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Abstract: Vegetation encroachment in power line corridors has multiple problems for modern
energy-dependent societies. Failures due to the contact between power lines and vegetation can
result in power outages and millions of dollars in losses. To address this problem, UAVs have
emerged as a promising solution due to their ability to quickly and affordably monitor long corridors
through autonomous flights or being remotely piloted. However, the extensive and manual task that
requires analyzing every image acquired by the UAVs when searching for the existence of vegetation
encroachment has led many authors to propose the use of Deep Learning to automate the detection
process. Despite the advantages of using a combination of UAV imagery and Deep Learning, there is
currently a lack of datasets that help to train Deep Learning models for this specific problem. This
paper presents a dataset for the semantic segmentation of vegetation encroachment in power line
corridors. RGB orthomosaics were obtained for a rural road area using a commercial UAV. The dataset
is composed of pairs of tessellated RGB images, coming from the orthomosaic and corresponding
multi-color masks representing three different classes: vegetation, power lines, and the background.
A detailed description of the image acquisition process is provided, as well as the labeling task and
the data augmentation techniques, among other relevant details to produce the dataset. Researchers
would benefit from using the proposed dataset by developing and improving strategies for vegetation
encroachment monitoring using UAVs and Deep Learning.

Dataset: https://doi.org/10.5281/zenodo.7800234

Dataset License: Licensed under Creative Commons Attribution 4.0 International.

Keywords: vegetation encroachment monitoring; semantic segmentation; power line corridors; UAV;
deep learning; GIS

1. Summary

Vegetation encroachment in power line corridors is a relatively new field of research.
In 2012, [1] carried out a study where interruptions to the transmission and distribution of
electric power from vegetation encroachment were documented as one of the most common
cases of interruption, generating problems mainly in plants and industries. Some of the
statistics presented in this study that was carried out in Malaysia are as follows: About
18% of the power cuts that had been generated in the country were related to vegetation
that had come into contact with the transmission lines, becoming the third cause of power
cuts in the country. In 2003, the United States and Canada, with nearly 50 million users,
representing 11% of the population of both countries, suffered power cuts due to invasion
by vegetation onto power lines. In the same year, in Italy and Switzerland, about 60 million
users were left without a power supply. In more recent studies, such as [2], the authors
identified the costs generated by 30 min of disconnection in a medium–large company to
be USD 16,500, which equates to approximately USD 94,000 for an 8 h suspension.
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The authors in [2] mentioned the techniques that are available to review invasions
on transmission lines. These techniques are field trips through visual inspection, aerial
surveillance, aerial multispectral imaging, and LiDAR scanning. They present different
disadvantages, such as high costs, inaccuracy, operation complexity, and time consumption.
In particular, for field trips, there is the difficulty of making long journeys and problems
related to terrain conditions. For this reason, the same authors encourage Deep Learning to
be applied for transmission line inspection tasks, where a combination of these techniques
with drones can fulfill multiple tasks, all of which are necessary for transmission networks,
ensuring low costs, efficiency, and the ability to obtain images with higher resolutions.
Optical images obtained by drones are the best option for the collection of information, due
to their ease of collection and analysis and the value they generate by detecting a wide
range of common and component failures. They show that the invasion by vegetation is
one of the most challenging areas and, where there is less research, recommend the use of
automatic flows that combine the tasks of line detection and treatment of the “background”
of the image.

Despite all the advantages of using UAV imagery and Deep Learning, there is a lack of
datasets that allows neural networks for semantic segmentation to be trained. Deep Learning
models applied in this field need to solve multiple challenges, such as the following:

• The power line corridor class has a very low pixel percentage versus the vegetation
and the background classes, and also, due to the embedding vector similarity of
objects in neural networks, and the difference in geometry between the vegetation
class (polygon) and power line corridors (lines), it becomes a challenge to train [3];

• The vegetation class is only one, but an extensive variety exists, with different colors,
shapes, and heights;

• There are many cases where power lines overlap vegetation, making semantic seg-
mentation more complicated.

Research studies have developed and used power lines datasets produced with other
techniques; for instance, [4] used a LiDAR sensor mounted in a UAV to perform a mapping
survey in the Malaposta quarry. With the resultant LiDAR cloud, they created an algorithm
able to segment an input 3D point cloud into power line polylines. In [5], the authors
developed a dataset of ground images using a conventional camera, simulated a vegetation
encroachment onto a power line, and varied the distance and range of the camera vision.
The authors in [6] used a real-word industry dataset composed of power tower images
and associated condition ratings; this dataset was taken by helicopter inspection surveys
of electricity lines. The authors in [7] proposed a dataset using high-resolution satellite
images, where the labels show whether each pixel is part of a tree or not; this dataset was
used for mapping vegetation risk along the power lines. In [8], the authors worked with
satellite images from three sources; namely: Google Maps, Google Earth, and ESRI Imagery,
and with different resolutions and scales, they collated images with high-density and
low-density vegetation regions along a power line corridor. The authors in [9] constructed
a dataset for transmission lines with four categories: insulators, fault insulators, hammers,
and fault hammers. Due to the unavailability of power line datasets, [10] rendered synthetic
images of power lines using the Physically Based Rendering (PBR) approach and performed
a series of data augmentation techniques to generate more training data. In [11], the authors
used an unmanned helicopter LiDAR system and created two datasets; primary objects in
both datasets included transmission lines, high forest trees, and a few low-rise buildings.
Power companies possess datasets for component fault detection, and for the recognition
of insulators, towers, and conductors, all of which are summarized in [12]. The authors
in [7] produced a dataset using high-resolution satellite imagery, where the labels show
whether or not every pixel is part of a tree; this dataset was used for mapping vegetation
encroachment along the power lines. In [8], the authors worked with satellite images of
different spatial resolutions and sources like Google Maps, Google Earth, and ESRI. They
collected images containing high-density and low-density vegetation regions along power
line corridors. Also, in [7], the costs of using drones, airplanes, and helicopters to inspect



Data 2023, 8, 128 3 of 12

power lines were compared, and calculated from EUR 60 to 1300 per linear kilometer of
power line. The authors also mentioned the disadvantages of using satellite imagery, such
as the low resolution, which hinders providing the details needed to detect vegetation
encroachment, and the imagery’s unavailability in certain zones and dates. The proposed
dataset in this paper accounts for those inefficiencies and opens the possibility of having
up-to-date data of a specific region of interest at a low price, compared with other methods.
Figure 1 shows some of the mentioned datasets found in the scientific literature.
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Figure 1. Multiple existing datasets. (a) Simulated vegetation encroachment and mask [5]. (b) An 
oblique insulator image and bounding box with a mixture of porcelain and glass insulators [6]. (c) 
RGB image and ground truth mask for vegetation [7]. (d) Vegetation density classification results 
along a power line corridor [8]. (e) The prediction result of object detection and semantic segmen-
tation in transmission lines components [9]. (f) An image of a power line and pixel-level annota-
tion mask [10], adapted and modified from [5–10]. 

Semantic segmentation is a computer vision task, in which every pixel of an image 
is labeled with a class it belongs to [13]. When an image is parsed, its objects are deline-
ated and tagged [14]. Since it is a classification task, the classes on which the semantic 

Figure 1. Multiple existing datasets. (a) Simulated vegetation encroachment and mask [5]. (b) An
oblique insulator image and bounding box with a mixture of porcelain and glass insulators [6]. (c) RGB
image and ground truth mask for vegetation [7]. (d) Vegetation density classification results along a
power line corridor [8]. (e) The prediction result of object detection and semantic segmentation in
transmission lines components [9]. (f) An image of a power line and pixel-level annotation mask [10],
adapted and modified from [5–10].

Semantic segmentation is a computer vision task, in which every pixel of an image is
labeled with a class it belongs to [13]. When an image is parsed, its objects are delineated and
tagged [14]. Since it is a classification task, the classes on which the semantic segmentation
algorithm is trained are key decisions [15]. In the semantic segmentation datasets, every
image is labeled at pixel level into classes, resulting in an image-mask paired set, which is
why these types of datasets are also called paired datasets [16].

This paper proposes the VEPL dataset, the Vegetation Encroachment in Power Line
Corridors dataset, which consists of images and corresponding masks for three classes:
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the vegetation, the power lines, and the background. Images were obtained from UAV-
generated orthomosaics. The main contributions of this paper are:

• Providing a dataset of optic images. This was acquired with a consumer-grade UAV,
which is an accessible and low-price tool for companies and governments, making it
simple to replicate and use Deep Learning techniques [17];

• Showing a way to obtain a multi-label orthorectified paired dataset, in which image-
masks pairs allow the training of Deep Learning models for the semantic segmentation
of vegetation encroachment phenomena.

The VEPL dataset is described in the next section.

2. Data Description

The VEPL dataset was obtained through a series of autonomous drone flights, per-
formed at around 30 m height from the ground. The chosen area of interest is located on a
secondary road in Envigado, Colombia, South America. The elevation above the sea level
of the area is 2500 m, and the predominant vegetation is tropical rainforest, also known as
the tropical moist forest [18]. This type of vegetation is characterized by being dense and
lush, with tall trees and many plant species.

Similarly to [19], where the authors described a methodology for obtaining a UAV-
paired dataset that included multiple steps, we began with UAV imagery acquisition,
digitization of objects into layers to produce masks, rasterization of the layers, and finally,
tessellation of all rasters. Finally, data augmentation occurs, and an imbalance or empty
mask check is executed to obtain the resulting dataset.

The VEPL images were taken along a road, ensuring the inclusion of power lines,
which are commonly situated alongside this type of infrastructure. A total distance of
2.4 km was covered along the road. An orthomosaic of the covered area was obtained using
commercial photogrammetric software. This orthomosaic was semi-automatically labeled
on the screen by digitizing three classes: class 1 (or vegetation), composed of trees and high
shrubbery, with an RGB value of (0, 255, 0); class 2 (or power lines), composed of all visible
power lines, which means that they are not inferred when hidden under vegetation, with
an RGB value of (110, 110, 110); and class 0 (or background), with an RGB value of (0, 0, 0).

The image tessellation into the image mask pairs, with a size of 256 × 256, produced
65,852 examples. However, due to the high presence of the background class alone, it was
important to make an imbalance check and remove those image masks with more than 90%
of background [19]. After this process, the resultant number of image mask pairs was 3566,
where a final check was developed to guarantee the presence of the power line class in all the
images, so those pairs that do not have any pixel of this class were deleted. The remaining
size of the dataset was 532 image mask pairs. Finally, geometric and spectral augmentation
were carried out using the 532 examples, with the aim of improving the generalization
ability of deep learning models [20]. The total pairs obtained after geometric augmentation
were 3724, while 3192 pairs were the resultant amount for the spectral augmentation.
Section 3 describes this process in more detail. Table 1 summarizes the orthomosaics
characteristics and the total number of examples per class and orthomosaic. Figure 2 shows
examples of images and corresponding multi-class masks of the VEPL dataset.

The dataset is comprised of four folders, one for the original image mask pairs, a
second one for the image mask pairs with geometric augmentation, a third one for the
image mask pairs with spectral augmentation, and the remaining folder for the original
orthomosaics and their corresponding raster masks, in case readers want to create a new or
modify the dataset, using for instance, a different tessellation size or data augmentation
procedure. Notice that all the image masks are numbered in ascending order. Table 2
summarizes the dataset specifications.
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Table 1. Orthomosaics characteristics and the number of examples per class and orthomosaic (this
does not contain data augmentation).

Orthomosaics Class 0 (Background) Class 1 (Vegetation) Class 2 (Power Lines) Total

Cols, Rows: 26,898; 35,093
GSD 1.26, Size: 2.70 GB
Format: TIFF, Bands: 3

Pixel Depth: 8 Bit
Spatial Reference:
GCS_WGS1984

103 examples 115 examples 115 examples 333 examples

Cols, Rows: 42,591; 20,637
GSD 1.06, Size: 2.46 GB
Format: TIFF, Bands: 3

Pixel Depth: 8 Bit
Spatial Reference:
GCS_WGS19842

155 examples 166 examples 166 examples 487 examples

Cols, Rows: 27,885; 16,436
GSD 0.91, Size: 1.28 GB
Format: TIFF, Bands: 3

Pixel Depth: 8 Bit
Spatial Reference:
GCS_WGS19842

82 examples 94 examples 94 examples 270 examples

Cols, Rows: 47,780; 41,390
GSD 1.35, Size: 5.53 GB
Format: TIFF, Bands: 3

Pixel Depth: 8 Bit
Spatial Reference:
GCS_WGS19842

149 examples 157 examples 157 examples 463 examples

Table 2. The VEPL dataset specifications.

Item Description

Field of application Vegetation encroachment in power lines corridors
Collected data Aerial images

Method for data acquisition Drone flights
Used drone DJI Mavic 2 Pro

Camera resolution and sensor size 20 Mpx, 1 inch CMOS
Software for processing collected data and products Agisoft Metashape

GSD of obtained orthomosaics and DSM 0.9 to 1.35 cm/px
Method of annotation Semi-automatically in GIS

Dataset production Scripts in Jupyter Notebook
Language for scripts Python 3.8
Used GIS software ArcGIS 10.8

Number of classes and objects Three: vegetation, power lines, background
Number of orthomosaics Four

Data collected by Authors of this paper
Year of collection 2023

Segmentation dataset Multi-class color
Additional information RGB

Dataset size 3.88 Gb compressed
Image format .jpg

Image quantity
The dataset is divided into 12 TIF images (4 orthomosaics, DSM, and mask),

532 images (after tessellation), 3192 images (with spectral augmentation),
and 3724 (with geometric augmentation)

Image-mask size 256 × 256 px
RGB Image average memory size 16 Mb

RGB, Mask, Image spectral resolution 3 bands
RGB, Mask Image radiometric resolution 8 bits

RGB, RG-DSM, Mask Image Coordinate System WGS1984
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Figure 2. VEPL image—mask example of the dataset. (a) RGB image, with a size of 256 × 256. (b) Cor-
responding multi-label mask with vegetation class (green), power line class (gray), and background class
(black). (c) RGB image with geometric data augmentation applied (RandomRotate90). (d) RGB image
with spectral data augmentation applied (CLAHE, Apply Contrast Limited Adaptive Histogram
Equalization).

3. Methods

The prevalence of drone orthomosaics is on the rise, owing to their effortless functional-
ity, affordable pricing for both consumer and professional drones, as well as comprehensive
methodologies that empower researchers to generate valuable datasets and yield meaning-
ful insights [16,19]. All the processes used to produce the VEPL dataset are presented next.

3.1. Data Acquisition and Processing

The UAV imagery was acquired using a DJI Mavic 2 Pro drone. Autonomous drone
flights were conducted with a frontal overlap of 85% and a lateral overlap of 75% to ensure
the production of high-quality orthomosaics. Individual images, taken by the drone, were
processed in Agisoft Metashape photogrammetric commercial software [21], obtaining
the orthomosaics and the digital surface model (DSM). The workflow is based on [19]
and summarized in Figure 3, which illustrates the acquisition and processing of images to
obtain the orthomosaics and the DSM.
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3.2. Data Labelling 
The data labeling process was conducted, making use of the ArcGIS software tools. 

A polygon GIS layer, in shapefile format (*.shp), was created by manually digitizing eve-
ry vegetation object. This task was performed at a scale between 1:20 and 1:50 for all the 
obtained orthomosaics, trying to delineate most of the object’s details and creating an in-
teger field called “Class” with an assigned value of 1. The power line corridors were ob-

Figure 3. Drone data acquisition and processing workflow; images are processed in AgiSoft software
to obtain drone orthomosaics and DSM. Adapted and modified from [19].

The pixel size of the obtained orthomosaics is between 0.9 and 1.3 cm, this measure
is called the Ground Sample Distance (GSD), and it represents the physical pixel size of
an image. A GSD of 10 cm is equal to say that a pixel has a spatial extent of 10 cm [16].
Figure 4 zooms in on an orthomosaic and its corresponding DSM.
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Figure 4. (a) Drone orthomosaic zoom in. (b) DSM zoom in. Only orthomosaics are used to produce
the VEPL dataset; corresponding DSMs are provided for future work. This orthomosaic has a GSD of
1.26 cm/px.

3.2. Data Labelling

The data labeling process was conducted, making use of the ArcGIS software tools.
A polygon GIS layer, in shapefile format (*.shp), was created by manually digitizing every
vegetation object. This task was performed at a scale between 1:20 and 1:50 for all the
obtained orthomosaics, trying to delineate most of the object’s details and creating an
integer field called “Class” with an assigned value of 1. The power line corridors were
obtained by applying the buffer GIS tool, with a buffer distance of 3 cm, to the initial lines
digitized by hand, generating polygons with a 6 cm width per line. Note that the labeled
power lines correspond to only those lines that are visually perceivable by the human eye.
This is because power lines hidden under the vegetation were deliberately excluded. The
decision not to label power lines occluded by the vegetation was made to avoid misleading
Deep Learning models. Including such inferred data could introduce ambiguity and
potentially compromise the model’s ability to accurately distinguish between the power
lines and the vegetation. Class value 2 was assigned to power line polygons. Figure 5
shows a labeled image, class 1 (the vegetation), and class 2 (the power lines).
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Figure 5. Data labeling in ArcGIS. Power line corridors are labeled with red lines and the vegetation
class is labeled with gray polygons. After labeling, the colors mentioned for the classes are assigned.

The background class (class 0) comprises areas that do not correspond to vegetation,
or the power line corridors. The following steps are performed automatically using GIS
tools to obtain a raster mask with the same extension of input orthomosaics; this process is
repetitive for every available orthomosaic:

• To create a union between polygons of the vegetation class and the power line corri-
dor class;

• To use an Identity GIS tool between the previous result and the area of interest. The
output is a polygon layer that contains all the 3 classes. Rasterize the previous layer
using the “Class” field;

• To export the previous rater to a .tiff format with 8-bit radiometric resolution. The
whole process should guarantee the use of the same spatial reference system. Figure 6
shows the labeling steps and the final raster output.
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Figure 6. Labeling process. (a) The initial portion of the orthomosaic is to be labeled. (b) Union of
vegetation and buffer of power line corridors. (c) Final raster. The mask has the same size, coordinate
system, and properties as the input orthomosaic.
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3.3. Data Tessellation and Imbalance Check

The data tessellation process and the code used are also based on the workflow
proposed in [19]. Every orthomosaic and corresponding mask raster layer are tessellated
together into 256 × 256 pixels image mask pairs, and saved to two separate folders, RGB
and Mask, in png format. All the images are named with integer numbers in ascending
order; initially, 65.852 image mask pairs were obtained after the tessellation of the four
orthomosaics available.

Datasets for semantic segmentation define a visual phenomenon; however, large
datasets are not always available for sufficient Deep Learning model training in the real
world. Furthermore, the number of examples of a dataset is important, but so are the
acquisition process, the devices and lighting conditions used, and the labeling steps, among
many other factors. All of those may cause a dataset to be biased [22]. Training a model
on a biased dataset tends to perform well on the training dataset, but fails to generalize in
real-case scenarios [23,24].

Compared to the ones belonging to the negative class, having enough positive pixel
examples within an image is always a challenge. When one of the classes in the dataset
is dominant against the other, it is called data imbalance [16]. In the VEPL dataset, an
imbalance check is conducted; it does not only care about the positive instances, when the
vegetation encroachment exists, but also when the negative class is dominant. To conduct
the imbalance check, images and corresponding masks with more than 90% of background
class were deleted. This avoids the unbalanced presence of pixels of that class. This step is
important to allow neural networks to generalize better in the vegetation and the power
line corridor classes. Since the power lines are a minor class, all the images that do not have
any pixel of that class were deleted; this step ensures that all images contain the power
line corridor class and the deletion of images where only background or vegetation was
present. The remaining number of images in the dataset after the deletion was 532.

Scripts for the imbalance check and deletion can be downloaded from the GitHub direc-
tory of this paper https://github.com/macanoso/GeoAI/blob/master/Tesellation_Code.
ipynb (accessed on 5 April 2023). Figure 7 shows the workflow used for the tessellation
and the imbalance check of the dataset.
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3.4. Dataset Bias
Data Augmentation

Data augmentation is a technique developed to increase the diversity and number of
dataset examples. The principal difference with other techniques to avoid over fittings, like
dropout, batch normalization, and transfer learning, is that data augmentation approaches
overfitting from the root of the problem, the data itself [20,23,25]. Data augmentation is
divided into two general categories:

• Traditional: Images are transformed using a combination of affine transformations
(rotation, reflection, scaling, and shearing) and color or spectral modification;

• Synthetic: Based on Deep Learning models like Generative Adversarial Networks
(GANs), where an unsupervised generation of images is performed. One of the
networks generates images (the generator) which tries to fool another network (the
discriminator) that is trained to distinguish fake from real images. Other strategies are
CNN-based methods, like random erasing [26].

In the VEPL dataset, although there is no big difference in the number of examples
per class (Table 1), an imbalance exists at the pixel level in the total number of pixels for

https://github.com/macanoso/GeoAI/blob/master/Tesellation_Code.ipynb
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every target class. This is due to the fact that power line corridors are straight and narrow
polygons versus the wide-area polygons that represent the vegetation or the background.
To increase the number of examples available in the dataset and its diversity, mitigate
class imbalance, and improve generalization, geometric and spectral augmentation were
performed over the original VEPL dataset [16,20,26].

• Geometric augmentation: alters the image’s geometry to make neural networks agnos-
tic to object changes in position and orientation [27]. It may perform random rotations,
grid distortion, horizontal flips, shift scale, and elastic deformation. We implemented
the Albumentations library for the geometric augmentation of the images and cor-
responding masks of the dataset [23]. The total pairs obtained through this process
were 3724;

• Spectral augmentation: pursues to make models robust to image changes in lighting
and color [27]. The spectral augmentation techniques used in the original VEPL
dataset were Random Brightness and Contrast, Hue Saturation Changes, Gaussian
Blur Filter, Gamma Correction, and CLAHE (Contrast Limited Adaptive Histogram
Equalization) [23]. The total image pairs obtained through spectral augmentation
were 3192.

Figure 8 shows some examples of both augmentation procedures.
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4. Conclusions

This work presents the VEPL dataset, which was developed to allow the training
of Deep Learning models for the semantic segmentation of vegetation encroachment in
power line corridors using high-resolution aerial drone orthomosaics. It consists of 3192
image mask pairs after spectral augmentation, and 3724 image mask pairs after geometric
augmentation. Masks are multi-class, where the vegetation class, the power line corridor
class, and the background class are represented by a different color. An imbalance check at
the pixel level was carried out to aim for model regularization. Although vegetation object
masks were produced by manual digitization, power line masks were produced semi-
automatically using a buffer GIS tool, speeding up the labeling process. The background
class was obtained automatically by an identity operation in ArcGIS Software. Scripts in
Python were used and provided for the tessellation, and for the pairing and the removal of
image masks that contain no power line objects.

The proposed dataset instanced the workflow presented in [19] for a dataset produc-
tion, in this case for vegetation encroachment in power line corridors, which may become
a benchmark to compare the common approaches based on satellite imagery and LiDAR
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data [4,7]. Compared to those two default techniques, UAV optical images have a higher
spatial resolution, are easy to acquire, are cheaper, and are up to date, versus satellite
images, where the availability of specific areas of interest, and the temporal and spatial
resolution may be a problem. LiDAR data is more expensive to acquire, but also, LiDAR 3D
points require high computational power and software-specific tools, which makes it more
difficult to analyze. In summary, the use of orthomosaics obtained by consumer-grade
UAVs and Deep Learning models could allow users to perform vegetation encroachment at
a lower cost, with more detail, in less time, and, most importantly, in near real-time, as com-
pared to satellite images and LiDAR approaches. The main challenges when producing this
dataset were labeling the three classes, the high resolution of drone imagery, and the large
number of kilometers involved in the area of interest. Nonetheless, this dataset pays off the
effort by helping the AI community to create models that automatically segment vegetation
encroachment in power lines using drone imagery. It may bring a solution for monitoring
several kilometers in less time and more economically. The use of semantic segmentation
in vegetation encroachment may help to accurately identify, delineate, and measure the
extent of vegetation encroachment, facilitating in this way the effective maintenance and
the development of mitigation strategies.

5. Future Work

Following is the proposed future work:

• To add other classes to the dataset, like power poles and conductors, among others.
Also, to increase the dataset size in terms of a larger number of orthomosaics, including
other types of vegetation;

• To include DSM information for making inferences about height and obtain a more
precise segmentation. Differences in height between the vegetation and the power
lines can be determined, creating, in this way, an alert of possible contact in a 3D space;

• To use other techniques of data augmentation, such as synthetic augmentation;
• To implement different Deep Learning models on the proposed dataset and evaluate

their performance.
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