (EC50
Values) 2

Freshly dissolved Vitamin C
supplement 87 ± 15 1a 178.5 ± 28.2 1a ND

Oxidized Vitamin C
supplement (left uncapped in
light and room temperature

for 4 h)
160.2 ± 25.0 1a 244.2 ± 34.2 1a ND

Fresh squeezed juice of
Navalina oranges 23.2 ± 4.2 1a 42.3 ± 3.8 1a ND

Fresh squeezed juice of
Sanguine oranges 21.4 ± 3.1 1a 36.9 ± 2.9 1a ND

Fresh squeezed juice
of Clementines 28.6 ± 4.5 1a 53.6 ± 4.4 1a ND

Oxidized juice of
Navalina Oranges

(left uncapped in light and
room temperature for 4 h)

39 ± 8.1 1a 122.2 ± 11.2 1a ND

Oxidized juice of
Sanguine Oranges

(left uncapped in light and
room temperature for 4 h)

34 ± 5.3 1a 113.9 ± 9.6 1a ND

Oxidized juice of Mandarins-
Clementines

(left uncapped in light and
room temperature for 4 h)

49 ± 6.2 1a 139.6 ± 14.6 1a ND

TLs from Fresh squeezed juice
of Navalina Oranges 14.3 ± 3.2 1b,* 47.2 ± 4.8 1a ND

TLs from Fresh squeezed juice
of Sanguine Oranges 15.3 ± 3.2 1b,* 41.3 ± 3.8 1a ND

TLs from Fresh squeezed juice
of Clementines 17.3 ± 4.2 1b,* 59.9 ± 4.7 1a ND
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Table 1. Cont.

Samples
IC50-Valuesa against Platelet

Aggregation Induced by PAF 1

IC50-Valuesa against
Platelet Aggregation

Induced by Thrombin 1

Platelet
Aggregation—Cross

Desensitization Tests (EC50
Values) 2

TLs from peels’ wastes that
remained after the production

of the squeezed juice from
Navalina Oranges

1.5 ± 0.8 1b,# 32.3 ± 2.5 1a,# +/+ (133.6 ± 11.2) 2

TLs from peels’ wastes that
remained after the production

of the squeezed juice from
Sanguine Oranges

1.2 ± 0.6 1b,# 30.7 ± 3.8 1a,# +/+ (122.3 ± 10.1) 2

TLs from peels’ wastes that
remained after the production

of the squeezed juice
from Clementines

1.7 ± 1.1 1b,# 43.6 ± 4.4 1a,# +/+ (146.7 ± 12.4) 2

1 IC50-values reflect the inhibitory strength (half maximum inhibitory concentration) of each extract/lipid-fraction
tested against PAF/Thrombin-induced platelet aggregation in WRP and are expressed as mean values of µg
of each sample ± SD (n = 3), which when present in the aggregometer cuvette (with a total volume of platelet
suspension being that of 250 µL) can cause 50% of inhibition on PAF/Thrombin -induced aggregation of WRP (in
the presence 1–15 × 10−11 M of PAF or 0.001–0.04 IU/mL of thrombin). The lower the IC50 value the stronger
the inhibitory effect against the PAF/Thrombin-pathway. 1a These IC50 values are expressed as per vitamin
C content (µg of vitamin C) of each sample in the aggregometer cuvette that can cause 50% of inhibition on
PAF/Thrombin -induced aggregation of WRP; 1b These IC50 values are expressed as per TL content (µg of TLs)
in the aggregometer cuvette that can cause 50% of inhibition on PAF/Thrombin -induced aggregation of WRP.
* Samples that exhibited significantly stronger anti-PAF effects (p < 0.05), with IC50 values within the same order
of magnitude. # Samples showing the most potent anti-PAF and antithrombin effects, which have the lowest IC50
values in comparison with all other samples (p < 0.05), 2 +/+ detected platelet aggregation/positive desensitization
and cross desensitization tests against PAF-induced platelet aggregation (EC50: Effective concentration that causes
50% of platelet aggregation). (WRPs: Washed Rabbit Platelets; TLs: Total-Lipids Extract; PAF: Platelet Activating
Factor; ND: Not Detected).

Ascorbic acid has multiple biochemical roles, with the primary ones being its role as
the main water-soluble anti-oxidant in the human body, as well as its important role as
a co-enzyme in the formation of collagen, the main protein of connective tissue, whose
adequate synthesis is essential for proper resistance and strength of tendons, ligaments,
skin, and other connective tissues [36]. Thus, vitamin C has a very important nutritional
role, and the symptoms of its absence in the diet have been known since the time of the
ancient Egyptians and Greeks. Subsequently, a deficiency in vitamin C leads to scurvy,
whose symptoms are well established. In developed countries, this deficiency is only found
in people suffering from alcoholism, cancer cachexia, drug dependence, or malabsorption.
Since humans lack the enzyme machinery to produce vitamin C, they should receive it from
their diet. Several foods of plant origin contain vitamin C, including the rich in vitamin C
citrus fruits, such as the assessed in this study orange, sanguine, and clementine, while for
the last decade, supplements of vitamin C are also a common source of ascorbic acid intake.

In the present study, a classic vitamin C supplement was assessed in rabbit platelets
and showed a non-specific anti-platelet effect against the well-established inflammatory
and thrombotic agonists, PAF and thrombin. Since ascorbic acid seems not to interact with
the receptors of PAF and thrombin, while it possesses direct strong anti-oxidant properties
by quenching superoxide radicals, it seems that the observed anti-platelet effects of vitamin
C are derived from an indirect effect of vitamin C in the released superoxide radicals during
activation of platelets by either PAF or thrombin [37]. During activation of platelets by
such agonists, specific signaling takes place, in some of which the production of superoxide
radicals is also involved, which in turn participate in propagating platelet activation and
the thrombo-inflammatory response [37]. Administration of vitamin C has been found
to actually exert an anti-oxidant effect that resulted in platelet reactive oxygen species
(ROS) inhibition and ultimately reduced platelet activation [36]. Thus, it seems that an
anti-oxidant treatment with vitamin C can inhibit both ROS and oxidized phospholipid
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PAF-R agonist activity, which are usually produced during an oxidative inflammatory
response [8,11,12,37].

The results obtained in the present study for the vitamin C supplement in platelets
further support this notion, especially when this supplement was dissolved in an uncapped
and transparent bottle and was left there for 4 h in the presence of atmospheric oxygen
and light exposure. In these conditions and after 4 h vitamin C is usually degraded due to
oxidation, approximately half of its initial content, as also was previously observed [27].
Vitamin C degradation was also demonstrated by the reduced anti-platelet effects of the
oxidized supplement assessed against both PAF and thrombin, as the IC50 values were
increased almost twice for the oxidized supplements. Both the intact dissolved vitamin C
supplement and the oxidized for 4 h dissolved vitamin C supplement showed a stronger
anti-platelet effect against the PAF-associated pathway in comparison to that against
the thrombin pathway, which further suggests that the PAF-induced platelet activation
involves more ROS production and thus the presence of vitamin C is more active against
this pathway.

Similar outcomes were observed for the tested fresh and oxidized juices from the
Navalina and Sanguine orange varieties, as well as from clementines. More specifically,
fresh juices from these citrus fruits showed stronger anti-PAF, and antithrombin effects than
the oxidized ones since leaving these juices for 4 h in an uncapped and transparent glass
vial provide the conditions for reduction of both vitamin C and its anti-platelet potency,
as well as oxidation of other organic bioactives such as flavonoids. Moreover, the anti-
inflammatory and antithrombotic potency of fresh juices against both the PAF and thrombin
pathways were much stronger than the ones observed for the vitamin C supplements and
again with higher specificity against the PAF pathway. This result further suggests that
other bioactive compounds are present in these fresh juices, which can directly and/or
indirectly interact with the thrombin and PAF pathways of platelet activation in synergy
with the anti-ROS anti-oxidant effects of vitamin C on platelets.

Indeed, the TL extracts of the juices and the peels’ by-products, which contain their
more amphiphilic and lipophilic substances, showed the strongest anti-inflammatory and
antithrombotic potency against the PAF/Thrombin-induced activation of platelets. Since
vitamin C is water soluble, this result further suggests the presence of other amphiphilic
and lipophilic lipid bioactives in the TLs of juices and peels from oranges and clementines
that seem to possess strong anti-inflammatory potency against PAF and antithrombotic
capacity against thrombin. Again, the TLs of the juices from both Navalina and Sanguine
orange varieties and from the clementines, as well as from their remaining by-products,
had higher specificity against the PAF-pathway in comparison to their antithrombin effect
since their IC50 values against PAF were at least twice lower than their antithrombin ones.

Moreover, the TL extracts of the wastes that remained after the squeezing for pro-
ducing the juices from these citrus fruits showed the strongest anti-PAF potency and an
antithrombin activity that was similar to that of the juices TL ones, suggesting that am-
phiphilic and lipophilic anti-inflammatory bioactives of these citrus fruits with anti-PAF
activities remain in their by-products after processing. Thus, the by-products remaining af-
ter the processing of the citrus fruits for producing juices seem to be a sustainable source of
lipophilic and amphiphilic bioactives with anti-inflammatory and antithrombotic potential
to be used as ingredients for novel functional products and supplements.

From all the samples tested, only the TLs from the citrus fruits’ by-products also
showed an agonistic effect on platelets since two orders of magnitude higher amounts of
these TL extracts induced platelet aggregation. Desensitization and cross desensitization
tests, in which platelets were activated and aggregated by the addition of either these TL
extracts or by PAF, followed by an additional stimulation with either the TLs or PAF in
each case that was performed immediately after complete disaggregation of the initially
activated platelets, showed that the agonistic effect of these TL extracts takes place through
the PAF-pathway. Thus, lipophilic PAF-like molecules seem to be present in the TL extracts
of the citrus fruits’ by-products.
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3.2. Anti-Inflammatory and Antithrombotic Potency of HPLC-Derived Bioactive Fractions from
TLs of Juices of Oranges and Mandarines and from Their by-Products in Platelets

In order to evaluate the type, class, and subclass of the amphiphilic and lipophilic
bioactives that are present in the TL extracts of the juices and the remaining peels’ wastes
of these citrus fruits, an HPLC-based analysis was performed that allows the one-step
separation of these TLs in several non-water soluble lipophilic classes and amphiphilic
compounds, as previously described [28–31]. A characteristic chromatogram of such an
analysis is presented in Figure 1. As is shown in this figure, The more polar phenolic
compounds and glycolipids are eluted first in the conditions applied on the reverse phase
C8 column, followed by the class of the amphiphilic phospholipid compounds (Figure 1).
The more neutral lipophilic compounds, such as the citrus essential oils and terpenes, fatty
acids, mono-/di-alcyloglycerols (MAG and DAG), triglycerides, lipid esters, and sterol
esters were eluted afterward within this order (Figure 1).

From weighing the HPLC fractions obtained from such HPLC analysis of 1 mg of
the TL extracts from all samples, very similar percentage values for each fraction were
observed between the different juices and between the different peels’ waists, whereas some
differences were observed between the percentage values for each fraction of juices when
compared with those of its relative peels’ by-products. More specifically, approximately
85–95% of the TLs from the orange juices were polar amphiphilic compounds eluted in
the fractions of Phenolic compounds, Glycolipids, L-PC, SM, and PC/PAF-like molecules,
with the fractions of PC and phenolics being the most prevalent compounds (30–40%
each), followed by glycolipids (10–20%) and L-PC and SM (5–10% each) from the more
polar compounds. From the TLs, only the 5–15% were neutral lipids that were eluted
mostly in fractions of triglycerides, terpenoids, MAG, DAG, and fatty acids. In contrast,
in the peels’ wastes (by-products), the percentage of neutral lipids was increased up to
25–35% due to an increase in the most prevalent neutral compounds, terpenoids, and
triglycerides fractions, while again, the percentage of the more polar lipid bioactives was
higher, but not so much as the one observed in juices. Thus, the more polar compounds
were the 65–75% of the TLs of the peels, which were mostly eluted at the PC and phenolics
fractions (35–45% each), lesser in glycolipids (approx. 15%), and much lesser in L-PC
and SM fractions (3–8%). Such relative % composition of the PL fractions within the PL
extracts observed in the juices and the peels’ waists of these citrus fruits are similar to
the ones previously observed in both other fruits such as apples [25,26]. However, more
sophisticated lipidomic approaches, based on modern MALDI-TOF LC–MS, are needed
for quantifying and structurally elucidating all these bioactive molecules present in each
HPLC fraction from the TL extracts of the citrus fruits juices and their by-products

Each one of thus separated amphiphilic and lipophilic compounds and classes of
molecules were further assessed for their ability to inhibit PAF-induced platelet aggrega-
tion, as well as for their potential agonistic ability to induce activation and aggregation
of platelets through the PAF pathway in higher amounts. The anti-inflammatory potency
and agonistic activities of these compounds against the PAF -induced aggregation of WRP
were defined again by their IC50/EC50-values measured in mass (µg) of lipid sample
(Table 2). The most bioactive fractions in all cases were those containing the more polar
amphiphilic/lipophilic compounds, such as the phenolics compounds, glycolipids, and
phosphatidylcholines (PC), while the more neutral lipophilic compounds such as triglyc-
erides and fatty esters did not show any activity, apart from the neutral essential oils’
fractions that showed considerably strong anti-PAF activity, and especially the essential
oils of the by-products of the citrus fruits. These results come in accordance with outcomes
of other studies in lipophilic bioactives from other plant-derived sources, such as apple
juice and apple pomace [25,26]. The overall anti-inflammatory and antithrombotic potency
of the TL extracts for each case against the PAF-pathway seems to be derived from the
co-presence of all these bioactives in the lipophilic extract of the TLs of these citrus fruits
and of their by-products.
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Table 2. In vitro bioactivities (antagonistic/inhibitory effects and agonistic/aggregatory effects) of
the most bioactive HPLC-derived amphiphilic and lipophilic fractions of TLs from fresh squeezed
juices of Navalina and Sanguine orange varieties, of clementines and from their by-products (peels’
wastes), against PAF -induced platelet aggregation. Biological assays were performed several times
to ensure reproducibility.

Samples Bioactive Amphiphilic/Lipophilic
Fraction

IC50-Valuesa against
Platelet Aggregation

Induced by PAF 1
SD

Platelet
Aggregation—Cross
Desensitization Tests

(EC50 Values) 2

TLs from Fresh
squeezed juice of
Navalina Oranges

Phenolic compounds 1.5 # 0.2 ND
Glycolipids 2.4 # 0.3 ND

L-PC ND - ND
SM 58.5 3.8 ND
PC/

PAF-like molecules 6.3 * 0.9 ND

Fatty Acids 122.6 21.5 ND
MAG and DAG 167.8 7.3 ND

Terpenoids 86.7 5.6 ND
Triglycerides ND - ND

Fatty/Sterol esters ND - ND

TLs from Fresh
squeezed juice of

Sanguine Oranges

Phenolic compounds 1.3 # 0.2 ND
Glycolipids 3.8 * 0.6 ND

L-PC ND - ND
SM 72.3 4.6 ND
PC/

PAF-like molecules 6.5 * 0.6 ND

Fatty Acids 143.4 27.3 ND
MAG and DAG 177.3 9.2 ND

Terpenoids 82.3 8.3 ND
Triglycerides ND - ND

Fatty/Sterol esters ND - ND

TLs from Fresh
squeezed juice of

Clementines

Phenolic compounds 1.2 # 0.3 ND
Glycolipids 4.3 * 0.8 ND

L-PC ND - ND
SM 77.3 8.4 ND
PC/

PAF-like molecules 8.8 * 0.7 ND

Fatty Acids 167.7 20.3 ND
MAG and DAG 165.4 8.2 ND

Terpenoids 78.9 6.4 ND
Triglycerides ND - ND

Fatty/Sterol esters ND - ND

TLs from peels’ wastes
that remained after the

production of the
squeezed juice from
Navalina Oranges

Phenolic compounds 0.8 # 0.1 ND
Glycolipids 8.3 * 1.3 ND

L-PC ND - ND
SM 49.5 4.4 ND
PC/

PAF-like molecules 2.4 # 0.8 +/+ (112.6 ± 15.8)

Fatty Acids 111.4 11.6 ND
MAG and DAG 153.2 4.2 ND

Essential oils 53.4 4.8 ND
Triglycerides 456.8 34.6 ND

Fatty/Sterol esters 887.9 82.5 ND



Beverages 2022, 8, 39 13 of 18

Table 2. Cont.

Samples Bioactive Amphiphilic/Lipophilic
Fraction

IC50-Valuesa against
Platelet Aggregation

Induced by PAF 1
SD

Platelet
Aggregation—Cross
Desensitization Tests

(EC50 Values) 2

TLs from peels’ wastes
that remained after the

production of the
squeezed juice from
Sanguine Oranges

Phenolic compounds 1.1 # 0.3 ND
Glycolipids 9.2 * 0.8 ND

L-PC ND - ND
SM 44.8 3.2 ND
PC/

PAF-like molecules 2.1 # 0.6 +/+ (128.9 ± 22.5)

Fatty Acids 125.5 14.3 ND
MAG and DAG 158.7 7.1 ND

Essential oils 41.5 2.9 ND
Triglycerides 552.7 41.5 ND

Fatty/Sterol esters 832.4 88.3 ND

TLs from peels’ wastes
that remained after the

production of the
squeezed juice from

Clementines

Phenolic compounds 1.0 # 0.3 ND
Glycolipids 8.5 * 0.9 ND

L-PC ND - ND
SM 52.1 6.2 ND
PC/

PAF-like molecules 1.6 # 0.4 +/+ (136.5 ± 24.9) 2

Fatty Acids 135.8 15.3 ND
MAG and DAG 158.9 7.5 ND

Essential oils 40.3 4.8 ND
Triglycerides 665.4 41.9 ND

Fatty/Sterol esters 942.5 76.3 ND
1 IC50-values are expressed as mean values of µg of each sample ± SD (n = 3), which when present in the
aggregometer cuvette (with a total volume of platelet suspension being that of 250 µL) can cause 50% of in-
hibition on PAF-induced aggregation of WRP (in the presence 1–15 × 10−11M of PAF). IC50-values reflect the
inhibitory strength (half maximum inhibitory concentration) of each HPLC-derived-fraction tested against PAF
-induced platelet aggregation in WRP, since the lower the IC50 value the stronger the inhibitory effect against the
PAF/Thrombin-pathway. * Samples that exhibited significantly stronger anti-PAF effects (p < 0.05), with IC50
values within the same order of magnitude. # Samples showing the most potent anti-PAF and antithrombin
effects, which have the lowest IC50 values in comparison with all other samples (p < 0.05), 2 +/+ detected platelet
aggregation/positive desensitization and cross desensitization test against PAF-induced platelet aggregation of
WRPs (EC50-values reflect the platelet-agonist strength—half maximum effective concentration—of each HPLC-
derived-fraction tested through the PAF-pathway of platelet aggregation and are expressed as mean values of µg
of each sample ± SD (n = 3), which when present in the aggregometer cuvette can cause 50% of WRP aggregation).
WRP: Washed Rabbit Platelets; PAF: Platelet Activating Factor; SD: Standard Deviation; ND: Not Detected.

Citrus fruits and their juices are among the most common rich dietary sources of
phenolic compounds and especially flavonoid bioactives. Dietary flavonoids such as
hesperidin, hesperetin, and naringenin, which are the most abundant flavonoid component
in orange and mandarin juices, may help to supplement the body not only with anti-
oxidant defenses against free radicals but also with anti-inflammatory, anti-platelet, anti-
allergenic, antimicrobial, antiviral, antiulcer and analgesic activities [36]. Such flavonoids
are also present in high amounts in orange peel, which is the primary waste fraction in
the production of orange juice. It has been proposed that supplementation with such
flavonoids found in orange peel extracts may be beneficial only when the body is under
severe oxidative stress and when supplementation is given over time and not as a single
administration [38].

The anti-platelet effect of flavonoids found in citrus fruits and their peels, such as
hesperetin, hesperidin, and naringin, has been previously reported against other path-
ways of platelet activation involving collagen, arachidonic acid, and the decrease in TXB2
formation, ADP release and granule secretion [13–15,19,38]. In addition, naringenin, the
aglycon analog of naringin, along with quercetin, have both been shown to antagonisti-
cally inhibit the inflammatory PAF-pathway with an IC50 value similar to the ones for the
fractions of phenolic compounds of oranges and mandarins-clementines, observed in the
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present study [39]. Thus, it seems that such anti-oxidant and anti-inflammatory protective
flavonoids seem to be present in the bioactive fraction of phenolic compounds separated
from citrus fruits’ juices and from their peels’ wastes with strong anti-platelet potency
against the inflammatory mediator PAF. However, more studies are needed to further clar-
ify the individual contribution of each type of phenolic compound in the overall anti-PAF
effect of the TLs from oranges and mandarins and from their remaining by-products.

Apart from the phenolic fractions, the polar lipid fractions of glycolipids and PC
phospholipids also showed strong anti-PAF potency in both the juices and the peels. This
result comes in agreement with previously reported results in juices from other fruits
(apple juices) and of their by-products (apple pomace) [25,26] and further support the
notion that fruits that are thoroughly used in healthy diets such as the Mediterranean Diet,
such as the studied citrus fruits, contain bioactive PL (glycolipids and PC) with strong
anti-inflammatory specificity against the PAF-pathway, which contribute to the health
benefits of such diets. Moreover, the peels’ PC-fraction showed also a platelet agonistic
effect through the PAF/PAF-receptor pathway, as shown by the positive desensitization and
cross-desensitization tests, in much higher amounts than those needed for PAF inhibition
since the EC50 value for the agonistic effect of this fraction was at least one order of
magnitudes higher than its IC50 value for its antagonistic effect against PAF. This seems to
be related to the presence of PC molecules with PAF-like structure and activity in the TLs
of citrus peels, which beneficially influence the PAF pathway due to structural homology
with PAF and specific binding to PAF-receptor.

More specifically, such PAF-like molecules that are eluted in the PC fraction of the
citrus peels TLs, which in low amounts inhibit PAF antagonistically and in higher amounts
show an agonistic effect on PAF-pathway, through affecting the PAF/PAF-R signaling, are
considered as potent specific PAF-inhibitors, because they disallow the far more active
PAF-molecule to act through its PAF-R related inflammatory pathways. Nevertheless, such
agonistic effect of inducing platelet reactivity by the presence of such molecules in orange
peels may also be associated with induced by the citrus peels hypersensitivity and allergic
reactions. Thus, more studies are needed to evaluate the safety of valorizing such lipid
bioactives from citrus by-products such as orange and mandarine peels.

Another bioactive fraction with strong anti-PAF properties was the peels’ TL fraction
of terpenoids. Citrus fruits’ peel oils are rich in terpenoids and especially in monoterpenes
such as limonoids and limonenes [36], which have previously been reported that possess
strong anti-oxidant properties and activities anti-platelet effects [38]. Terpenoids from other
sources, such as the ginkgolides from the Ginkgo biloba tree, are classic PAF-antagonists,
which may explain why the terpenoids’ fraction of citrus fruits peels, but also those of
citrus fruits juices, also have strong anti-PAF potential. Nevertheless, more studies are
needed in order to reveal the exact citrus-derived terpenoid molecules involved in these
effects, as well as the potential synergy of citrus carotenoids that are co-eluted in this lipid
fraction of citrus fruits.

3.3. Anti-Inflammatory Effects of TLs and HPLC-Derived Bioactive Fractions from Juices of
Oranges and Mandarines and from Their by-Products against PAF-Synthesis in Leukocytes

The TLs and the fractions of phenolic compounds and of polar lipids (glycolipids
and PC molecules) from all samples strongly inhibited also the main regulatory enzymes
of PAF-biosynthesis in leukocytes, PAF-CPT and Lyso-PAF-AT, while the more neutral
lipids, terpenoids and the supplement of vitamin C did not show such an effect (Table 3).
The de novo biochemical pathway of PAF-synthesis was initially thought to be mainly
responsible for the production of the basal levels of PAF in cells, with PAF-CPT being its
main regulatory enzyme, while the remodeling pathway, with Lyso-PAF-AT being its main
regulatory enzyme, is mainly responsible for an acute increase in PAF-synthesis in case of
need, such as during the initiation and propagation of inflammatory stimuli, in both acute
and chronic inflammatory responses [2,3,34].
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Table 3. In vitro bioactivities (inhibitory effects) of the TL extracts from fresh squeezed juices of
Navalina and Sanguine oranges and clementines and their by-products (peels’ wastes), as well
as of their most bioactive HPLC-derived lipid fractions, against the specific activities of the basic
biosynthetic enzymes of PAF (PAF-CPT and Lyso-PAF-AT) in rabbit leukocytes. Enzyme assays were
performed several times to ensure reproducibility.

Samples IC50-Valuesa against
PAF-CPT 1

IC50-Valuesa against
Lyso-PAF-AT 1

Freshly dissolved Vitamin C supplement - ND ND

Fresh squeezed juice of Navalina Oranges

TL 56.2 ± 15.0 68.2 ± 14.2
Phenolic Compounds 11.1 ± 2.2 15.2 ± 3.3

Glycolipids 16.4 ± 5.1 18.4 ± 4.7
PC 9.8 ± 1.0 11.2 ± 3.1

Terpenoids ND ND

Fresh squeezed juice of Sanguine Oranges

TL 53.4 ± 14.2 62.3 ± 13.8
Phenolic Compounds 13.4 ± 2.1 18.2 ± 4.3

Glycolipids 16.4 ± 5.2 20.5 ± 5.1
PC 8.2 ± 1.1 9.1 ± 1.2

Terpenoids ND ND

Fresh squeezed juice of Clementines

TL 71.5 ± 13.1 76.9 ± 12.9
Phenolic Compounds 17.1 ± 5.1 18.1 ± 4.3

Glycolipids 19.1 ± 3.9 22.4 ± 4.3
PC 10.5 ± 1.5 12.2 ± 1.2

Terpenoids ND ND

TLs from peels’ wastes that remained after
the production of the squeezed juice from

Navalina Oranges

TL 38 ± 4.5 43.6 ± 4.4
Phenolic Compounds 7.2 ± 1.0 8.5 ± 1.2

Glycolipids 16.5 ± 1.5 18.4 ± 3.3
PC 6.5 ± 1.1 8.2 ± 1.2

Terpenoids ND ND

TLs from peels’ wastes that remained after
the production of the squeezed juice from

Sanguine Oranges

TL 39 ± 5.1 42.2 ± 7.3
Phenolic Compounds 8.4 ± 1.1 9.1 ± 1.4

Glycolipids 16.3 ± 1.8 18.4 ± 1.4
PC 5.3 ± 0.8 6.5 ± 1.2

Terpenoids ND ND

TLs from peels’ wastes that remained after
the production of the squeezed juice

from Clementines

TL 34 ± 5.3 39.5 ± 4.6
Phenolic Compounds 4.9 ± 0.7 5.6 ± 1.4

Glycolipids 14.3 ± 3.2 17.2 ± 4.8
PC 5.3 ± 0.8 4.3 ± 0.7

Terpenoids ND ND
1 IC50-values are expressed as mean values of µg of each sample ± SD (n = 3), which when present in each
enzyme assay can cause 50% of inhibition on PAF-CPT/Lyso-PAF-AT enzymes activities in rabbit leukocytes.
IC50-values reflect the inhibitory strength (half maximum inhibitory concentration) of each extract/lipid-fraction
tested against PAF-CPT and Lyso-PAF-AT enzyme activities of PAF-synthesis, since the lower the IC50 value
the stronger the inhibitory effect against the specific biochemical pathway of PAF-synthesis. (TLs: Total-Lipids
Extract; Lyso-PAF-AT: lyso-PAF-acetyltransferase; PAF-CPT: DTT-insensitive PAF-Cholinephosphotransferase;
PAF: Platelet Activating Factor; ND: Not Detected).

Nevertheless, the latest findings have pointed out that PAF-synthesis in chronic inflam-
matory conditions is also increased by the induction of the de novo biochemical pathway, as
increased PAF-CPT activity has also been observed in chronic inflammatory conditions [2,3].
In such conditions, increased vascular permeability of inflammation is accounted for by
the formation/release of mediators, such as lipids derived from ether phospholipids such
as PAF, as well as from arachidonate (eicosanoids: prostaglandins, thromboxane A2 or
leukotrienes). Acute and chronic inflammation can be controlled by inhibitors of mediator
synthesis or by antagonists, as well as at the level of the reactivity of vascular endothelium
or leukocytes. This modulation can be obtained with several bioactives that can inhibit
both PAF actions and reduce its synthesis.

Thus, the ability of the phenolic compounds and of the glycolipids and PC molecules
of the TLs from orange and mandarine juices and of their remaining by-products to strongly
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inhibit both the biosynthetic biochemical routes of PAF-synthesis in leukocytes further
support their anti-inflammatory potential, since the reduction of PAF-synthesis results
in reduced released PAF-levels from leukocytes to blood, and thus amelioration of the
PAF-associated inflammatory response. The polar lipids, glycolipids, and PC of the TLs of
these citrus fruits and of their remaining by-products seem to inhibit both these enzymes
due to structural resemblance to the substrates of these enzymes and comes in accordance
with a similar effect observed in similar bioactive polar lipids from other sources, such as
fish [34,40,41] and olive pomace [34,42]. Interestingly phenolic compounds have strongly
inhibited both these enzymes without having a chemical resemblance to the enzymes’
substrates, suggesting that their inhibitory effect is taking place through the presence of
other allosteric cites for their binding on these enzymes, which also comes in accordance
with previous results observed for such phenolics such as resveratrol [34].

Overall, the inhibitory effect of the TL extracts from the Navalina and Sanguine
oranges and clementines, as well as from their by-products (peels’ wastes), against the
basic biosynthetic enzymes of PAF (PAF-CPT and Lyso-PAF-AT) in leukocytes, seems to
be the accumulating synergy of their bioactive compounds in the fractions of phenolics
and polar lipid bioactives being present in these TL extracts. The non-detected effect of the
anti-oxidant vitamin C in these inflammatory pathways of PAF-synthesis further indicates
that the anti-inflammatory potency of orange and mandarin juices and peels is associated
with these phenolic compounds and polar lipid bioactives being present in these citrus
fruits’ products and by-products.

4. Conclusions

In general, the anti-oxidant properties of vitamin C have been proposed to decrease
markers of thrombosis, such as tissue plasminogen activator and von Willebrand factor,
directly in high-risk patients with cardiovascular disease and diabetes and to reduce
indirectly the thrombo-inflammatory effects of oxidative stress, which is a strong trigger for
the non-enzymatically synthesis of PAF and of PAF-like oxidized phospholipid derivatives
that activate the PAF receptor and its associated inflammatory signaling.

Within the present study, it was shown for the first time that in juices of navalina and
Sanguine oranges and Clementine mandarins, as well as in their remaining by-products
(peels’ wastes), apart from the anti-oxidant capacity of their vitamin C content that showed
anti-platelet effects, there are also present other dietary bioactives, such as bioactive phe-
nolic compounds and polar lipids bioactives, which exhibit strong anti-inflammatory and
antithrombotic potency against the PAF and thrombin pathways in platelets, with higher
specificity against the inflammatory effects of PAF. In addition, these dietary citrus bioac-
tives were able to potently inhibit the enzymatic PAF-biosynthesis in leukocytes too, and
thus reduce the inflammatory signaling associated with increased PAF synthesis and enzy-
matically induced increased PAF levels. On the other hand, an antithrombotic effect was
also observed in a vitamin C supplement, while oxidation of both this supplement and the
juices of these citrus fruits also showed an effect on their antithrombotic potency.

Overall, the presence of such dietary anti-inflammatory and antithrombotic bioactives
in citrus juices further supports the functional benefits of these products in comparison with
vitamin C supplements that luck such bioactive nutrients, especially in conditions where
their anti-inflammatory capacity is continuously needed, such as atherosclerosis and CVD,
cancer autoimmune disorders, renal diseases, neurodegenerative disorders, and persistent
infections. Nevertheless, more studies are needed in such conditions to fully unveil the anti-
inflammatory benefits of citrus juices. In addition, the presence of such bioactive dietary
phenolic compounds and polar lipid bioactives in the remaining by-products—peels’ wastes
of both oranges and mandarins—have strong anti-inflammatory protection against the
biochemical pathways of PAF and thrombin and against the inflammatory increase in PAF
levels, by inhibiting PAF-synthesis, further support the valorization of such by-products
of the food industry as potential sustainable sources of added value anti-inflammatory
ingredients for the production of novel functional foods and supplements.
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