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Abstract: Fruit juice and wine are important beverages that are consumed all over the world. Due
to their constantly increasing demand and high value, fruit juice and wine are one of the most
frequent targets of adulteration. Since adulterated foods are proven to have harmful effects on health,
several approaches have been utilized for the detection of fruit juice and wine adulteration. Based
on the requirement for sample destruction, analytical techniques to assess food authenticity can
be classified into 2 main categories, i.e., destructive and non-destructive techniques. This paper
provides an overview on the principle of adulteration detection, its application and performance,
and the advantages and limitations of various analytical techniques. Destructive approaches, such
as physicochemical methods, isotope analysis, elemental analysis, chromatographic techniques,
and DNA-based techniques, are reviewed. Furthermore, non-destructive approaches, including
spectroscopic-based techniques, nuclear magnetic resonance spectroscopic technique, electronic
techniques, and imaging-based techniques, are discussed.

Keywords: food adulteration; food control; food fraud

1. Introduction

According to the Codex Alimentarius Commission, fruit juice is defined as “the
unfermented but fermentable liquid obtained from the edible part of sound, appropriately
mature and fresh fruit or of fruit maintained in sound condition by suitable means including
postharvest surface treatments applied in accordance with the applicable provisions of
the Codex General Standard” [1]. Fruit juices are consumed worldwide and have become
very popular due to their nutritional value and variety of beneficial health effects. By 2023,
the amount of juice consumption is expected to be 36,809.8 million liters worldwide [2].
In addition to macronutrients and micronutrients, fruit juices contain active compounds
that can boost immunity and provide a range of other health benefits [3]. Fruit juice
consumption is proven to have effects in preventing the development of a wide range
of diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases [4].
To protect the consumers from purchasing inferior products with misleading description,
the quality and the safety of juice products are consistently regulated by comprehensive
legislation to ensure that all necessary information regarding their nutritional benefits
and compositions are provided. In Europe, the standards for juice products, including
their quality, composition, production, and labeling, are governed by a specific European
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Fruit Juice Directive (Directive 2012/12/EU). Furthermore, the Reference Guidelines of
the European Fruit Juice Association (AIJN) Code of Practices with regard to quality,
authenticity, and identity have been established [5].

Wine is a type of alcoholic beverage, which is produced through the process of partial
or complete alcoholic fermentation of fresh grapes or grape must [6]. Wine is an important
beverage in worldwide trade with the estimated global wine production and consumption
of 262 and 235 million hectoliters in 2021, respectively [7]. Moderate consumption of wine
can offer various beneficial health effects to consumers [8]. The value of wine is affected
by many factors including geographical origin, grape variety, vintage, and production
methods [9]. In order to protect consumers and to evaluate the wine quality, the European
Commission has introduced a regulatory framework for wines and spirits and quality
schemes for food products (Council Regulation, EEC No. 510/2006), linking products to
their geographical origins [10]. In addition, International standard for the labelling of wines
has been launched by International Vine and Wine Organization (OIV), to ease international
exchange and to ensure fair information to consumers [11].

Due to their high economic values and trade volumes, fruit juices and wines have
become one of the most frequent targets for adulteration. The term “adulteration” in
beverage is generally used to describe different types of fraud, including dilution with
water, addition of exogenous substances (such as sugars, alcohol, organic acids, and
coloring and flavoring agents), substitution with lesser quality products, and mislabeling
in relation to variety and origin [12]. Negative effects of adulterated foods on human health
was reviewed by Bansal et al. (2017) [13]. Besides health hazards, food adulteration also
results in economic costs, and the lost sales of food businesses were estimated at 2–15% of
annual revenues [14].

From farm to table, various methods have been used to fight the food fraud. The
adoption of analytical methods has emerged as the most effective way to prevent adul-
teration. Based on the requirement for sample preparation, analytical techniques used to
assess food authenticity can be classified into two main categories, including destructive
and non-destructive techniques. This article is focused on reviewing the use of current
techniques in detection of fruit juice and wine adulteration, following these main categories.

2. Destructive Techniques
2.1. Physicochemical Methods

For detection of juice fraud, physicochemical analysis is frequently used by the quality
control staff in production plants, and quality parameters are assessed, such as total soluble
solids (TSS), titratable acidity (TA), pH, organic acid content, and mineral content. Adul-
teration by water dilution and sugar addition can be detectable through measurement of
TSS. More accurate detection of sugar addition can be obtained using a reducing sugar test,
based on the fact that reducing sugars often account for 80 to 90% of TSS. Additionally, fruit
juices adulterated with pulp wash usually have lower concentration of primary amines
than authentic juice. Hence, the formol or formaldehyde test can be used to distinguish
100% juices and adulterated ones [15]. In case of wine, some physicochemical methods
can be used for disclosing adulteration, including measurement of TSS using hydrometry
and/or refractometry, quantification of ethanol with hydrometry, determination of organic
acid concentration by measuring TA, determination of volatile acidity using steam distilla-
tion and titration, and determination of reducing sugars using reducing sugars test with
copper [16].

Despite its low cost and broad application in quality control, the physicochemical
methods exhibit limited detection of low-level adulteration. Wang et al. (2016) [17] prepared
adulterated lemon juices by adding a solution containing citric acid (5%, w/w) and sucrose
(6%, w/w). Total TA, ◦Brix value, and pH values were measured to distinguish between
the lemon juice samples. The results indicated that these traditional quality indicators of
juice were not able to distinguish the pure juice and the adulterated ones [17]. In another
study by Vitalis et al. (2020) [18], TSS was measured using a digital pocket refractometer to
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identify adulterants in tomato concentrate at relatively low concentration (0.5–10%). Their
finding also revealed that the used method was not suitable for detection of adulteration
below a certain level [18].

Overall, physiochemical methods are simple in measurement and appropriate for
initial monitoring of adulteration in production plants. However, they are not good choices
for detection of sophisticated types of fraud and low adulteration levels.

2.2. Isotope Analysis

Geographical origin, variety, methods of cultivation, and production methods create
the unique identities of isotope ratios in authentic juice and wine. Thus, isotopic methods
based on the analysis of isotope ratios can be used for juice and wine authentication. Table 1
summarizes typical examples of isotopic methods of detection for authentication and for
adulteration of juice and wine.

Table 1. Typical application of isotopic and elemental techniques for authentication of and adulter-
ation detection in juice and wine.

Sample Technique Aim Accuracy Reference

Lemon juices Isotope analysis Authenticity of juices - [19]

Lemon juice Isotope analysis Adulteration detection Detection limit: 10% natural citric acid
was replaced with exogenous citric acid [20]

Fruit and vegetable
juice Isotope analysis Detection of sugar and

water addition
Detection limit: 20% for water and 7%

for sugar [21]

Wine Isotope analysis Detection of sugar and
water addition Classification correction: 100% [22]

Wine Isotope analysis Authenticity of wines Classification correction: 93.1% (ANN)
and 83.9% (DA) [23]

Wine Isotope analysis Authenticity of wines Classification correction: 98.2% [24]

Apple and orange
juice

Elemental and
isotope analysis Discrimination of juices Classification correction: 93.3% for

apple juice and 90% for orange juice [25]

Orange juice Elemental analysis Authenticity of juices - [26]

Wine Elemental analysis Authenticity of wines PCA classification: 83% using first three
principal components (PCs) [27]

Wine Elemental analysis Authenticity of wines Classification correction: 96% [28]

Wine Elemental analysis Wine authentication Classification correction: 94% [29]

Isotope analysis is widely applied to detect juice adulteration with sugars, organic
acids, and water. For instance, to detect adulteration in lemon and lime juices, Guyon et al.
(2014) [19] optimized an analytical protocol to determine δ13C values of organic acids and
sugars in 35 samples collected from different geographical origins using high performance
liquid chromatography linked to isotope ratio mass spectrometry (HPLC-IRMS). The
average δ13C values of a mixture including citric acid, glucose, and fructose were found
to be −25.40 ± 1.62‰, −23.83 ± 1.82‰ and −25.67 ± 1.72‰, respectively. These ranges
of δ13C values were then used to verify the adulteration in commercial lemon and lime
juices. The results revealed that 10 in 30 commercial juice samples contained added organic
acids or sugars as they had δ13C values outside the reference ranges [19]. Additionally, in
a study by Bononi et al. [20], the δ13C values for organic acids and sugars in 20 genuine
lemon juices derived from two regions of Italy were determined using HPLC-IRMS. After
measuring these genuine samples, four isotopes were used to identify the natural range of
these components in Italian lemon juice. The exogenous addition of these compounds to
commercial lemon juice (42 samples) was investigated using these isotopes. Finally, the
adulteration of lemon juices was detected due to more positive values of δ13C resulting
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from the addition of citric acid and sugar [20]. In a recent study by Wu et al. [21], δ13C
and δ18O values of 21 fruit and vegetable juices were analyzed to detect the addition of
water and sugar to not-from-concentrate juice. The authors confirmed that their method
was able to determine more than 20% added water and more than 7% extraneous sugar in
juice samples [21]. Nevertheless, the generalization of their results was limited because the
number of studied samples was quite small.

In detection of wine adulteration, the site-specific natural isotopic fractionation with
2H nuclear magnetic resonance (SNIF-NMR) method based on isotopic ratio of deu-
terium/hydrogen (D/H) and with IRMS based on determination of 13C/12C ratio of ethanol
and 18O/16O ratio of water have become the official methods for assessment of wine fraud
in the European Union (EU) [30]. This method has been applied in wine authentication by
various authors. For example, Geana et al. [22] initially investigated 23 authentic wines
and found their δ13C values in the range of −29.19‰ to −25.19‰ and their δ18O values in
the range of 0.71‰ and 4.38‰. Then, the investigation was continued on 29 commercial
wines, and their authenticity was verified using the identified range of authentic wines.
Among the commercial products, 16 samples were identified as ‘’good wine”, and the
remaining samples were identified as “adulterated wine” and ‘’suspect wine” [22]. As
obtained data from ‘’suspect wine” was quite close to natural range of authentic wines,
more information on weather conditions at ripening and harvesting time is required to
draw an accurate conclusion. Using the same analytical method but by combining with
chemometrics, Wu et al. [23] determined the 13C/12C ratio of ethanol and glycerol and
the 18O/16O ratio of water in wine to discriminate 600 imported wine samples in China.
Three multivariate methods, including artificial neural network (ANN), discrimination
analysis (DA), and random forest (RF), were used to develop classifiers. The results showed
that ANN outperformed the two remaining methods with an accuracy of up to 93.1%; RF
was found unsuitable for wine origin traceability in their study [23]. In another study by
Wu et al. [24], the δ13C values of wine ethanol and glycerol and the δ18O values of the wine
water were analyzed in an attempt to develop a classification tool for the verification of
geographic origin of 240 French red wines, using machine learning models (ANN and DA).
The results showed that only ANN method with an accuracy of 98.2% was suitable for
differentiating red wines [24]. Obviously, using chemometrics provided researchers a better
understanding about the discrimination performance of the applied method.

Although isotope analysis has high sensitivity, high accuracy, and low detection limit,
its accuracy can be reduced due to the instability of isotope ratios during processing
and storage of products. Additionally, high equipment price is another limitation of
this technique.

2.3. Elemental Analysis

Natural juice is characterized by a certain range of mineral levels. Therefore, elemental
analysis can be also applied for detection of juice adulteration based on element mark-
ers [31]. Table 1 summarizes some typical examples of the use of elemental methods for
detecting adulteration of juice and wine. Cristea et al. [25] stated that the high potassium
content in juice can relate to the addition of sweeteners (like acesulfame K) or preservatives
(like potassium benzoate and potassium sorbate); meanwhile, low potassium content can
be an indication of water dilution. Additionally, high calcium content in orange juice can be
the result of pulp addition as calcium concentration in pulp is higher than in juice [25]. In a
study by Schmutzer et al. [26], elemental profiles of 23 commercial orange juices were ana-
lyzed to evaluate their authenticity using inductively coupled plasma mass spectrometry
(ICP-MS). Though some of the juice samples were labeled as “100% fruit juice”, the results
revealed that all juices had a ratio of K to Mg of less than 50; it meant that they were adul-
terated with exogenous sugar [26]. In addition, a combined data of elemental and isotope
analysis was used by Cristea et al. [25] who adopted ICP-MS to discriminate commercial
and freshly squeezed apple and orange juices. The supervised classification method of
linear discriminant analysis (LDA) was applied to evaluate the differences between juice
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samples. A satisfactory classification accuracy above 90% (validation) was obtained for
both apple and orange juices. The contents of K and Na were the most important variables
for discrimination of apple juice, while Na content provided the most contribution to the
result. In all cases, the isotopic ratio of oxygen was the most significant variable [25].

The elements in wine are derived from endogenous (grape variety and maturity and
climatic conditions) and exogenous sources (external impurities from different winemaking
procedures); therefore, the wine authentication can be performed based on the analysis of
minerals. The effectiveness of elemental analysis was confirmed by Geana et al. [27] who
used ICP-MS for the analysis of elemental composition to differentiate 60 wine samples
from three main wine production regions of Romania. They pointed out that the contents
of five analyzed elements, including Mn, Cr, Sr, Ag, and Co, were the most useful for
differentiating wines. The principal component analysis (PCA) model with three first PCs
could separate the wine samples using 83% of the total variance of the acquired data [27].
Their classification result could be more accurate, if supervised models were applied. In
addition, a combination of ICP-MS with multivariate statistical analysis (PCA and LDA)
was used by Azcarate et al. [28] for differentiation of wine from different Argentinean
regions. Based on the evaluated elemental profile (Ba, As, Pb, Mo, and Co), the proposed
method allowed correct discrimination in terms of the geographical regions. Accordingly,
the PCA result explained 95.95% of the variance of the total obtained data; and LDA
model reached an accuracy higher than 96% [28]. Nevertheless, their findings would
be strengthened when the correlation between the element profile of soil and wine was
considered. In another study, inductively coupled plasma optical emission spectrometer
(ICP-OES) was adopted by Rodrigues et al. [29] to distinguish 111 sparkling wines from
four countries (Brazil, Argentina, France, and Spain), based on elemental profile (Al, B, Ba,
Ca, Cu, Fe, K, Li, Mg, Mn, Na, and Sr). A result of 94% accurate classification was achieved
by the authors, using the three key elements of B, K, and Na [29].

Like the isotopic method, this technique has the advantages of high accuracy and low
detection limit. However, the high costs of sample pre-treatment and the high requirement
for the experimental operation are the disadvantages of elemental analysis.

2.4. Chromatographic Techniques

Chromatography is a reliable analytical approach that is suitable for the identification
of adulterants in food. By utilization of chromatographic techniques, a targeted sample
containing a mixture of various compounds is separated and detected. For quality control
of beverages, the most used detection methods are flame ionization detector (FID) and mass
spectrometry (MS) [32]. The validation of authentication of products can be performed
through determination of specific marker compounds or fingerprinting analysis. The
sensitivity and high separation efficiency of chromatography in authentication have been
proven through many studies; however, the technique faces some limitations such as
complex procedure for sample pretreatment and operation and possible loss of instable
compound [33]. Some applications of gas and liquid chromatography on fraud detection of
juice and wine are presented in Table 2.

2.4.1. Gas Chromatography (GC)

Numerous studies on the application of gas chromatography (GC) for detection of
fruit juice adulteration have been reported so far. For example, Yamamoto et al. [34] used
γ-terpinene and linalool as chemical markers for detecting the addition of Shiikuwasha
juice to calamondin juice with gas chromatography–mass spectrometry (GC-MS), and the
lowest detection level of 1% was reported. Willems and Low [35] developed a method
using capillary GC with FID for detecting the addition of pear juice in apple juice using
oligosaccharide and arbutin as marker. Consequently, a low adulteration level of 0.5–3%
was achieved by the proposed method [35]. In another study by Nuncio-Jáuregui et al. [36]
on the identification of pomegranate juice adulteration with peach and grape juice, the
method of headspace solid phase microextraction (HS-SPME) was optimized to extract the
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volatile compounds. GC-MS was then used to isolate and identify volatile profile. Based on
the variation of specific volatile compounds (acetic acid, isoamyl butyrate, 1-hexanol, and
linalool for added grape juice samples; butyl acetate, isobutyl butyrate, benzyl acetate, and
isoamyl butyrate for added peach juice sample), the authentication of pomegranate juice
was achieved with the lowest detectable levels of 10% for peach juice and 50% for grape
juice [36]. Recently, the authenticity of premium organic orange juices was confirmed by
Cuevas et al. [37] using fingerprinting analysis (HS-SPME coupled with GC-MS) combined
with chemometric methods. As a result, the mid-level data fusion partial least squares-
discriminant analysis (PLS-DA) model was found appropriate for authentication with the
accuracy of 100% [37].

Table 2. Typical application of chromatographic techniques for authentication of and adulteration
detection in juice and wine.

Sample Technique Aim Accuracy Reference

Shiikuwasha juice GC Detection of juice-to-juice
adulteration Detection limit: 10% [34]

Apple juice GC Detection of pear juice
addition to apple juice. Detection limit: 0.5–3% [35]

Pomegranate juice GC Detection of juice-to-juice
adulteration

Detection limit: 10% for added peach juice
and 50% added grape juice [36]

Orange juices GC Juice authentication Classification correction: 100% [37]

Wine GC Discrimination of wines Discrimination rate: 100% [38]

Wine GC Wine authentication Detection limit: 0.03–10.03 g/L [39]

Wine GC Detection of adulteration Detection limit: 0.1–2 mg/L [40]

Citrus fruit LC Differentiation of juices Classification correction: 100% [41]

Purple grape juice LC Detection of added apple
juice in purple grape juice - [42]

Wine LC Discrimination of wines Classification correction: 88% of the total
variance using two first PCs in PCA. [43]

Wine LC Authentication of wines Classification correction: 100% [22]

Wine LC Wine authentication Classification correction: 95.4% [44]

Wine LC Authentication of wine Classification correction: >90% [45]

When it comes to wine, this type of beverage contains a variety of compounds that
originate from grapes, the alcoholic fermentation, and the aging of wine. Several of these
compounds have effects on wine aroma and can be used as a “fingerprint” to authenticate
wines. Many studies on GC technique have been conducted, focusing on differentiating
wines according to geographic origin and grape variety, and detecting wine adulteration.
For example, Welke et al. [38] discriminated five types of wines with different grapes
based on the volatiles obtained using a combination of HS-SPME and comprehensive
two-dimensional gas chromatography with time-of-flight mass spectrometry detection
(GC×GC/TOFMS). This two-dimensional GC system allowed the authors to obtain bet-
ter separation capabilities compared to one-dimensional GC. Twelve extracted volatile
compounds were useful to distinguish the wine samples with accuracy of 100% using
LDA model [38]. In another study, Langen et al. [39] utilized a heart-cut multidimen-
sional GC-MS system to determine α-ionone, β-ionone, and β-damascenone in various
authentic and commercial wines. Their finding revealed that an elevated concentration of
these compounds in wine samples can be served as indicators of adulteration (suggested
thresholds: content of α-ionone > 0.003 µg/L, content of β-ionone > 1 µg/L, and content of
β-damascenone > 10 µg/L). Moreover, the enantiomeric ratio of α-ionone could be used as
an adulteration marker because the addition of exogenous α-ionone resulted in the change
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of this ratio [39]. Sagandykova et al. [40] developed a method using SPME-GC–MS for the
detection of semi-volatile additives (propylene glycol and sorbic and benzoic acids) in com-
mercial wines by optimization of SPME method. The optimized approach showed good
performance in terms of linearity (coefficient of determination, R2 > 0.98) when a method of
standard addition was performed. The linear ranges for the detection of propylene glycol
and sorbic and benzoic acids were 0–250 mg/L, 0–125 mg/L, and 0–250 mg/L, respectively.
Using the developed method, three in twenty-five wine samples were found adulterated
with propylene glycol and sorbic and benzoic acids [40].

2.4.2. Liquid Chromatography (LC)

According to the literature, the application of LC on assessing the addition of adul-
terants to fruit juice can be accomplished based on the analysis of juices’ phenolic profile
and anthocyanin profile. For example, Abad-García et al. [41] analyzed polyphenols profile
of citrus juices (orange, tangerine, lemon, and grapefruit juices) for the assessment of
authenticity, using a reversed-phase high performance liquid chromatography (HPLC)
with photodiode array detection. The acquired polyphenolic profiles were then used to
develop LDA and PLS-DA classification models. As a result, the LDA model obtained 100%
accuracy using four best variables (naringenin-7-O-rutinoside-4′-O-glucoside, naringenin-
7-O-rutinoside, hesperetin-7-O-rutinoside, and apigenin-6,8-di-C-glucoside). For PLS-DA
model, 100% accuracy was also reported with the most significant variables of naringenin-
7-O-rutinoside-4′-O-glucoside, apigenin-6,8-di-C-glucoside, isosakuranetin-7-O-rutinoside,
and naringenin-7-O-rutinoside [41]. Phloridzin, a phenolic compound, is not naturally
available in grapes; while this compound is present in apples in a higher proportion com-
pared to other fruits. Based on this fact, Spinelli et al. [42] used HPLC with a photodiode
array detector to analyze phloridzin for detecting the addition of apple juice to purple
grape juice. Their results indicated that the proposed method allowed the detection of
apple juices in adulterated grape juices with phloridzin content of 4.54 to 8.39 mg/L [42].

Like in juice, phenolic compounds are also found in grapes as well as in must and wine.
Since the compositions of polyphenolic compounds in wine vary widely, depending on
the grape varieties, the winemaking process, and the climatic conditions; they can be used
as markers for authenticating wine [46]. For instance, HPLC method based on analysis
of anthocyanin profile was utilized to discriminate different wines (Brazilian tropical
wines, Brazilian temperate wines, and temperate Chilean wines) by de Andrade et al. [43].
As a result, the concentrations of nine anthocyanins were determined and used as the
classification factor for PCA. The PCA results showed that the two first PCs accounted
for 88% of the total variance. The contents of petunidin-3-glucoide, peonidin-3-glucoside,
and malvidin-3-glucoside contributed the most to PC1; while the contents of peonidin-3-
glucoside coumarate, peonidin-3-glucoside-acetate, and malvidin-3-glucoside primarily
represented PC2 [43]. In another study, Pavloušek et al. [44] succeeded in classifying 43
different wines with a HPLC method for analyzing non-flavonoid phenolic compounds.
Results indicated that the canonical discriminant analysis allowed them to classify the
wine with 95.4% correction rate [44]. Similarly, Geana et al. [22] applied a HPLC system to
characterize the anthocyanin profile for authenticating wine. An LDA model was developed
to differentiate the wine samples with respect to concentrations of anthocyanins and
defined anthocyanins ratios. Differentiation results of LDA achieved 100% accuracy using
two discriminant factors. The most significant anthocyanins for discrimination included
individual anthocyanins of delphinidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin-
3-O-glucoside, malvidin-3-O-glucoside, and peonidin-3-O-(6-p-coumaroyl) glucoside [22].
Recently, Zhi et al. [45] developed an analytical method that combined three-way HPLC
with diode array detection and chemometrics (PCA-LDA) to distinguish wines according
to their vintages. The proposed method could prevent the loss of analytes and thus increase
the accuracy of analysis. As a result, an discrimination rate above 90% was achieved [45].

The differences in polyphenolic profile of juices are sometimes not caused by adul-
teration but by climatic conditions, the environment, the processing technology, and the
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degree of fruit ripeness. Furthermore, the oxygen stability of anthocyanins and betacyanins
can significantly change due to the activities of native polyphenol oxidases when these
compounds are used as markers [31]. Therefore, these factors need to be taken into account
in the analysis of polyphenols profile.

2.5. DNA-Based Techniques

Since DNAs of food products maintain their stability under conditions of environment
and cultivation and production process, DNA-based methods have become reliable means
for food authentication [47]. DNA polymorphisms resulting from natural mutations of
genetic code can be used to identify plant species. In DNA-based techniques, the DNA
fragment of interest is extracted from objective samples, and then the specific genetic
polymorphisms are amplified to obtain the amplicons, followed by an analysis of the
obtained amplicons to reveal the characteristics of polymorphisms [48]. For authentication
and detection of food adulteration, the most commonly used DNA-based methods are
polymerase chain reaction (PCR), real-time PCR, high resolution melting (HRM) analysis,
microarrays, and next generation sequencing [49]. Table 3 presents the applications of
DNA-based techniques for authenticating and detecting adulteration in juice and wine.

In the study of juice adulteration, orange juices have gained the most interest from
researchers due to their market value. Most of the studies focused on disclosure of juice-to-
juice adulteration. For instance, a PCR restriction fragment length polymorphism (RFLP)
assay and a PCR heteroduplex assay allowed the detection of grapefruit and mandarin
juice in orange juice. Specifically, the PCR heteroduplex assay showed a better limit of
detection of 2.5%, while a limit of detection of 10% resulted from using the RFLP assay [50].
Additionally, the detection of adulterated orange juice with mandarin juice performed
by Aldeguer et al. [51], using a single nucleotide polymorphism (SNP) at the trnL–trnF
intergenic region of the chloroplast chromosome as marker. As a result, a limit of detection
of 5% added mandarin was achieved in both fresh and reconstituted orange juices [51]. A
similar study was conducted by Pardo and Miguel Angel [52] who successfully determined
the addition of mandarin in orange juice with the detection limit of 1%.

In the case of wine adulteration, DNA analysis is the most applied approach for identi-
fying the varietal origin of grapes for wine production. In grapevine varietal identification,
OIV has approved the use of simple sequence repeat (SSR) as nuclear molecular markers.
However, SSR markers have revealed some limitation in terms of DNA quality relating to
the possible inhibition of PCR reactions by large amount of polyphenols, polysaccharides,
and proteins in must and wine and the degradation of DNA by alcoholic fermentation [53].
Recently, small molecular markers like SNP have been used to deal with DNA degradation.
For instance, Boccacci et al. [54] used SNP genotyping assays to authenticate varietal origin
of “Nebbiolo” musts and wines. Based on 1157 genotypes, two SNPs were sufficiently
adopted for authentication. The developed assays allowed the authors to identify the must
mixtures and wine mixtures at the sensitivity of 1% and 10–20%, respectively [54].

Overall, the advantages of DNA-based techniques are their sensitivity, quick analysis
time, and convenience for large-scale measurement. Additionally, these approaches are
also not affected by geography. However, the application of these techniques faces several
problems, such as the degradation of DNA in fruit juices due to thermal processing under
acid conditions and the removal of pulp in the clarification process of clarified juice leading
to the difficulty in collecting DNA. Moreover, the heavy workload, the complex procedure
for selecting molecular markers, and the high cost are other problems that must be taken
into account [55].
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Table 3. Typical application of DNA-based techniques for authentication of and adulteration detection
in juice and wine.

Sample Aim Accuracy Reference

Grapefruit and orange juice Detection of grapefruit juice in orange juice Detection limit: 2.5–10% [50]

Orange mandarin juice Detection of orange adulteration with
mandarin juice Detection limit: 5% [51]

Orange and mandarin juice Determining addition of mandarin in
orange juice Detection limit: 1% [52]

Musts and wines Authentication of musts and wines Detection limit: 10–20% for
wine and 1% for must [54]

3. Non-Destructive Techniques
3.1. Spectroscopic Techniques

Spectroscopic techniques have advantages of being non-destructive and cost-saving
and not requiring sample pretreatment. However, these techniques produce huge and
redundant amounts of data, leading to a difficulty in data processing. Besides the infor-
mation about the sample itself, the spectral data also contain irrelevant information, like
information overlap, noise, baseline drift, etc., which will reduce the accuracy. To reduce
the useless information, various methods of data pretreatment can be performed based on
the situation, such as smoothing, derivative, baseline correction, standard normal variate
(SNV), multiplicative scatter correction (MSC), and de-trend. Additionally, it is difficult for
naked eye to discriminate between the pure sample and the adulterated sample due to the
small difference in their spectral data. Therefore, chemometric methods are often applied
to develop statistical models for analysis.

3.1.1. Infrared (IR) Spectroscopic Technique

Infrared (IR) signals are related to molecular vibrations. Infrared light irradiation
results in the change of molecules’ vibrational state. Each chemical substance produces
a specific vibrational frequency in the IR region, which can be used as “fingerprint” to
verify its presence in the sample. According to the spectral region, there are two main
IR-based methods frequently applied, including near-infrared spectroscopy (NIRS) (14,000
to 4000 cm−1) and mid-infrared spectroscopy (MIRS) (4000 to 400 cm−1) [56]. Some
applications of spectroscopic techniques for detecting adulteration of juice and wine are
presented in Table 4. The applicability of NIRS for fruit juice and wine authenticity has been
confirmed in previous studies. For example, in the case of juices, Calle et al. [57] achieved
a detection limit of 5% when using a combination of NIRS and machine learning models
to detect juice-to-juice adulteration of pineapple, apple, and orange juices with grape
juice. Following that, an accuracy of up to 97.67% was obtained for their discrimination
model (LDA and RF models), and their support vector regression (SVR) model achieved a
prediction error of less than 1.7% for adulteration level [57]. Shafiee et al. [58] optimized
data mining method on the NIR spectrum of lime juice to obtain the best classification result
of 97% using support vector machine (SVM) method. In case of wine, Zaukuu et al. [59]
used NIRS to develop discrimination models to differentiate original Tokaj wines and
adulterated ones. Chemometric-processed data showed that the proposed method was able
to determine grape must concentrate added to Tokaj wines with the lowest prediction error
of 9.31 g/L for validation [59]. A recent study by Hencz et al. [60] has proven the feasibility
of NIRS for the detection of wine adulteration in which they succeeded in detecting water
dilution and addition of sugar in Portugieser and Sauvignon Blanc wines. Their method
could detect adulterants with a prediction error of less than 0.504%, using partial least
squares regression (PLSR) models [60]. However, no validation method was discussed in
their work.
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Table 4. Typical application of spectroscopic techniques for authentication of and adulteration
detection in juice and wine.

Sample Technique Aim Accuracy Reference

Pineapple, apple, and
orange juices NIRS

Detection of grape juice as
adulterant in pineapple, apple,

and orange juices
Detection limit: 5% [57]

Lime juice NIRS Discrimination of natural and
synthetic lime juice Classification correction: 97% [58]

Tokaj wines NIRS Differentiation of wines Classification correction: 100% [59]

Portugieser and
Sauvignon Blanc wines NIRS Detection of wine adulteration

with water and sugar
Detection limit of water: 28.57%
Detection limit of sugar: 3.62% [60]

Lime juice NIRS Differentiation of adulterated
lime juices with citric acid Classification correction: 88% [61]

Grape juice FT-IR Detection of juice adulteration Detection limit: 50–100% [62]

Orange juice FT-IR Detection of water addition Detection limit: 0.5–20.0% [63]

Commercial juices FT-IR Detection of juice adulterated
with saccharin Detection limit: 0.1–2% [64]

Red wine FT-IR Differentiation of wine Classification correction: 62.96% [65]

Cabernet Sauvignon
wines NIRS and MIRS Differentiation of wine Classification correction: 77–97% [66]

Pineapple, orange, and
apple juices FT-IR

Detection of grapefruit as
adulterant in pineapple, apple,

and orange juices
Detection limit: 5% [67]

White wine FT-Raman Differentiation of wine Classification correction:
94.1–100% [68]

Wine FT-Raman Wine authentication Classification correction:
84–100% [69]

Orange juice NMRS Detection of juice adulteration Detection limit: 10% [70]

Apple, orange, pineapple,
and pomegranate juices NMRS Detection of juice-to-juice

adulteration Detection limit: 6.25% [71]

Wine NMRS Differentiation of wines Classification correction: 89% [72]

Chinese red and white
wines NMRS Identification of grape varieties Classification correction: 82–94% [73]

Wine NMRS Classification of wine Classification correction: 96% [74]

Recently, portable and handheld NIR devices have drawn increasing attention in the
food industry as online quality monitoring tools; however, their application in quality
control of fruit juice and wine remains very limited. A handheld NIR spectrophotometer
was applied by Jahani et al. [61] who achieved classification correction of 88% in detecting
adulterated lime juices using PLS-DA method with SNV transforming. Additionally,
Ehsani et al. [75] obtained the accuracy of 100% in authenticating orange juices using
handheld NIR spectrometers. Despite their convenience in measurement, handheld NIR
devices sometimes showed lower sensitivity than benchtop ones, and more studies are
needed to confirm their applicability [76].

Along with NIRS, MIRS has been widely used in the validation of food authenticity.
MIRS focused on the mid-infrared region. MIRS measures fundamental vibrations, while
NIRS measures the overtones and combination bands; consequently, MIRS, corresponding
to spectroscopic method referred as Fourier transform infrared spectroscopy (FT-IR), pro-
duces more information on the sample than NIR [77]. The feasibility of using FT-IR for the
quantification of concord juice added to grape juice was demonstrated by Snyder et al. [62].
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Accordingly, a prediction error of 5.55–8.40% was achieved using PLSR of FT-IR data [62].
Ellis et al. [63] reported the prediction error of 1.7% when they combined FT-IR with PLSR
to quantify sugar concentration (0.5–20.0%) added to pure orange juice. The addition of
saccharin into commercial fruit juices was investigated by Mabood et al. [64] who combined
FT-NIRS and PLSR. The result of cross validation based on 30% of the total adulterated
juice samples obtained root mean square error (RMSE) of 0.92% and correlation coefficient
of 0.97 [64]. FT-IR spectroscopy was feasible for the classification of wines according to
the year of vintage with a fairly good accuracy of 62.96% using the LDA model [65]. In
another study, soft independent modelling of class analogy (SIMCA) model showed better
performance than DA model in combination with spectral data acquired from MIRS and
NIRS to classify wines from different countries. Accordingly, SIMCA model produced
classification correctness of 92–97%, whereas DA model obtained accuracy of 77–86% [66].
Recently, Calle et al. [67] successfully applied FT-IR to disclose juice-to-juice adulteration,
which is one of the most difficult frauds to detect. Consequently, their method reached a
detection limit of 5% with discrimination accuracy above 97% and prediction error lower
than 1.4% for validation [67].

3.1.2. Raman Spectroscopic Technique

Quality food assessment by this technique is based on measurement of the Raman
scattering effect that is caused by the difference between the frequencies of incident and
scattered radiation. The information acquired by measuring the inelastic scattered light
emitted by molecular vibrations can be used as a fingerprint to determine different chemical
substances in food samples. The main difference between Raman and infrared spectroscopy
is that Raman spectroscopy acquires spectral data based on the vibration of molecules
of scattering light, while IR spectroscopy obtains spectral data through light absorption.
Additionally, Raman activity is the result of changing polarizability of a molecule, while IR
activity is caused by the change of dipole moment of a molecule [78].

For quality control of wine, Raman scattering effect was investigated for different
purposes, such as monitoring the fermentation process [79], determining wine com-
pounds [80–82], and discriminating wines [68,83]. Mandrile et al. [83] used Raman spec-
troscopy for wine traceability according to grape varieties, geographical origin, and time
of ageing. Their finding revealed that DA models obtained a discrimination rate of 90%
for grape varieties and production area and 84% for time of ageing [83]. A recent study by
Magdas et al. [69] used FT-Raman spectra for wine authentication to perform the discrimi-
nation of wines according to geographical origin, variety, and vintage. Accordingly, the
correct classification rates were 84% for variety, 100% for geographical origin, and 90.7%
for vintage [69]. Studies on applications of Raman spectroscopy for detecting adulteration
of juices are rare.

3.2. Nuclear Magnetic Resonance (NMR) Spectroscopic Technique

NMR spectroscopy has been considered as one of the most commonly applied ana-
lytical techniques for the evaluation of food quality. NMR spectroscopy is based on the
measurement of the energy absorption of atomic nuclei with non-zero spins under the
effect of a magnetic field. The effect of the nuclei of surrounding molecules on the energy
absorptions of the atomic nuclei results in small local changes to the external magnetic
field. Thus, NMR spectroscopy is able to produce detailed structural information of the
molecules in food samples since there is a relation between the observed interactions of an
individual atomic nucleus and the atoms surrounding it [56]. Among the NMR techniques,
1H measurement over 13C is likely to be the most frequently used technique in the quality
assessment of beverages thanks to its high sensitivity and short relaxation times [84].

NMR spectroscopy has been widely used to identify juice and wine adulteration for
decades. For instance, Spraul et al. [85] used a 400 MHz flow-injection NMR spectrometer
to differentiate juices. This method allowed them to determine 28 different chemical
compounds, and a relative accuracy of nearly 10% for more than 95% of the samples
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was confirmed [85]. Vigneau and Thomas [70] demonstrated that 1H-NMR spectroscopic
method combined with PLSR was able to achieve the prediction error of 3.47% when they
attempted to discriminate pure orange juice and the ones adulterated with clementine juice.
Recently, Marchetti et al. [71] combined 1H NMR with PLSR to determine the proportions
of apple, orange, pineapple, and pomegranate juices in their blends. PLSR model achieved
the best performance with the prediction error of less than 10% and R2 of 0.821–0.987 [71].

In the case of wine, authentication can be carried out based on the information acquired
from the spectra of 1H, 2H, and 13C. NMR spectroscopy has been used for wine authenticity
determination in several studies for over a decade. For instance, Godelmann et al. [72]
applied 1H NMR spectroscopy together with multivariate data analysis to differentiate
German wines originating from different grape varieties and geographical origins and of
different ages. The results showed that the correctness of classification varied from 89%
to 97% [72]. Another example is the study by Fan et al. [73] that demonstrated 1H NMR
spectroscopy to be an effective tool for authenticating wines. The use of LDA method on
spectral data resulted in average correct classification rates of 82–94% for red and white
wines [73]. Recently, a study of wine classification according to color and content of residual
sugar was performed by Mascellani et al. [74], who used machine learning methods to build
classifier models based on acquired 1H NMR spectra. As a result, the models achieved the
classification correction rate of 93% [74].

3.3. Electronic Techniques

Recently, electronic sensors imitating human senses have been used extensively for
food quality evaluation, especially electronic nose (e-nose) and electronic tongue (e-tongue).
While e-nose uses an array of sensors to identify and differentiate odors in complex food
matrices, e-tongue uses a set of chemical sensors to detect and classify chemical substances
in liquid samples. After acquiring the signals, multivariate data analysis is applied to
build statistical models for further qualification and quantification [86]. Some typical
examples of studies applying e-tongue and e-nose on the detection of juice and wine
adulteration are presented below. Table 5 presents some applications of e-nose and e-
tongue for authenticating and detecting adulteration in juice and wine.

Table 5. Typical application of electronic techniques for authentication of and adulteration detection
in juice and wine.

Sample Technique Aim Accuracy Reference

Tomato concentrate E-tongue Detection of tomato
concentrate adulteration Detection limit: 0.5% [18]

Tokaj wine E-tongue Differentiation of wine Classification correction: 100% [59]

Lime juice E-tongue Detection of adulteration Detection limit: 5% [87]

Apulian red wines E-tongue Differentiation of wine Classification correction: 70% [88]

Cherry tomato juice E-nose Differentiation of juice Classification correction: 79.53% [89]

Apple, lemon, and
sour cherry juices E-nose Differentiation of juices

adulterated with alcohol

Classification correction: 95% (LDA)
Classification correction: 98.33%

(SVM)
[90]

Orange juice E-nose

Detection of freshly
squeezed orange juices

adulterated with
concentrated orange juices

Detection limit: 0–30% [91]

Cherry tomato
juices

A combination of
e-tongue and e-nose Detection of adulteration Detection limit: 10% [92]

Spanish wine E-nose Differentiation of wine PCA Classification: 91.3% using first
two principal components (PCs) [93]
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3.3.1. E-Tongue

Since tomato concentrate is an important ingredient in food processing, it is usually
adulterated by water dilution and addition of cheaper bulking agents and other food addi-
tives. Vitalis et al. [18] applied e-tongue to detect adulterants in concentration of 0.5–5%.
The used e-tongue showed good ability to detect adulterants with LDA classification cor-
rectness above 75.72%. PLSR models for quantification achieved excellent quality of results
with prediction error of less than 1% [18]. In another study, Bahrami et al. [87] applied
e-tongue combined with different statistical models to detect adulteration of lime juice.
Their results indicated that multilayer perceptron (MLP) model had better performance
than SVM model with a correctness of up to 99.33% and prediction error of less than 0.1%
in estimation of adulteration levels [87].

With regard to wine authentication, Lvova et al. [88] achieved a correct discrimination
of above 70% when combining a potentiometric e-tongue system with PLS-DA model for
evaluating the brand uniformity of Apulian red wines. However, their small sample could
not ensure the adequate robustness of the classification model. In another study, e-tongue
was used by Zaukuu et al. [59] to differentiate high-quality Tokaj wines from lower-quality
ones that were altered with grape must concentrate to satisfy the requirement of sugar
content. The correct classification rate of 100% for adulterated and unadulterated wines
was achieved using e-tongue combined with LDA method [59].

3.3.2. E-Nose

In the last decade, the number of studies on the application of e-nose in adulteration
detection and authentication of fruit juice and wine are quite limited. A typical study
on the application of e-nose for detecting adulteration of tomato juices was performed
by Hong et al. [89] who performed various clustering methods on spectral data. They
concluded that the spectral clustering showed statistical significance, and the accuracy of
adulteration detection reached 79.53% ± 3.56% [89]. In addition, Ordukaya and Karlik [90]
successfully classified various juice samples adulterated with alcohol using a cyranose
e-nose setup with 32 polymer sensors. The effectiveness of two classifier models (LDA and
SVM) were compared. The result of classification showed that SVM (98.33%) performed
better than LDA (95%) [90]. Another application of e-nose in adulteration detection of juice
is reported in the study by Shen et al. [91]. A combination of e-nose with PCA and LDA
model was used to discriminate freshly squeezed orange juices and those adulterated with
orange juice concentrate in concentration of 10–30%. The LDA model achieved an overall
accuracy of 97.9% in calibration set and 91.7% in validation set [91]. However, there was a
concern about the generalization of the LDA model since their sample sizes for calibration
and validation were quite small.

When dealing with complex samples, exclusive usage of electronic nose (e-nose) or
electronic tongue (e-tongue) data is inadequate. Therefore, multisensor data fusion tech-
niques with combination of e-nose with e-tongue were tested. Hong et al. [92] developed
a multisensor data fusion method that combined e-nose and e-tongue to identify and
quantify adulterants in cherry tomato juices with the smallest detectable level of 10%. The
results of their work showed that the application of both instruments could improve the
performance as long as the appropriate data fusion methods are used. The prediction
error for soluble solid content in validation for both principal component regression and
multiple linear regression was below 0.09%. Their finding also highlighted the importance
of standardization method of acquired data [92].

The potential application of e-nose for wine discrimination was confirmed in a study
by Bellincontro et al. [93]. The e-nose based on an array of eight quartz microbalances was
employed to differentiate five wine types produced from the same variety of grape with
various ethanol concentration (11.5 to 18%) and different contents of volatile compounds.
The unsupervised method of PCA was used to evaluate the discrimination ability of e-nose
on wine types. Four in five groups of wine were successfully distinguished using the first
two PCs (PC1: 83.8% and PC2: 7.50%) [93]. Since the used PCA model is just suitable
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for screening the recognition ability, the main limitation of their work is that supervised
classification models were not used for the evaluation of discrimination. Additionally, the
lack of validation of their work may lead to the unreliable confirmation of the applicability
of the proposed technique.

The advantages of e-senses are the sensitivity, the low cost, and the minimal require-
ment of sample preparation. In spite of that, a disadvantage of these techniques is that
their accuracy is affected by the environmental factors, including temperature (for both
e-nose and e-tongue) and humidity for e-nose, which are able to cause the sensor drift [94].
Moreover, these techniques require more complicated procedures to operate than other
non-destructive techniques like NIRS [18].

3.4. Imaging-Based Techniques

Imaging-based techniques have proven their effectiveness in quality assessment of
food for decades; however, the application of these techniques for the detection of food
fraud is quite rare. Among the imaging-based techniques, digital image analysis (DIA)
and light backscattering imaging (LBI) are the two techniques that have been utilized
for the determination of adulterants in wine and juice. Table 6 summarizes examples of
application of imaging-based techniques for authentication of and adulteration detection
in juice and wine.

Table 6. Typical application of imaging-based techniques for authentication of and adulteration
detection in juice and wine.

Sample Technique Aim Accuracy Reference

Gran Reserva wine DIA Detection of adulterated wine Detection limit: 2.3% [95]

Physalis juice DIA Detection of juice adulteration Detection limit: 20% [96]

Orange and mandarin
juices DIA Differentiation of juices Classification correction: 83–97% [97]

Red and white wines LBI
Detection of wine adulteration

by water dilution and the
addition of sugar

Classification correction:
53.33–76.67% for water addition
and ≥93.33% for sugar addition.

[60]

3.4.1. Digital Image Analysis

Quantifying visual food parameters and connecting them with the quality are promis-
ing methods in food research, because visual properties are one of the most important
quality factors. Digital image analysis is the technique that transforms visual information
of color, shape, and pattern to numeric parameters. The combination of color data extracted
from a set of digital images and color spaces, such as RGB (red, green, blue) and HSV (hue,
saturation, value) can create a data matrix. Then, applying chemometric tools will process
the numerical information from color space to qualify and quantify the food quality [98].
Multivariate Image Regression (MIR) and Multivariate Image Analysis (MIA) are the two
most common computational methods for processing color data [95]. The effectiveness
of digital image analysis was confirmed by Licodiedoff et al. [96], who developed lin-
ear models using the image analysis based on RGB system to investigate the dilution of
Physalis juice with concentrations ranging from 0 to 100%. Applying the same approach,
Stinco Scanarotti et al. [97] evaluated the differences in color of orange and mandarin juices
from several varieties. The authors concluded that the method allowed the differentiation
between juices with 83–97% correct classification [97]. Moreover, the feasibility of digital
image analysis on identifying dilution levels of orange juice was studied based on the
color specifications, in which the thickness of sample was investigated and kept constant to
make color measurements reproducible and reliable. The results revealed that there was
significant correlation between digital image analysis results provided by the instrument
and visual analysis by panelists (p < 0.05), and orange juice with different dilution levels
could be detected correctly [99]. Similarly, the applicability of RGB digital images on
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qualification and quantification of adulterations in aged wine was confirmed in a study by
Herrero-Latorre et al. [95]. The wine samples included pure wines (Gran Reserva, Crianza,
and Joven) and synthetic adulterated Gran Reserva. Multivariate image analysis was able
to recognize differences among the wines and predict adulteration level with the detection
limit of 2.3%. The drawback of digital image analysis is that it is not suitable for detecting
adulteration based on internal quality attributes since it lacks spectral information. A
combination with other techniques like spectroscopy would improve its performance.

3.4.2. Light Backscattering Imaging

Among imaging techniques, novel techniques of light backscattering imaging have
recently proven their applicability in monitoring the quality of various agricultural com-
modities. The technique is classified into three categories, including laser light backscat-
tering imaging (LLBI), multispectral backscattering imaging (MBI), and hyperspectral
backscattering imaging (HBI), according to the image acquisition system and the wave-
length range [100]. When the light penetrates food matrices, it can interact with the internal
components by absorption and scattering or transmission to the other side of the surface.
While the light absorption relates to chemical compounds of the food such as pigments,
water, sugar, etc., the scattering results from the collision of photons inside media [101].
Although the technique has been widely investigated for quality evaluation of food and
agricultural products, its application for the detection of beverage adulteration draws
little attention from researchers. The very first study on the applicability of LLBI for the
assessment of wine adulteration was performed by Hencz et al. [60]. Adulteration simula-
tion was performed by the addition of water, sugar, and both. The results revealed that
laser backscattering signal responded sensitively to the adulteration based on ANOVA
F-score. The proposed technique showed better performance in the detection of sugar
addition compared with water dilution. The classification of adulterated wine samples was
performed using LDA. At all wavelengths, the classification accuracy varied in the range
of 53.33–76.67% for water addition and 93.33–100% for sugar addition. The prediction
ability of generalized linear model regression indicated lower prediction error for sugar
adulterated wines at 3.06% than those for water diluted wines at 20.39%. The authors have
demonstrated the feasibility of LLBI for wine authentication; however, their work revealed
some limitations such as using small sample size and lacking appropriate validation of
calibration models.

According to the best of our knowledge, there have been no studies aiming at the
application of light backscattering imaging for the detection of fruit juice adulteration.

4. Conclusions and Outlooks

Fruit juice and wine have become one of the most popular targets of food fraud and
mislabeling. Different analytical techniques have been developed to detect the adulterants
in juice and wine. According to the reviewed literature, the proposed methodologies
were classified as destructive and non-destructive techniques. The most common destruc-
tive analysis techniques include physicochemical methods, isotope analysis, elemental
analysis, chromatographic techniques, and DNA-based techniques. Although they have
relatively high sensitivity and accuracy, the main disadvantage of these approaches is the
requirement for sample destruction and pretreatment in the process of operation. As a
result, the analytical procedure is time-consuming, complex, and incompatible for real-time
quality control. Furthermore, the instability of some marker compounds, like phenolic com-
pounds, DNA, and isotope ratios during processing and storage, may produce variations
in analytical results.

To overcome the limitation of destructive analysis techniques, various non-destructive
techniques have been developed by researchers so far, including spectroscopic techniques,
electronic techniques, and imaging-based techniques. These techniques are based on
the investigation of the general chemical profile of studied samples. After acquiring
the relevant signal, multivariate analysis methods are necessary to process the data and
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generate qualitative or quantitative models. Compared with destructive techniques, non-
destructive techniques have the advantages of little or no sample preparation, ease of use,
reduced cost, high portability, and no need for reagents. Especially, some spectroscopic
techniques have very rapid analysis that is performed within 1 min [57]. Although the
feasibility of these techniques in adulteration detection and authentication was proven by
many authors, there were challenges for applying these methods in real life. Indeed, most
of the studies were performed under laboratory conditions with small number of samples.
Moreover, the robustness of calibration models greatly depends on the selected methods
of signal pretreatment, feature selection, and modeling. To achieve universal models
for industrial application, more research needs to be conducted focusing on increasing
the number of samples for calibration and validation and selecting optimal multivariate
analysis methods.
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