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Abstract: Filling missing data in forest research is paramount for the analysis of primary data,
forest statistics, land use strategies, as well as for the calibration/validation of forest growth models.
Consequently, our main objective was to investigate several methods of filling missing data under
a reduced sample size. From a complete dataset containing yearly first-rotation tree growth
measurements over a period of eight years, we gradually retrieved two and then four years of
measurements, hence operating on 72% and 43% of the original data. Secondly, 15 statistical models,
five forest growth functions, and one biophysical, process-oriented, tree growth model were employed
for filling these data gap representations accounting for 72% and 43% of the available data. Several
models belonging to (i) regression analysis, (ii) statistical imputation, (iii) forest growth functions, and
(iv) tree growth models were applied in order to retrieve information about the trees from existing
yearly measurements. Subsequently, the findings of this study could lead to finding a handy tool for
both researchers and practitioners dealing with incomplete datasets. Moreover, we underline the
paramount demand for far-sighted, long-term research projects for the expansion and maintenance of
a short rotation forestry (SRF) repository.
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1. Background and Summary

Biomass generated from dedicated energy crops, such as short rotation forestry (SRF), is gaining
recognition as a flexible source of energy, heat, fuel, bio-based materials, and chemicals [1,2]. SRF refers
to growing fast-growing tree species, planted at a high density [3], and harvesting the trees in rotations of
two to six years in order to produce woody biomass [4]. Hence, the planting popularity of fast-growing
tree species belonging to the genera Populus, Eucalyptus, Pinus, Acacia, and Salix has increased as a
result of the progressively higher demand for woody biomass for energy purposes [5–11].

In order to support such demands, management decisions in the practice of SRF require systematic
measurements of trees for repository and database monitoring. Paramount for forest managers are
accurate estimates of tree height, root height diameter (RHD), and breast height diameter (BHD) for
the determination of timber volume [12].

However, forest research is oftentimes confronted with missing data in field measurements [12]
due to sampling infeasibilities (bad weather, lack of equipment, lack of technical expertise), sampling
irregularities across years, inaccurate estimations (allometric functions and the vast amount of methods
that can be used for calculating one parameter), or failure of equipment (dendrometers, lysimeters,
station maintenance) [13]. Moreover, the available studies performed on SRF describe annual data
values, collected over a few years from tens or hundreds of tree measurements, occasionally together
with the standard deviation and number of samples, which nevertheless, leads to condensed annual
information about the actual growth characteristics.
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Missing data not only represent a loss of information and a source of uncertainty in data analysis,
but also a severe drawback for present investigations, as well as for future decision-making, coping
management strategies, risk assessments, and adaptation scenarios. Therefore, filling missing data in
forest research is paramount for the analysis of primary data, forest statistics, land use strategies, as
well as for the calibration/validation of forest growth models.

Heretofore, little to no investigation has been carried for handling missing forestry data. In a
study performed by Diamantopolou [12], tree diameters were inferred for one year with the help of a
database containing more than 440 measurement points and under several artificial neural network
models. However, studies on handling missing forestry data under a reduced sample size (e.g., yearly
values collected over five to ten growing years) and for management practices such as SRF are rare.

Consequently, our main objective was to investigate several methods for filling missing data
under a reduced sample size. Firstly, we employed a complete dataset containing yearly first-rotation
tree growth measurements in an SRF area over a period of eight years, as reported by Bärwolf et al. [14].
From this complete dataset, we gradually retrieved two and then four years of measurements,
hence operating on 72% and 43% of the original data. Secondly, 15 statistical models, five forest growth
functions, and one biophysical, process-oriented, tree growth model were employed for filling these
data gap representations accounting for 72%, and 43% of the available data.

Differences between the investigated models were addressed in order to identify the most
appropriate way to retrieve information about the trees from existing yearly measurements.
Subsequently, the findings of this study could lead to finding a handy tool for both researchers
and practitioners dealing with incomplete datasets. Moreover, we underline the paramount demand
for far-sighted, long-term research projects for the expansion and maintenance of an SRF repository.

2. Data Description

As a case study, we employed reported measurements of first-rotation hybrid poplar trees (Populus
nigra L. × P. maximowicii A. Henry, clone Max) established near Dornburg, Germany (N51◦01′N,
E11◦39′; 260 m a.s.l.), on around 2 ha of a total area of 51.3 ha, and managed as short rotation forestry
(SRF) [14]. The poplar trees were planted in March 2007 at a planting density of 2,200 trees per hectare
(i.e., at a tree spacing of 1.5 m × 3 m). With the exception of 2007, yearly measurements of height (H),
root height diameter (RHD, measured at the height of 0.1 m above the ground), and breast height
diameter (BHD, measured at the height of 1.3 m above the ground) were collected by the Thuringian
Center for Renewable Resources, Thuringian State Institute for Agriculture from the end of vegetation
period 2008 to 2014.

Therefore, the initially reported data consisted of seven points collected from the end of vegetation
period 2008 (winter season 2009) to the end of vegetation period 2014 (winter season 2015). The available
range of observed data (i.e., n = 869, 975, 1350, and 1357 measurement values collected at the beginning
of 2009, 2010, 2011, and 2012, respectively) is represented by the standard deviation. From these
original data (100%), we randomly retrieved data accounting for two years (28%) and four years (57%)
in order to create representations that simulate data gaps (Figure 1).

In addition to separating the original data into two data gap representations containing 72% and
43% of the available data, we also separated the analysis between the progression of an individual
parameter over time and the progression of an individual parameter depending on another parameter.
This way, the analysis discerned between data missing completely at random (MCAR, i.e., values that
are randomly missing from an original dataset do not relate to each other, and there is no pattern to the
actual values of the missing data) and data missing at random (MAR, i.e., values that are randomly
missing from an original dataset and relate to other variables two by two).

Due to the physical and physiological factors that exist between tree dimensions in forest
stands [15], the relationship between variables was considered nonlinear throughout the study.
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Figure 1. The complete dataset (100%), together with two data gap representations containing 72% and
43% of the original data for the tree root height diameter, breast height diameter, and tree height. The
data are represented by the average value (blue circles and red squares for the existing and missing
data, respectively), as well as by the standard deviation (blue and red error bars for the existing and
missing data, respectively) and the sample size (n), when available.

3. Methods

For the objective of this study, we neglected the listwise deletion, an approach where missing
observations are removed, and focused on imputing those missing values from the existing part of
the data. In statistics, imputation is an approach where missing data are substituted, thus creating
a standard method for handling missing data [16]. Nevertheless, we did not use zero or constant
imputation, which replace the missing value with either zero or a constant value, respectively.

However, when filling missing data only through statistical imputations, the temporal resolution
remains dependent on the existing data. Therefore, we also investigated the possibility of retrieving
information on a finer temporal resolution (monthly, daily) from existing yearly measurements, with the
help of a biophysical, process-oriented, tree growth model. Collectively, our analysis employed (i)
regression analysis, (ii) statistical imputation, (iii) forest growth functions, and (iv) a tree growth model,
which accounted for the competition for resources between trees.

3.1. Regression Analysis

Regression analysis is a part of inference statistics where relationships between parameters are
examined. Thus, a “best fit” function (curve) with minimum residuals is assigned to the existing data
points. For the conciseness of this study, standard textbooks for inference biostatistics methods by
Linder [17], Mudra [18], and Rasch [19] are recommended.

Accordingly, ten regression models (Table 1) were applied to the established data gap
representations by using the “Curve Fitting Toolbox” from MATLAB (version R2017a, Mathworks).
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Table 1. The investigated regression analysis models.

Model Name General Model

Exponential a × exp(b × x)
Fourier a0 + a1 × cos(x ×w) + b1 × sin(x ×w)

Gaussian a1 × exp( − ((x − b1)/c1)ˆ2)
Power: one term a × xˆb

Power: two terms a × xˆb + c
Rational (p1)/(x + q1)

Sum of Sine a1 × sin(b1 × x + c1)
Linear Fit a × (sin(x − pi)) + b × ((x − 10)ˆ2) + c

Polynomial: first degree p1 × x + p2
Polynomial: second degree p1 × xˆ2 + p2 × x + p3

In this section, only MCAR data were taken into consideration because the data size of the
response variable had to be the same as that of the predictor variable. Accordingly, the progression of
an individual parameter was investigated over time, together with the progression of an individual
parameter depending on another parameter.

3.2. Interpolation

Interpolation is a part of inference statistics where an exact fit to the existing data points is
identified. Accordingly, four regression models (Table 2) were applied to the established data gap
representations by using the “Curve Fitting Toolbox” from MATLAB (version R2017a, Mathworks).

Table 2. The investigated interpolation models.

Model Name General Model

Interpolant: Nearest Neighbor
Piecewise polynomial

computed from p.
Interpolant: Linear
Interpolant: Cubic

Interpolant: PCHIP (Piecewise Cubic
Hermite Interpolation)

As in the previous section, only MCAR data were taken into consideration, and the progression
of an individual parameter was investigated over time, as well as its progression depending on the
other parameters.

3.3. Multiple Imputation

Substituting missing values by multiple imputations can represent a general-purpose approach
for handling missing data. Just as the name suggests, this approach creates multiple substitutes for a
missing data point from all the information present in an existing dataset [20].

One of the most robust and accessible multiple imputation programs is represented by the Amelia
II R-Package [20]. By employing Amelia II and the R software (version 3.4.2, R Core Team 2017),
both MCAR data and MAR data were taken into consideration in this section for analyzing both the
progression of an individual parameter over time and the progression of an individual parameter
depending on another parameter.

3.4. Forest Growth Functions

Some of the essential forest growth functions [15] are presented in Table 3. Other functions were
not added to this list because they resemble a general model presented previously, in Section 3.1.
For example, the diameter-height relationship proposed by Assmann [21] (H = a0 + a1 × d + a2 ×

dˆ2) resembles the second-degree Polynomial, and the allometric function [15] (a × xˆb) resembles a
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Power function with one term. For this section, we used the MATLAB environment (version R2017a,
Mathworks).

Table 3. The investigated forest growth functions.

Model Name General Model

Assmann [21] H = a + b × lnD
Korsun [22] H = exp(a0 + a1 × ln(D) + a2 × ln(D)ˆ2)

Michailoff [23] H = a0 × exp(− a1/D) + 1.3
Petterson [24] H = (D/(a0 + a1 × D))ˆ3 + 1.3
Prodan [25] H = Dˆ2/(a0 + a1 × D + a2 × Dˆ2) + 1.3

H: height; D: diameter.

In this case, only MAR data were used and only for analyzing the progression of tree height with
respect to tree diameter.

3.5. Process-Oriented Tree Growth Model

In a thorough review, Pretzsch et al. [26] compared 54 forest growth models in terms of
characteristics and interactions that occur in forests both at an individual tree level and stand
level. Accordingly, several models were identified as able to simulate the growth of poplar trees with
respect to the specific tree phenology, light, and water availability. However, since this study focused
on retrieving information about tree growth from a limited availability of data, the Yield-SAFE model
was employed.

The Yield-SAFE model (Yield Estimator for Long-term Design of Silvoarable AgroForestry
in Europe) is a parameter-sparse, biophysical and eco-physiological, process-oriented model,
developed for growth processes in forestry, agriculture, and agroforestry systems [27–29]. Heretofore,
the Yield-SAFE model has been calibrated and validated for poplar, walnut, cherry, holm oak, and
stone pine trees in the Atlantic and Mediterranean regions of Europe [29–33].

The main reasoning behind choosing the Yield-SAFE model, as implemented in MATLAB, stood
in its ability to render robust results under a scarcity of data [28]. In order to calibrate the model,
a set of parameters and inputs was required, namely weather data (daily averages of temperature,
precipitation, and global radiation) over the investigated growth period, and site-specific soil and
tree parameters.

The weather data were gathered from the DWD (Deutscher Wetterdienst) station Weimar
(station ID: 05419). The tree parameters were set according to annual reports [14] and adapted
from literature [28,29]. The clay and sand contents were 28%, and 8%, respectively [14], which classified
the soil texture as “medium-fine” [34], and hence the Mualem-van Genuchten soil parameters were
set accordingly from existing estimations [34]. Collectively, the tree and soil parameters used in the
Yield-SAFE model are shown in Table A1 (Appendix A). In this section, only the progression of the
RHD over time was substituted as part of the MAR data.

3.6. Statistical Analysis

The performance of the investigated models was evaluated by the coefficient of determination (R2),
sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well as by
the concordance correlation coefficient (CCC) and simulation bias (SB) from the observations. In order
to account for the variability of observations and to avoid overfitting, the best fit of the investigated
models was chosen with respect to the closeness to the average, as a representative for the location of
the majority of measurements.

A fit was considered useful for prediction when R2 values were closer to 1.0 and when SSE,
RMSE, and MAE values were closer to 0.0. Regarding the CCC and SB, a study performed by
Ojeda et al. [35] proposed the following labels for model validation: “very good” for CCC > 0.90 and



Data 2019, 4, 132 6 of 16

SB < 20%, “satisfactory” for 0.75 < CCC < 0.90 and 20% < SB < 30%, “acceptable” for 0.60 < CCC < 0.75
and 30% < SB < 40%, and “poor” for the rest of the cases. Together with these recommendations,
the performance of the models was categorized in terms of the CCC and SB, as well as in terms of the
R2, SSE, RMSE, and MAE, while striving for a normal distribution of residuals.

4. Results and Discussion

Regarding the complete reported dataset, the individual data points for each year were spread
out over a wide range of values, especially for the diameter measurements (Figure 1), amounting to
around ±25% for the tree heights and around ±40% for both tree diameters, as compared to their
respective average values. This is, however, the case for many fast-growing tree species such as poplar
(Populus spp.) [36,37] and black locust (Robinia Pseudoacacia L.) [36], which show great growth variability,
even when planted at the same time and on the same land area. By comparison, first-rotation poplar
trees established at the experimental site Neißetal reported a standard deviation of about ±30% for
the tree heights and about ±40% for the root height diameter (RHD) over three years of growth [36].
At Wendhausen, the measurement variability of breast height diameter (BHD) amounted to around
39%, as compared to the average of all values and over six growing years [37].

4.1. Regression Analysis

Most of the investigated ten regression models were able to fit a curve to the existing data within
the limits set by the standard deviation, except for Exponential and one-term Power models (due
to an inability to fit the progression of tree dimensions over time) and the Fourier model (due to an
inability to fit when subjected to the 43% data gap representation). For the conciseness of the paper,
the goodness of validation of all applied regression models is presented in Table A2.

Generally, the Gaussian model performed the best, being closely followed by the Power model
with two terms, Sum of Sine, and the first-degree Polynomial, then the second-degree Polynomial.
The lower end was represented by the Rational, Fourier, Exponential, and one-term Power models in
descending order, and finally the Linear Fitting.

As an example of the capability of the models to infer missing data from the available 43% data
gap representation of RHD, three regression models labelled as “very good” (Gaussian), “satisfactory”
(Sum of Sine), and “poor” (Linear Fitting) are selected and presented in Figure 2.

Visible differences can be noticed between the three regression models presented in Figure 2,
justifying the requirement of several regression evaluation metrics and highlighting the importance
of even slight differences between them. While the R2, SB, and CCC suggested a “very good”
performance of all three models, they were labelled as “very good” (Gaussian), “satisfactory” (Sum
of Sine), and “poor” (Linear Fitting) given the differences in SSE, RMSE, and MAE. Even if the
deviations from the fitted curve to the observations seem small, significant biases can later arise from
further calculations.

4.2. Interpolation

All of the investigated interpolation models were capable of finding a fit encompassed in the
range of observations. However, when striving for the average value, as a central tendency for most
of the observations, the interpolation models generally performed the best to worse in the following
sequence: Linear > Cubic > PCHIP > Nearest Neighbor. For the conciseness of the paper, the goodness
of validation of all applied interpolation models is shown in Table A3.

However, since the SSE, RMSE, and MAE values were rather high when fitting the tree height
over time, the 72% data gap representation of tree height was furtherly examined (Figure 3).
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Figure 2. The Linear fitting (black line), Gaussian (green line), and Sum of Sine (orange line) regression
models applied to the tree root height diameter (RHD) data gap representation accounting for 43%
of the original dataset, in terms of the coefficient of determination (R2), sum of squared errors (SSE),
root-mean-square error (RMSE), mean absolute error (MAE), as well as the concordance correlation
coefficient (CCC) and simulation bias (SB) from the observations. The error bars (blue and red for
the existing and missing data, respectively) represent the standard deviation of the RHD over the
investigated period.

Since interpolation techniques generally find an exact fit to the existing data, they assume no
measurement errors, suggesting that their applicability to real-life scenarios is limited. Moreover,
while interpolation is easy and fast, it does not consider the correlations between features, and it does
not account for the uncertainty in the imputations.

Therefore, even if Figure 3 displays rather accurate estimations of tree height over time and
under limited data availability, the four interpolation models were labelled as performing “very good”
(Linear, Cubic, PCHIP) and “poor” (Nearest Neighbor) when applied to the 72% tree height data
gap representation.

4.3. Multiple Imputation

Most of the imputations rendered by Amelia II fell within the whole range of measurements.
However, when considering the majority of values, only a few results of Amelia II were labelled as
performing better than “acceptable” (Table 4).
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Figure 3. The Linear (black line), Nearest Neighbor (pink line), Cubic (green line), and PCHIP (orange
line) interpolation models applied to the 72% tree height data gap representation together with the
coefficient of determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean
absolute error (MAE), as well as the concordance correlation coefficient (CCC) and simulation bias (SB)
from the observations. The error bars (blue and red for the existing and missing data, respectively)
represent the standard deviation of the tree height over the investigated period.

Table 4. The goodness of validation of Amelia II in terms of the coefficient of determination (R2), sum
of squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well as the
concordance correlation coefficient (CCC) and simulation bias (SB) from the observations.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Amelia II

RHD
72 1.00 0.2 0.3 0.3 6.4 1.00 Satisfactory
43 1.00 4.1 1.0 0.8 14.9 0.00 Poor

BHD
72 0.99 0.7 0.6 0.6 11.5 0.97 Poor
43 0.99 0.4 0.3 0.3 5.5 0.99 Acceptable

Height 72 0.99 10,110.2 71.1 57.3 14.1 0.94 Poor
43 0.99 24,478.6 78.2 70.4 4.3 0.92 Satisfactory

BHD & 72 1.00 0.9 0.7 0.6 15.1 0.97 Poor
RHD 43 0.99 5.0 1.1 1.0 3.6 0.44 Poor

Height & 72 1.00 1627.5 20.5 20.4 10.1 0.98 Poor
BHD 43 0.98 2986.8 19.6 16.7 7.6 0.98 Poor

Height & 72 1.00 1214.8 17.7 17.3 3.6 0.99 Poor
RHD 43 0.99 3065.4 19.8 17.9 4.7 0.49 Poor

RHD: root height diameter; BHD: breast height diameter.

4.4. Forest Growth Functions

Most of the investigated forest growth functions were labelled as delivering a “very good”
performance (Table 5). Accounting for all regression evaluation metrics, the Korsun [22] model fit the
best, followed by Michailoff [23] and Petterson [24], Prodan [25], and then Assmann [21].
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Table 5. The goodness of validation of forest growth functions in terms of the coefficient of determination
(R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well
as the concordance correlation coefficient (CCC) and simulation bias (SB) from the observations.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Assmann
[21]

Height 72 0.99 3.68 0.73 0.64 3.8 0.97 Poor
BHD 43 0.98 4.77 0.83 0.66 7.5 0.96 Poor

Height 72 0.99 5.49 0.89 0.79 1.8 0.75 Poor
RHD 43 0.99 7.10 1.01 0.84 6.1 0.70 Poor

Prodan
[25]

Height 72 0.98 1.51 0.46 0.34 4.3 0.99 Satisfactory
BHD 43 0.98 91.19 3.61 2.22 25.1 0.68 Poor

Height 72 1.00 0.10 0.12 0.10 −0.3 1.00 Very good
RHD 43 1.00 0.13 0.14 0.10 0.2 1.00 Very good

Petterson
[24]

Height 72 0.97 1.70 0.49 0.33 4.2 0.99 Acceptable
BHD 43 0.97 1.65 0.49 0.34 4.0 0.99 Acceptable

Height 72 1.00 0.10 0.12 0.08 −0.5 1.00 Very good
RHD 43 1.00 0.10 0.12 0.09 0.3 1.00 Very good

Korsun
[22]

Height 72 1.00 0.11 0.13 0.08 1.1 1.00 Very good
BHD 43 1.00 0.11 0.13 0.07 1.0 1.00 Very good

Height 72 1.00 0.12 0.13 0.11 −0.2 1.00 Very good
RHD 43 1.00 0.11 0.13 0.09 1.1 1.00 Very good

Michailoff
[23]

Height 72 0.99 0.92 0.36 0.23 3.5 0.99 Satisfactory
BHD 43 0.98 0.90 0.36 0.25 3.2 0.99 Satisfactory

Height 72 0.99 0.62 0.30 0.25 −1.7 1.00 Very good
RHD 43 0.99 0.76 0.33 0.27 −1.2 1.00 Satisfactory

RHD: root height diameter; BHD: breast height diameter.

4.5. Process-Oriented Growth Model

If not for a high simulation bias from observations in the first years (Figure 4), the performance of
the Yield-SAFE model would have been generally labelled as “very good” for this experimental site
(Table 6).Data 2019, 4, x FOR PEER REVIEW 10 of 17 
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Figure 4. The tree root height diameter, as simulated by the Yield-SAFE model (green line) given
the existing (blue circles) and missing data (red circles). The error bars (blue and red for the existing
and missing data, respectively) represent the standard deviation of the root height diameter over the
investigated period.

The Yield-SAFE model rendered “satisfactory” correspondences with the measured tree root
height diameters under 43% availability of data, with deviations between 17% and 51% in the first
three years and between 1% and 4% in the following four years.

Notable to this section was that, by using a biophysical, process-oriented model, there was a
possibility of retrieving information on a finer temporal resolution (monthly, daily) from existing yearly
measurements. Moreover, information about other parameters became available, such as the woody
biomass and the soil water content of the site throughout the growing period (Figure 5).
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Table 6. The goodness of validation of Yield-SAFE in terms of the coefficient of determination (R2),
sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute error (MAE), as well as
the concordance correlation coefficient (CCC) and simulation bias (SB) from the observations.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Yield-SAFE RHD
72 1.00 3.7 1.0 0.9 12.4 0.99 Satisfactory
43 1.00 4.0 1.1 1.1 15.1 0.99 Satisfactory

RHD: root height diameter.Data 2019, 4, x FOR PEER REVIEW 11 of 17 
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Figure 5. The tree woody biomass (a) and soil water content (b), as simulated by the Yield-SAFE model
(green lines) from the day of planting (2007) to the day of harvest (2015).

The tree woody biomass and the soil water content, as simulated by the Yield-SAFE model, were
broadly corroborated by on-site assessments. According to reported values, an average tree woody
biomass of around 52 Mg ha−1 was harvested from the poplar SRF area at the end of vegetation period
2014 (winter season 2015) [14]. Regarding the soil water content, between 13% and 24% was reported
at the beginning of June 2012, and between 15% and 35% at the end of November 2012 [14].

It is notable that, while tree growth models are widely used for prediction purposes, either for
future risk assessments or under different climatic, edaphic, and management scenarios, this study
emphasized another role of such models, namely, for imputing gaps in knowledge.

5. Conclusions

This paper presented and analyzed the performance of several models belonging to (i) regression
analysis, (ii) statistical imputation, (iii) forest growth functions, and (iv) a tree growth model to retrieve
information about trees from existing yearly measurements. When taking into consideration the entire
range of measured data, the performance of all investigated models was deemed as “very good”.
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However, when focusing on the area comprising most of the observations, or the central tendency of
the data, as shown by the average, significant differences arose between the models.

From the curve-fitting models, the Gaussian model performed the best, being tightly followed by
the Power model with two terms, Sum of Sine, and the first-degree Polynomial, then the second-degree
Polynomial. Nearing this performance, the Linear, Cubic, and PCHIP interpolation models also showed
good correspondences with the measurements, both under 72% and 43% data gap representations.
The forest growth functions rendered good results, following the sequence: Korsun [22] > Michailoff [23]
and Petterson [24] > Prodan [25] > Assmann [21]. Unsurprisingly, most of these models performed
better under higher data availability, i.e., under 72% of existing data, as compared to 43% of existing data.

The Yield-SAFE model simulated the daily growth of the hybrid-poplar clone “Max I” in terms of
root height diameter with satisfactory accuracy, responding sensitively to changes in the edaphic and
climatic conditions. Additionally, the performance of the model was sustained by other parameters,
such as the tree woody biomass and soil water content, which matched reported values. Last but not
least, this study showed that a process-oriented model such as Yield-SAFE can provide descriptions of
tree growth and soil water content on a finer, daily temporal scale from a scarce availability of data.

Therefore, the findings of this study could subsequently lead to finding a handy tool for both
researchers and practitioners dealing with incomplete datasets. In the future, for a better understanding
and reproducibility of studies, box plots should be increasingly used, showing minimums, maximums,
medians, means, outliers, and the interquartile range. Moreover, we underline the paramount demand
for far-sighted, long-term research projects for the expansion and maintenance of an SRF repository.
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Appendix A

Table A1. The tree and soil parameter values used for the parametrization of the Yield-SAFE model for
the SRF area in Dornburg (Thuringia, Germany).

Symbol Description Unit Value Source

nShoots0 Initial number of shoots per tree tree−1 1.0 Own data
Bt0 Initial tree biomass g tree−1 40 [38]

LAt0 Initial tree leaf area m2 tree−1 0.0 [28,29]

εt Radiation use efficiency g MJ−1 1.04 Own data
Kt Light extinction coefficient – 0.5 Own data

tt
The number of days after budburst at which the leaf area

has reached 63.2% of its maximum leaf area LAss
max d 10 [28,29]

LAss
max Maximum leaf area for a single shoot m2 0.05 [28,29]

nShoots
max Maximum number of shoots per tree tree−1 10,000 [28,29]

Kmain Relative attrition rate of tree biomass d−1 10−4 [28,29]
γt Transpiration coefficient of the trees m3 g−1 0.0002 [38]

(pFcrit)t Critical pF value for trees log (cm) 4.0 [29]
(pFpwp)t pF value at permanent wilting point log (cm) 4.2 [29]

DOYbudburst,
DOYleaffall

Day of year for budburst and leaffall DOY 105, 300 [38]

ρt Planting density trees ha−1 2200 [14]
θ0 Initial volumetric water content m3 m−3 0.35 [34]
δeva Potential evaporation per unit energy mm MJ−1 0.15 [29]
D Depth of the soil compartment mm 1000 [34]
α Van Genuchten parameter – 0.0083 [34]

nsoil Van Genuchten parameter – 1.2539 [34]
δ Parameter affecting the drainage rate below the root zone – 0.07 [34]

PWP Permanent wilting point log (cm) 4.2 [28,29]
(pFcrit)E Critical pF value for evaporation log (cm) 2.3 [28,29]

pFFC Water tension at field capacity log (cm) 2.3 [28,29]
Ks Soil hydraulic conductivity at saturation mm d−1 2.272 [34]
θs Saturated volumetric water content m3 m−3 0.43 [34]
θr Residual volumetric water content m3 m−3 0.01 [34]

Table A2. The goodness of validation of all applied regression models in terms of the coefficient
of determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute
error (MAE), as well as the concordance correlation coefficient (CCC) and simulation bias (SB) from
the observations.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Exponential

RHD
72 0.90 10.3 1.2 1.1 1.0 0.93 Acceptable
43 −3.31 * 534.3 8.7 7.9 na na Na

BHD
72 −3.32 * 287.1 6.4 5.6 na na Na
43 −2.19 * 287.1 6.4 5.6 na na Na

Height 72 0.90 51,868 86 78 0.7 0.94 Satisfactory
43 −3.58 * 3,013,195 656 602 na na Na

BHD &
RHD

72 0.97 2.4 0.6 0.5 1.3 0.99 Very good
43 0.97 2.8 0.6 0.5 2.7 0.98 Satisfactory

Height &
BHD

72 0.93 4.0 0.8 0.6 1.9 0.97 Poor
43 0.92 4.1 0.8 0.6 1.0 0.95 Satisfactory

Height &
RHD

72 0.96 3.0 0.7 0.5 0.3 0.99 Very good
43 0.96 3.0 0.7 0.5 1.4 0.99 Satisfactory

Fourier

RHD
72 1.00 0.3 0.2 0.2 0.3 0.99 Very good
43 na na na na na na Na

BHD
72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory
43 na na na na na na Na

Height 72 1.00 185 5.0 5.0 0.0 1.00 Very good
43 na na na na na na Na

BHD &
RHD

72 1.00 0.1 0.1 0.1 1.4 1.00 Very good
43 na na na na na na Na

Height &
BHD

72 1.00 0.2 0.1 0.1 1.4 0.99 Satisfactory
43 na na na na na na Na

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 na na na na na na Na

Gauss

RHD
72 0.99 0.4 0.2 0.2 0.1 0.99 Very good
43 1.00 1.4 0.4 0.3 2.3 1.00 Very good

BHD
72 0.98 1.2 0.4 0.4 2.9 0.99 Very good
43 1.00 7.1 1.0 0.7 5.5 0.96 Acceptable

Height 72 1.00 1627 15 15 0.3 1.00 Very good
43 1.00 4578 26 18 1.1 1.00 Very good

BHD &
RHD

72 1.00 0.4 0.2 0.2 1.4 1.00 Very good
43 1.00 0.6 0.3 0.2 1.7 0.99 Satisfactory

Height &
BHD

72 0.99 0.8 0.3 0.3 2.0 0.99 Very good
43 1.00 1.9 0.5 0.4 0.6 0.98 Acceptable

Height &
RHD

72 1.00 0.3 0.2 0.2 0.2 1.00 Very good
43 1.00 0.4 0.3 0.2 0.1 1.00 Very good
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Table A2. Cont.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Power:
one
term

RHD
72 na na na na na na Na
43 na na na na na na Na

BHD
72 na na na na na na Na
43 na na na na na na Na

Height 72 na na na na na na Na
43 na na na na na na Na

BHD &
RHD

72 0.98 1.2 0.4 0.3 1.8 0.99 Very good
43 0.99 1.6 0.5 0.4 1.8 1.00 Satisfactory

Height &
BHD

72 0.99 0.7 0.3 0.3 2.1 0.99 Acceptable
43 0.99 0.7 0.3 0.3 1.2 0.99 Satisfactory

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 1.00 0.1 0.1 0.1 1.0 1.00 Very good

Power:
two

terms

RHD
72 0.98 2.5 0.6 0.6 1.3 0.99 Satisfactory
43 0.97 2.6 0.6 0.6 2.2 0.98 Very good

BHD
72 0.96 2.4 0.6 0.5 0.0 0.98 Acceptable
43 0.96 2.6 0.6 0.6 2.7 0.96 Satisfactory

Height 72 0.97 12,883 43 38 1.0 0.99 Very good
43 0.97 15,558 47 41 3.1 0.98 Very good

BHD &
RHD

72 1.00 0.2 0.1 0.1 1.4 1.00 Very good
43 1.00 0.2 0.2 0.1 1.0 1.00 Very good

Height &
BHD

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory
43 1.00 0.4 0.2 0.1 2.5 0.98 Acceptable

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good

Rational

RHD
72 1.00 0.8 0.3 0.3 0.3 0.99 Satisfactory
43 1.00 1.5 0.5 0.3 2.3 0.99 Acceptable

BHD
72 0.99 0.8 0.3 0.3 1.5 0.98 Poor
43 1.00 1.7 0.5 0.3 4.0 0.98 Poor

Height 72 0.00 479,485 262 231 3.1 0.00 Poor
43 0.00 480,081 262 236 3.2 0.00 Poor

BHD &
RHD

72 1.00 0.2 0.2 0.1 1.2 1.00 Very good
43 1.00 0.1 0.1 0.1 0.0 1.00 Very good

Height &
BHD

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory
43 1.00 0.3 0.2 0.1 2.4 0.99 Acceptable

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 1.00 0.1 0.1 0.1 1.2 1.00 Very good

Sum of
Sine

RHD
72 1.00 0.4 0.2 0.2 0.3 0.99 Very good
43 1.00 0.6 0.3 0.2 2.1 0.99 Satisfactory

BHD
72 1.00 0.3 0.2 0.2 1.5 0.98 Acceptable
43 1.00 0.6 0.3 0.2 3.5 0.98 Acceptable

Height 72 1.00 921 11 11 0.0 1.00 Very good
43 1.00 1421 14 9.0 0.9 1.00 Very good

BHD &
RHD

72 1.00 0.2 0.2 0.1 1.3 1.00 Very good
43 1.00 0.1 0.1 0.1 0.0 1.00 Very good

Height &
BHD

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory
43 1.00 0.3 0.2 0.1 2.2 0.99 Satisfactory

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 1.00 0.1 0.1 0.1 1.2 1.00 Very good

Linear
Fit

RHD
72 0.98 1.0 0.4 0.3 1.0 0.99 Very good
43 1.00 6.0 0.9 0.7 0.0 0.97 Poor

BHD
72 0.98 1.2 0.4 0.4 0.6 0.99 Very good
43 1.00 7.1 1.0 0.8 3.5 0.98 Poor

Height 72 0.99 6198 30 27 0.6 0.99 Satisfactory
43 1.00 33,105 69 51 1.1 0.97 Poor

BHD &
RHD

72 0.95 6.4 1.0 0.8 3.9 0.97 Poor
43 1.00 6552.4 30.6 21.3 45.1 −0.03 Poor

Height &
BHD

72 0.97 1.8 0.5 0.4 2.0 0.98 Acceptable
43 1.00 65.9 3.1 2.2 17.6 0.55 Poor

Height &
RHD

72 0.98 1.7 0.5 0.4 0.4 0.99 Satisfactory
43 1.00 60.3 2.9 2.1 11.6 0.68 Poor

Polynomial:
first

degree

RHD
72 0.98 2.6 0.6 0.6 1.3 0.99 Satisfactory
43 0.97 2.7 0.6 0.6 2.2 0.98 Very good

BHD
72 0.96 2.4 0.6 0.5 0.0 0.98 Acceptable
43 0.96 2.7 0.6 0.6 2.7 0.96 Satisfactory

Height 72 0.97 13,187 43 39 1.0 0.99 Very good
43 0.97 15,939 48 42 3.2 0.98 Very good

BHD &
RHD

72 1.00 0.2 0.2 0.1 1.3 1.00 Very good
43 1.00 0.1 0.1 0.1 0.0 1.00 Very good

Height &
BHD

72 1.00 0.2 0.2 0.1 1.3 0.99 Satisfactory
43 1.00 0.2 0.2 0.1 1.4 0.99 Acceptable

Height &
RHD

72 1.00 0.1 0.1 0.1 0.3 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good
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Table A2. Cont.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Polynomial:
second
degree

RHD
72 1.00 0.6 0.3 0.2 0.3 0.99 Satisfactory
43 1.00 0.9 0.4 0.2 2.1 0.99 Satisfactory

BHD
72 1.00 0.5 0.3 0.2 1.5 0.98 Acceptable
43 1.00 0.9 0.4 0.2 3.6 0.98 Poor

Height 72 1.00 1774 16 15 0.0 1.00 Very good
43 1.00 2636 19 13 0.9 1.00 Very good

BHD &
RHD

72 1.00 0.1 0.1 0.1 1.4 1.00 Very good
43 1.00 0.1 0.1 0.1 0.8 1.00 Very good

Height &
BHD

72 1.00 0.2 0.2 0.1 1.5 0.99 Satisfactory
43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable

Height &
RHD

72 1.00 0.1 0.1 0.1 0.2 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good

* A negative R-square is possible if the model does not contain a constant term and the fit is poor (worse than just
fitting the mean); na: not available; RHD: root height diameter; BHD: breast height diameter.

Table A3. The goodness of validation of all applied interpolation models in terms of the coefficient
of determination (R2), sum of squared errors (SSE), root-mean-square error (RMSE), mean absolute
error (MAE), as well as the concordance correlation coefficient (CCC) and simulation bias (SB) from
the observations.

Model Variable Data Gap
Representation R2 SSE RMSE MAE SB [%] CCC Label

Interpolant:
Nearest

Neighbor

RHD
72 1.00 4.8 0.8 0.5 2.3 0.97 Poor
43 1.00 12.6 1.3 0.9 0.4 0.93 Poor

BHD
72 1.00 4.0 0.8 0.4 1.0 0.97 Poor
43 1.00 8.9 1.1 0.8 0.0 0.92 Poor

Height 72 1.00 32,985 69 36 1.5 0.97 Poor
43 1.00 71,174 101 71 1.4 0.93 Poor

BHD &
RHD

72 1.00 6.0 0.9 0.5 6.8 0.97 Poor
43 1.00 12.6 1.3 0.9 0.4 0.93 Poor

Height &
BHD

72 1.00 6.3 0.9 0.5 8.7 0.95 Poor
43 1.00 8.9 1.1 0.8 0.0 0.92 Poor

Height &
RHD

72 1.00 6.5 1.0 0.5 5.2 0.97 Poor
43 1.00 12.6 1.3 0.9 0.4 0.93 Poor

Interpolant:
Linear

RHD
72 1.00 0.3 0.2 0.1 0.8 1.00 Very good
43 1.00 0.5 0.3 0.2 0.4 0.99 Very good

BHD
72 1.00 0.1 0.1 0.1 0.9 0.99 Satisfactory
43 1.00 0.4 0.2 0.2 0.0 0.98 Satisfactory

Height 72 1.00 211 5.0 2.0 0.4 1.00 Very good
43 1.00 3154 21 13 1.4 1.00 Very good

BHD &
RHD

72 1.00 0.3 0.2 0.1 1.5 1.00 Very good
43 1.00 0.0 0.1 0.0 0.2 1.00 Very good

Height &
BHD

72 1.00 0.1 0.1 0.1 1.3 0.99 Satisfactory
43 1.00 0.2 0.2 0.1 1.6 0.99 Satisfactory

Height &
RHD

72 1.00 0.2 0.2 0.1 0.5 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good

Interpolant:
Cubic

RHD
72 1.00 0.3 0.2 0.1 1.2 1.00 Very good
43 1.00 0.9 0.4 0.2 2.1 0.99 Satisfactory

BHD
72 1.00 0.1 0.1 0.1 0.7 0.99 Very good
43 1.00 0.9 0.4 0.2 3.6 0.98 Poor

Height 72 1.00 594 9.0 4.0 0.3 1.00 Very good
43 1.00 2636 19 13 0.9 1.00 Very good

BHD &
RHD

72 1.00 0.7 0.3 0.2 2.6 1.00 Satisfactory
43 1.00 0.1 0.1 0.1 0.8 1.00 Very good

Height &
BHD

72 1.00 0.1 0.1 0.1 1.0 0.99 Very good
43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable

Height &
RHD

72 1.00 0.4 0.2 0.1 1.8 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good

Interpolant:
PCHIP

RHD
72 1.00 0.2 0.2 0.1 0.8 1.00 Very good
43 1.00 1.0 0.4 0.2 2.1 0.99 Satisfactory

BHD
72 1.00 0.1 0.1 0.1 1.2 0.99 Satisfactory
43 1.00 1.1 0.4 0.2 3.6 0.98 Poor

Height 72 1.00 60 3.0 2.0 0.0 1.00 Very good
43 1.00 3398 22 16 0.9 1.00 Very good

BHD &
RHD

72 1.00 0.4 0.2 0.1 1.8 1.00 Very good
43 1.00 0.1 0.1 0.1 0.8 1.00 Very good

Height &
BHD

72 1.00 0.1 0.1 0.1 1.3 0.99 Satisfactory
43 1.00 0.3 0.2 0.1 2.3 0.99 Acceptable

Height &
RHD

72 1.00 0.2 0.2 0.1 0.8 1.00 Very good
43 1.00 0.1 0.1 0.1 1.1 1.00 Very good

RHD: root height diameter; BHD: breast height diameter.



Data 2019, 4, 132 15 of 16

References

1. Strelher, A. Technologies of wood combustion. Ecol. Eng. 2000, 16, 25–40. [CrossRef]
2. BWE. Bekanntmachung über die Förderung von Forschung und Entwicklung zur kosten- und

energieeffizienten Nutzung von Biomasse im Strom- und Wärmemarkt, Energetische Biomassenutzung.
BAnz AT 2005, B1, 1–7.

3. Christersson, L.; Verma, K. Short-rotation forestry—A complement to “conventional” forestry. Unasylva
2006, 223, 34–39.

4. Tsonkova, P.; Böhm, C.; Quinkenstein, A.; Freese, D. Ecological benefits provided by alley cropping systems
for production of woody biomass in the temperate region: A review. Agrofor. Syst. 2012, 85, 133–152.
[CrossRef]

5. Carl, C.; Biber, P.; Landgraf, D.; Buras, A.; Pretzsch, H. Allometric Models to Predict Aboveground Woody
Biomass of Black Locust (Robinia pseudoacacia L.) in Short Rotation Coppice in Previous Mining and
Agricultural Areas in Germany. Forests 2017, 8, 328. [CrossRef]

6. Ceulemans, R.; McDonald, A.J.S.; Pereira, J.S.A. A comparison among eucalypt, poplar and willow
characteristics with particular reference to a coppice, growth-modelling approach. Biomass Bioenergy 1996,
11, 215–231. [CrossRef]

7. Walle, I.V.; Camp, N.V.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple,
poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential.
Biomass Bioenergy 2007, 31, 276–283. [CrossRef]

8. Sims, R.E.H.; Maiava, T.G.; Bullock, B.T. Short rotation coppice tree species selection for woody biomass
production in New Zealand. Biomass Bioenergy 2001, 20, 329–335. [CrossRef]

9. Aravanopoulos, F.A.; Kimb, K.H.; Zsuffa, L. Genetic diversity of superior Salix clones selected for intensive
forestry plantations. Biomass Bioenergy 1999, 16, 249–255. [CrossRef]

10. Zewdie, M.; Olsson, M.; Verwijst, T. Above-ground biomass production and allometric relations of
Eucalyptus globulus Labill coppice plantations along a chronosequence in the central highlands of Ethiopia.
Biomass Bioenergy 2009, 33, 421–428. [CrossRef]

11. Sochacki, S.J.; Harper, R.J.; Smettem, K.R.J. Estimation of woody biomass production from a short-rotation
bio-energy system in semi-arid Australia. Biomass Bioenergy 2007, 31, 608–616. [CrossRef]

12. Diamantopolou, M.J. Filling gaps in diameter measurements on standing tree boles in the urban forest of
Thessaloniki, Greece. Environ. Model. Softw. 2016, 25, 1857–1865. [CrossRef]

13. Wang, G.; Garcia, D.; Liu, Y.; de Jeu, R.; Dolman, A.J. A three-dimensional gap filling method for large
geophysical datasets: Application to global satellite soil moisture observations. Environ. Model. Softw. 2012,
30, 139–142. [CrossRef]

14. Bärwolf, M.; Jung, L.; Harzendorf, D.; Prüfer, M.; Mürter, S. Schlussbericht zum Verbundvorhaben
AgroForstEnergie II.; Teilvorhaben 1: Ertragseffekte und Ökonomie; Abschlußbericht; Fachagentur für
Nachwachsende Rohstoffe: Gülzow, Germany, 2016; 263p.

15. Pretzsch, H. Forest Dynamics, Growth and Yield. from Measurement to Model; Springer: Freising, Germany, 2009;
671p. [CrossRef]

16. Takanashi, M. Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation
Algorithms: Assessing the Effects of Between-Imputation Iterations. Data Sci. J. 2017, 16, 37. [CrossRef]

17. Linder, A. Statistische Methoden für Naturwissenschaftler, Mediziner und Ingenieure, 2nd ed.; Verlag Birkhäuser:
Basel, Switzerland, 1951; 238p.

18. Mudra, A. StatistischeMethoden für landwirtschaftliche Versuche; Verlag Paul Parey: Berlin/Hamburg, Germany,
1958; 336p.

19. Rasch, D. Einf¨uhrung in die Biostatistik, 2nd ed.; Verlag Harri Deutsch: Frankfurt am Main, Germany, 1987;
276p.

20. Honaker, J.; King, G.; Blackwell, M. Amelia II: A Program for Missing Data. J. Stat. Softw. 2011, 45, 47.
[CrossRef]

21. Assmann, E. Untersuchungen über die Höhenkurven von Fichtenbeständen. Allg. Forst-und Jagdztg. 1943,
119, 77–88, 105–123, 133–151.

22. Korsun, H. Zivot normalniho porostu ve vzoroich (Das Leben des normalen Waldes in Formeln). Lesnicka Pr.
1935, 14, 289–300.

http://dx.doi.org/10.1016/S0925-8574(00)00049-5
http://dx.doi.org/10.1007/s10457-012-9494-8
http://dx.doi.org/10.3390/f8090328
http://dx.doi.org/10.1016/0961-9534(96)00035-9
http://dx.doi.org/10.1016/j.biombioe.2007.01.002
http://dx.doi.org/10.1016/S0961-9534(00)00093-3
http://dx.doi.org/10.1016/S0961-9534(98)00013-0
http://dx.doi.org/10.1016/j.biombioe.2008.08.007
http://dx.doi.org/10.1016/j.biombioe.2007.06.020
http://dx.doi.org/10.1016/j.envsoft.2010.04.020
http://dx.doi.org/10.1016/j.envsoft.2011.10.015
http://dx.doi.org/10.1007/978-3-540-88307-4
http://dx.doi.org/10.5334/dsj-2017-037
http://dx.doi.org/10.18637/jss.v045.i07


Data 2019, 4, 132 16 of 16

23. Michailoff, I. Zahlenmäßiges Verfahren für die Ausf¨uhrung der Bestandeshöhenkurven. Forstw. Cbl. 1943,
6, 273–279.

24. Petterson, H. Die Massenproduktion des Nadelwaldes. Mitt. d. schwed. Forstl. 1955, 45, 189.
25. Prodan, M. Messung der Waldbestände; JD Sauerländer’s Verlag: Frankfurt am Main, Germany, 1951; p. 260.
26. Pretzsch, H.; Forrester, D.I.; Rötzer, T. Representation of species mixing in forest growth models. A review

and perspective. Ecol. Model. 2015, 313, 276–292. [CrossRef]
27. Van der Werf, W.; Keesman, K.; Burgess, P.J.; Graves, A.R.; Pilbeam, D.; Incoll, L.D.; Metselaar, K.; Mayus, M.;

Stappers, R.; van Keulen, H.; et al. Yield-SAFE: A parameter-sparse, process-based dynamic model for
predicting resource capture, growth, and production in agroforestry systems. Ecol. Eng. 2007, 29, 419–433.
[CrossRef]

28. Graves, A.R.; Burgess, P.J.; Palma, J.; Keesman, K.J.; van der Werf, W.; Dupraz, C.; van Keulen, H.; Herzog, F.;
Mayus, M. Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production
and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in
Europe. Ecol. Model. 2010, 221, 1744–1756. [CrossRef]

29. Keesman, K.J.; Graves, A.; van der Werf, W.; Burgess, P.; Palma, J.; Dupraz, C.; van Keulen, H. A system
identification approach for developing and parameterising an agroforestry system model under constrained
availability of data. Environ. Model. Softw. 2011, 26, 1540–1553. [CrossRef]

30. Burgess, P.J.; Graves, A.; Metselaar, K.; Stappers, R.; Keesman, K.; Palma, J.; Mayus, M.; van der Werf, W.
Description of Plot-SAFE Version 0.3; Cranfield University: Silsoe, Bedfordshire, 15 September 2004; 52p,
Unpublished work.

31. Burgess, P.; Graves, A.; Palma, J.; Herzog, F.; Keesman, K.; van der Werf, W. EU SAFE Project Deliverable 6.4:
Parametrization of the Yield-SAFE Model and Its Use to Determine Yields at the Landscape Test Sites; Cranfield
University-Institute of Water and Environment: Silsoe, UK, 2005.

32. Palma, J.H.N.; Graves, A.R.; Bunce, R.G.H.; Burgess, P.J.; de Filippi, R.; Keesman, K.J.; van Keulen, H.;
Liagre, F.; Mayus, M.; Reisner, Y.; et al. Modeling environmental benefits of silvoarable agroforestry in
Europe. Agric. Ecosyst. Environ. 2007, 119, 320–334. [CrossRef]

33. Palma, J.H.N.; Paulo, J.A.; Tome, M. Carbon sequestration of modern Quercus suber L. silvoarable agroforestry
systems in Portugal: A YieldSAFE-based estimation. Agrofor. Syst. 2014, 88, 791–801. [CrossRef]

34. Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties
of European soils. Geoderma 1999, 90, 169–185. [CrossRef]

35. Ojeda, J.J.; Volenec, J.J.; Brouder, S.M.; Caviglia, O.P.; Agnusdei, M.G. Evaluation of Agricultural Production
Systems Simulator (APSIM) as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US
environments. GCB Bioenergy 2017, 9, 796–816. [CrossRef]

36. Kanzler, M.; Böhm, C. Nachhaltige Erzeugung von Energieholz in Agroforstsystemen (AgroForstEnergie
II): Teilvorhaben 2: Bodenschutz, Bodenfruchtbarkeit, Wasserhaushalt und Mikroklima Schlußbericht.
In Fachgebiet für Bodenschutz und Rekultivierung; Brandenburgische Technische Universität
Cottbus-Senftenberg: Cottbus, Germany, 2016.

37. Lamerre, J.; Langhof, M.; Sevke-Masur, K.; Schwarz, K.U.; von Wühlisch, G.; Swieter, A.; Greef, J.M.; Dauber, J.;
Hirschberg, F.; Joormann, I.; et al. Nachhaltige Erzeugung von Energieholz in Agroforstsystemen: Teilprojekt
3: Standort Niedersachsen, Strukturvielfalt und Biodiversität. Schlußbericht. In Institut für Pflanzenbau
und Bodenkunde; Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen (JKI): Braunschweig,
Germany, 2016.

38. Crous-Duran, J.; Graves, A.R.; Paulo, J.A.; Mirck, J.; Oliveira, T.S.; Kay, S.; García de Jalón, S.; Palma, J.H.N.
Modelling tree density effects on provisioning ecosystem services in Europe. Agrofor. Syst. 2018, 1–23.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ecolmodel.2015.06.044
http://dx.doi.org/10.1016/j.ecoleng.2006.09.017
http://dx.doi.org/10.1016/j.ecolmodel.2010.03.008
http://dx.doi.org/10.1016/j.envsoft.2011.07.020
http://dx.doi.org/10.1016/j.agee.2006.07.021
http://dx.doi.org/10.1007/s10457-014-9725-2
http://dx.doi.org/10.1016/S0016-7061(98)00132-3
http://dx.doi.org/10.1111/gcbb.12384
http://dx.doi.org/10.1007/s10457-018-0297-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Background and Summary 
	Data Description 
	Methods 
	Regression Analysis 
	Interpolation 
	Multiple Imputation 
	Forest Growth Functions 
	Process-Oriented Tree Growth Model 
	Statistical Analysis 

	Results and Discussion 
	Regression Analysis 
	Interpolation 
	Multiple Imputation 
	Forest Growth Functions 
	Process-Oriented Growth Model 

	Conclusions 
	
	References

