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Abstract: The present article is intended to serve an educational purpose for data scientists and
students who already have experience with the R language and which to start using it for geospatial
analysis and map creation. The basic concepts of raster data, vector data, CRS and datum are first
presented along with a basic workflow to conduct reproducible geospatial research in R. Examples of
important types of maps (scatter, bubble, choropleth, hexbin and faceted) created from open-source
environmental data are illustrated and their practical implementation in R is discussed. Through these
examples, essential manipulations on geospatial vector data are demonstrated (reading , transforming
CRS, creating geometries from scratch, buffer zones around existing geometries and intersections
between geometries).
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1. Introduction

The R language [1] is a popular open-source tool for data analysis and generation of
figures for scientific communication [2,3]. The open and collaborative nature of R allows its
wide and varied user community to continuously extend its capabilities through “packages”
hosted in repositories (the main of which is the Comprehensive R Archive Network (CRAN),
https://cran.r-project.org (accessed on 20 March 2024).

Through the years, literate programming capabilities (generation of documents from
code script) have been added to R through several packages (namely knitr [4–6], RMark-
down [7–9], bookdown [10,11]) and, more recently, through the multi-language and multi-
engine Quarto software (https://quarto.org/ (accessed on 20 March 2024)). Literate pro-
gramming has raised an ever-growing interest in the scientific community for several
years for two reasons. First, and most importantly, it drastically improves transparency
and computational reproducibility of scientific research, which has been identified as a
critical point undermining the reliability of the scientific literature reliability in many
fields and disciplines, including Earth and environmental sciences [12,13]. An increasing
number of journals require that the raw data and scripts for data analysis be submitted
along with manuscripts, and some of them already accept submission in Rmarkdown
format [14]. The second reason is that it allows scientists to conveniently combine data
analysis, figure generation and manuscript preparation (with automatic management of
editing aspects such as formatting, bibliography, cross references. . . ) in one single and
convenient tool. Plentiful resources can be relied on to learn about using R for literate
programming (e.g., [7,8,10,15,16]).

Numerous packages also brought geospatial information system (GIS) capabilities to R,
making it a mainstream tool for reproducible GIS analysis [17,18]. Two significant examples
include terra [19] and sf [20], both relying on external popular libraries (such as S2 [21],
GEOS [22], GDAL [23] and PROJ [24]). Many packages can be used to produce maps in
R, from general-purpose ones (such as base [1] ggplot2 [25] extended with ggspatial [26]) to
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specialized ones (such as tmap [27], cartography [18], leaflet [28], ggmap [29], mapdeck [30]
or mapview [31]).

The present article aims to present the basics of geospatial analysis, geospatial data
manipulations and map types with example application using the R language. This tutorial
article focuses on the package sf [20] for geospatial data manipulation and on the package
ggplot2 [25] for generating maps. The full RMarkdown script and the datasets used to
prepare this manuscript available in Supplementary Materials.

2. The Basics of GIS and Geospatial Analysis
2.1. Geospatial Data Types and Formats

Vector and raster data are two fundamental types of data structures used in GIS [32].
Vector data represent discrete entities (features) as points, lines, and polygons encoded
through the coordinates of their vertices [32]. Vector data types are suitable for discrete
measurements and complex geometries such as lines (e.g., rivers) and polygons (e.g.,
countries) [32]. Raster data represent spatial information as a grid of cells or pixels, where
each cell holds a value representing a specific attribute or phenomenon [32]. They can
be used to represent continuous data such as land cover acquired through teledetection
(satellite and drone imagery).

Geospatial data can be stored in various file formats. Table 1 lists some commonly
encountered GIS formats.

Table 1. Examples of commonly used GIS data formats.

Common
Designation File Extension(s) Type Normative Reference

shapefile .shp, .shx, .dbf... vector [33]
geoJSON .geojson vector [34]

geopackage .gpkg vector and raster [35]
geoTIFF .tif, .tiff raster [36]

Vector data formats (such as shapefile, geopackage and geoJSON) can be read in R using
sf :: st_read [20] whereas raster data such as geoTIFF can be read using raster :: raster [37].
In addition to these specialized formats, GIS data are also commonly found in .csv and .xlsx for-
mats. These file formats can be read using utilis :: read . csv [1] and openxlsx :: read . xlsx [38],
respectively, and then converted to objects of class sf using sf :: st_as_sf [20], specifying
the columns to use as coordinates and the CRS. Further details on GIS file formats can be
found in [39].

2.2. Coordinate Reference System (CRS)

A coordinate reference system (CRS) is a framework used to define the positions
of objects on the Earth’s surface. It consists of a coordinate system, which defines how
coordinates are represented, and a datum, which specifies the reference point, orientation,
and scale of the coordinate system [32,40].

There are two types of CRS: geographic and projected. Geographic CRSs represent
the Earth’s surface as an ellipsoidal surface (specified in the datum) and refer to positions
and distances as angles [32,40]. Projected CRSs represent Earth’s surface projections of
geographic CRS on a virtual cone, cylinder or plane at a given location in space, with a
given orientation, etc. The projection can then be represented on a flat surface (e.g., paper
or screen) by “unfolding” the cylinder or cone [32,40]. Projected CRSs represent positions
and distances as Cartesian coordinates on that flat surface. Although more practical for
representation and some computation (as distance units can be expressed in metres or feet),
the projection process always induces distortion [32,40].

Coordinate reference systems can be identified in different ways. The most currently
common ways are the EPSG (European Petroleum Survey Group) identifier and the more
complete WKT2 (“well-known text”) defined by the Open Geospatial Consortium [33] and
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transposed in ISO 19162 [41]. Table 2 lists some common CRS. Most often, countries use a
specific CRS for maximum accuracy.

Table 2. Examples of commonly used CRS.

Common Designation Type EPSG Code Unit Main Application

World Geodetic System 1984 (WGS84) Geodetic 4326 degree Global Positioning System (GPS)
Pseudo-Mercator (web Mercator) Projected 3857 metre Web services

Europe Lambert Equal Area
(ETRS89/LAEA Europe) Projected 3035 metre Europe

NAD83 Projected 4269 degree North America
SIRGAS 2000/UTM zone 16N Projected 31970 metre Latin America

In R, the CRS of an object of class sf can be consulted using sf :: st_crs [20], and the
CRS of an object can be modified using sf :: st_transform [20].

2.3. Workflow

The first step of spatial analysis is to find the supporting data that are necessary to
contextualize the data set of interest. These can be coasts and national/administrative
borders locations, land use data, hydrographic data, demographic data, etc. Such data can
be obtained from national and international geographic, demographic and statistical insti-
tutions (such as Eurostat and the Joint Research Center for the European Union) in formats
such as .csv or shapefiles which are read in R using utils :: read.csv [1] and sf :: st_read [20],
respectively. Useful data can also be imported directly through specific packages such as
rnaturalearth [42] and rnaturalearthdata [43] (data from https://www.naturalearthdata.com/
(accessed on 20 March 2024)), giscoR [44] (data from the geospatial open data repository of
the European commission (GISCO)), geodata [45] (data from various sources).

After some data manipulation (examples are provided through the examples in the
next section, further examples can be found in chapter 5 of [40]), maps can be generated
using various packages. The present tutorial relies on the popular ggplot2 package [25]
relying on the “grammar of graphics” paradigm [46] according to which the different
elements of the plot (axis, labels, geometries. . . ) are added in “layers” that can be controlled
independently of each other, allowing fine tuning. Using ggplot2 functions, each layer
is separated with “+”. The function ggplot2::geom_sf [25] 1 is designed to handle data
from objects of class sf. The function ggplot2::coord_sf [25] 2 is used to control the area
displayed on the map with the xlim and ylim arguments (the value supplied is interpreted
in the distance unit of the CRS). Finally, as their name suggests, the functions ggspatial ::
annotation_scale and ggspatial :: annotation_north_arrow [26] are used to add a scale and an
indication of direction, respectively. Finally, figures can be exported in common formats
such as .png and .svg using ggplot2 :: ggsave [25].

Valuable resources and tutorials on geospatial analysis in R can be found in [32,40,47,48].

3. Example of Common Map Types
3.1. Scatter Map

A scatter map is the simplest type of map used to represent data points on a map,
usually with a color proportional to a given variable. In this first example, a scatter map
representing the soil organic carbon (SOC) content measured across Germany (data from
Poeplau et al. [49]) is prepared.

The data are first loaded from tidyr :: xlsx files using openxlsx :: read . xlsx [38] and
stored as objects of class df. The mean SOC is calculated for each sampling location using
dplyr :: group_by and dplyr :: summarise [50]. The measurement and sampling location data
are merged using base :: merge [1]. The data are converted to an object of class sf using
sf :: st_as_sf [20], specifying the columns to use as coordinates and the CRS.

The background map of the European Nomenclature of Territorial Units for Statistics
(NUTS) is loaded using giscoR :: gisco_get_nuts [44]. This function allows us to down-
load the map with three available CRS: EPSG 4326 (default), EPSG 4258, EPSG 3035 and

https://www.naturalearthdata.com/
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EPSG 3857. Since the ESPG of the data is EPSG 25832, the CRS of either the data or the map
must be changed to match the other. In the present example, the CRS of the map is changed
because EPSG 25832 is more accurate for the region of interest. A dummy boolean variable
is created to indicate whether the polygon belongs to Germany or not. This variable is used
later to distinguish Germany from other countries on the maps.

#Load sites and measurement data, calculate mean SOC
SOC_sites<-read.xlsx("SOC dataset/SITE.xlsx")
SOC_measurement<-read.xlsx("SOC dataset/LABORATORY_DATA.xlsx") |>
group_by(PointID) |>
summarise(meanTOC=mean(TOC))

#Merge location and mean SOC measurement data
SOC_data<-merge(
x=SOC_sites,
y=SOC_measurement,
by="PointID")

#Convert df to sf (CRS: UTM32N or EPSG 25832)
SOC_sf<-st_as_sf(
x=SOC_data,
coords=c("xcoord","ycoord"),
crs="EPSG:25832")

#Read map of EU with regions and transform to same CRS
europe_sf<-gisco_get_nuts(nuts_level = "2") |>
st_transform(crs="EPSG:25832")

#Mark polygons belongign to Germany
europe_sf$Germany<-europe_sf$CNTR_CODE=="DE"

When generating plots using ggplot2 [25], the default color scale fits the whole range
of the data for the represented variable. In frequent cases (e.g., presence of outliers or
highly skewed distribution), most data may fall within a narrow range of the color scale,
making it rather uninformative. In the present example, this is overcome by scaling the
minimum and maximum values of the scale to specific quantiles using the limits argument
of viridis :: scale_color_viridis [51] and by adding the argument oob=scales :: squish [52]
(which replaces out of bounds (oob) values with the closest limit). The viridis color
scales have the advantage of remaining readable with color-blindness [51]. The axis
range of the map is defined by supplying values from sf :: st_bbox [20] (which calculates a
bounding box of its input) to ggplot2 :: coord_sf [25] to automatically “zoom” on the area of
interest. The functions ggplot2 :: scale_fill_manual [25] and ggplot2 :: guides [25] are used to
assign a distinct color to Germany and hide the legend for the associated dummy variable,
respectively. The resulting map is shown in Figure 1.

map_range<-st_bbox(SOC_sf)

ggplot() +
geom_sf(
data=europe_sf,
mapping=aes(
fill=Germany),
color="black")+
geom_sf(
data=SOC_sf,
mapping=aes(color=meanTOC),
size=0.4)+
scale_color_viridis(
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option="C",
limits = c(
quantile(SOC_sf$meanTOC,probs=0.1,na.rm=TRUE),
quantile(SOC_sf$meanTOC,probs=0.9,na.rm=TRUE)),
oob=squish)+
scale_fill_manual(
values=c("gray80","gray90"))+
guides(
fill = FALSE)+
labs(
caption="Background map data: © EuroGeographics for the administrative boundaries",
color="Mean SOC (g/kg)")+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
annotation_scale(
location="br")+
annotation_north_arrow(
location="br")+
theme_bw()+
theme(
plot.caption=element_text(size=7))

100 km N
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51°N

52°N

53°N

54°N

55°N
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15

20

Map source: © EuroGeographics for the administrative boundaries

Figure 1. Scatter map of mean soil organic carbon (SOC) in Germany measured in the period 2011–2018.

In the following example, a map of the watercourses with a long-term average discharge higher
than 10 m³/s in Germany along with a buffer zone of 20 km around them is generated to exemplify
line geometries and buffer zones (the data are taken from the HydroRIVERS dataset [53]). First, the
hydrographic data are read from a shapefile, the CRS of the data is transformed to the same CRS as
the map and only watercourses with a flow higher than 10 m³/s are retained using dplyr :: filter [50].
Then, a buffer zone of 20 km around all watercourses is calculated using sf :: st_buffer [20]. Since a
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buffer is calculated for each line segment, all buffers are melted together using sf :: st_union [20]. The
result is shown in Figure 2.

#Load data
HydroRIVERS<-st_read("HydroRIVERS dataset/HydroRIVERS_v10_eu.shp") |>
filter(ORD_FLOW<6) |>
st_transform(crs=paste("EPSG",st_crs(europe_sf)$epsg,sep=":"))

#Calculate a (single) buffer around all watercourses
#dist is in same unit as the CRS
buffer<-st_buffer(
x=HydroRIVERS,
dist=20000) |>
st_union()

# Generate map
ggplot()+
geom_sf(
data=europe_sf,
mapping=aes(
fill=Germany),
color="black")+
geom_sf(
data=buffer,
fill="skyblue",
color="#00000000",
alpha=0.4)+
geom_sf(
data=HydroRIVERS,
color="blue",
size=0.5)+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
scale_fill_manual(
values=c("gray80","gray90"))+
guides(
fill = FALSE)+
labs(
caption="Background map data: © EuroGeographics for the administrative boundaries")+
annotation_scale()+
annotation_north_arrow(
location="br")+
theme_bw()+
theme(
plot.caption=element_text(size=7))
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Figure 2. Watercourses with a long-term average discharge higher than 10 m³/s in central Europe
according to their flow.

3.2. Choropleth Maps
A choropleth map is a type of map where arbitrary areas (usually administrative) are colored

accordingly with a given variable (usually an aggregate statistic). Choropleth maps are most useful
when the data are meaningful to the geographic segmentation (e.g., economic and demographic data
such as per capita income, gross domestic product. . . ).

In the example below, a choropleth map is used to represent the soil organic carbon (SOC)
content measured across Germany. First, each point is associated with the NUTS in which it is located
using sf :: st_intersection [20]. The mean for each NUTS is calculated and joined with the corresponding
geometries. The geometries must be dropped from the means with sf :: st_drop_geometry [20] since
sp :: merge can only join an object of class sf with an object of class df. The resulting choropleth map is
shown in Figure 3.

#Assign each data point to a country
intersection<-st_intersection(SOC_sf,europe_sf)

#Calulate mean for each NUTS.
meanPerNUTS<-intersection |>
st_drop_geometry() |>
group_by(NUTS_ID) |>
summarise(
meanTOC=mean(meanTOC))

#Remove data outside of Germany
meanPerNUTS[which(grepl("DE",meanPerNUTS$NUTS_ID)==FALSE),"meanTOC"]<-NA

#Join calculated means to corresponding country in sf object
germany_sf_SOC<-merge(
x=europe_sf,
y=meanPerNUTS,
all.x=TRUE)



Data 2024, 9, 58 8 of 21

map_range<-st_bbox(SOC_sf)

ggplot()+
geom_sf(
data=germany_sf_SOC,
mapping=aes(fill=meanTOC),
color="white")+
scale_fill_viridis(
option="C",
na.value="gray60",
limits=c(
quantile(germany_sf_SOC$meanTOC,probs=0.1,na.rm=TRUE),
quantile(germany_sf_SOC$meanTOC,probs=0.9,na.rm=TRUE)),
oob=squish)+
labs(
fill="Mean SOC (g/kg)",
caption="Background map data: © EuroGeographics for the administrative boundaries")+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
theme_bw()+
theme(
plot.caption=element_text(size=7))
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53°N

54°N

55°N

 6°E  8°E 10°E 12°E 14°E

Mean SOC (g/kg)

10

20

30

Map source: © EuroGeographics for the administrative boundaries

Figure 3. Choropleth map of mean soil organic carbon (SOC) in Germany measured in the period
2011–2018 (continuous variable).

Choropleth maps are also commonly used to represent categorical variables as well. In the following ex-
ample, the color scale is discretized by setting the argument discrete = TRUE in viridis :: scale_fill_viridis [51].
The result is shown in Figure 4.
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#Definition of breaks
nbreaks<-6
binWidth<-round(((quantile(germany_sf_SOC$meanTOC,probs=0.9,na.rm=TRUE)-
quantile(germany_sf_SOC$meanTOC,probs=0.1,na.rm=TRUE))/nbreaks)/5)*5
roundedMedian<-round(median(germany_sf_SOC$meanTOC,na.rm=TRUE)/5)*5
bins<-roundedMedian+((0-nbreaks/2):(0+nbreaks/2))*binWidth
bins[1]<-(-Inf)
bins[nbreaks]<-(Inf)

germany_sf_SOC$category<-cut(
x=germany_sf_SOC$meanTOC,
breaks=bins)

ggplot()+
geom_sf(
data=germany_sf_SOC,
mapping=aes(fill=category),
color="white")+
scale_fill_viridis(
option="C",
discrete=TRUE,
na.value="gray50")+
labs(
fill="Mean SOC (g/kg)",
caption="Background map data: © EuroGeographics for the administrative boundaries")+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
theme_bw()+
theme(
plot.caption=element_text(size=7))

48°N
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50°N

51°N

52°N

53°N

54°N

55°N

 6°E  8°E 10°E 12°E 14°E

Mean SOC (g/kg)

(5,10]

(10,15]

(15,25]

(25, Inf]

NA

Map source: © EuroGeographics for the administrative boundaries

Figure 4. Choropleth map of mean soil organic carbon (SOC) in Germany measured in the period
2011–2018 (discretized).
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3.3. Hexbin Map

Hexbins are the two-dimensional analogs of histograms with hexagon-shaped cells.
Hexbin maps are somewhat in-between scatter maps and choropleth maps: they can be
used to represent aggregate data over space, but unlike choropleth maps, the segmentation
is regular and not related to a meaningful characteristic such as a national border. The
relevance of the information communicated depends heavily on the granularity (i.e., cell
size). Hexbins should only be used for relatively small areas (e.g., country or smaller), as
the wider the area represented on a map, the more distorted the cells will be in the real
space when applied to a planar projection.

Square counterparts also exist (“fishnets” maps). The process of generating a fishnet map
can be assimilated into the conversion of vector data to raster data (“rasterization”) [40].

In the following example, the mean soil organic carbon (SOC) content measured across
Germany is represented in a hexbin map. To achieve this, a hexagon grid covering the
data is generated using sf :: st_make_grid [20] with the argument square = FALSE (this step
is also called tesselation) and formatted into an object of class sf using sf :: st_sf [20]. The
desired cell size is specified with the argument cellsize. The value for this argument must be
supplied with a unit compatible with the unit specified in the CRS, which can be specified
with units :: as_units [54]. It follows that it is not straightforward to set a cell size area when
the unit of the CRS is degrees (which is the case for the widespread EPSG 4326).

Since ggplot2 :: coords_sf [25] displays an area slightly larger than the one specified
using ggplot2 :: coord_sf [25], the tesselation is performed on an area expanded by a factor
0.25 compared to the area of interest covered by the data. The result is shown in Figure 5.

#Define interest of area
SOC_bbox<-st_bbox(

SOC_sf,
crs=paste("EPSG",st_crs(SOC_sf)$epsg,sep=":"))

#Calculate width and height of interest area
width <- SOC_bbox[3] - SOC_bbox[1]
height <- SOC_bbox[4] - SOC_bbox[2]

#Define a larger area for tesselation
expansion_factor<-0.25

SOC_bbox_expanded<-SOC_bbox+c(
width*-expansion_factor,
height*-expansion_factor,
width*expansion_factor,
height*expansion_factor)

#Tesselation
grid<-st_make_grid(
x=SOC_bbox_expanded,
square=FALSE,
cellsize=as_units(1500, "km2")) |>
st_sf()

#Assign a unique ID to each cell
grid$cellID<-1:nrow(grid)

#Assign each data point to a cell
intersection2<-st_intersection(grid,SOC_sf) |>
st_drop_geometry()

#Calculate mean concentration in each cell
meanPerCell<-intersection2 |>
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group_by(cellID) |>
summarise(meanTOC=mean(meanTOC))

#Join mean with their respective cell
grid<-merge(
x=grid,
y=meanPerCell,
all.x=TRUE)

#Generate map
ggplot()+
geom_sf(
data=grid,
mapping=aes(
fill=meanTOC),
alpha=0.9,
color="#00000000")+
geom_sf(
data=filter(europe_sf),
color="white",
fill="#00000000")+
scale_fill_viridis(
option="C",
na.value="gray50")+
coord_sf(
xlim=c(SOC_bbox$xmin,SOC_bbox$xmax),
ylim=c(SOC_bbox$ymin,SOC_bbox$ymax)

)+
labs(
fill="Mean SOC (g/kg)",
caption="Background map data: © EuroGeographics for the administrative boundaries")+
theme_bw()+
theme(
plot.caption=element_text(size=7))

48°N
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50°N
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52°N

53°N

54°N

55°N

 6°E  8°E 10°E 12°E 14°E
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25
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75

100

Map source: © EuroGeographics for the administrative boundaries

Figure 5. Hexbin map of mean soil organic carbon (SOC) in Germany measured in the period
2011–2018 (tesselation performed on a planar projection).
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In the previous example, the grid was generated in such a way that hexagons have the
same size on the projected map. Because of the projection, the actual area of the hexagons
is not exactly identical. The broader the geographic area covered, the higher the deviation
between cells.

Alternatively, it is possible to generate a grid with cells of actual regular size/area
using the package dggridR. A dggr object representing the desired grid is obtained with
dggridR:: dgconstruct [55]. The resolution parameter is selected from 0 to 30 (each resolution
corresponds to a given division of Earth’s surface; the corresponding number of cells and
area can be consulted by running dggridR:: dginfo [55]). Various grids are available. In the
present example, the default grid (“ISEA3H”) is used.

The function dggridR:: dgrectgrid is then used to generate the grid as an object of class
sf based on the dggr object and coordinates of the bounding box covering the area of
interest in degree longitude/latitude. The following steps are identical to the first hexbin
map example. The result is shown in Figure 6.

#Get grid information
grid2<-dgconstruct(
res=9,
metric=TRUE)

#Transform CRS of expanded bbox to EPSG 4326
SOC_bbox_expanded_4326<-st_sf(geometry=st_as_sfc(SOC_bbox_expanded)) |>
st_transform(crs="EPSG:4326") |>
st_bbox()

#Generate grid as sf object
grid3<-dgrectgrid(
dggs=grid2,
minlon=SOC_bbox_expanded_4326[1],
minlat=SOC_bbox_expanded_4326[2],
maxlon=SOC_bbox_expanded_4326[3],
maxlat=SOC_bbox_expanded_4326[4]) |>
st_transform(crs=paste("EPSG",st_crs(SOC_sf)$epsg,sep=":"))

#Assign each data point to a cell
intersection3<-st_intersection(grid3,SOC_sf) |>
st_drop_geometry()

#Calculate mean concentration in each cell
meanPerCell<-intersection3 |>
group_by(seqnum) |>
summarise(meanTOC=mean(meanTOC))

#Join mean with their respective cell
grid3<-merge(
x=grid3,
y=meanPerCell,
all.x=TRUE)

#Generate map
ggplot()+
geom_sf(
data=grid3,
mapping=aes(
fill=meanTOC),
alpha=0.9,
color="#00000000")+
geom_sf(
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data=filter(europe_sf),
color="white",
fill="#00000000")+
scale_fill_viridis(
option="C",
na.value="gray50")+
coord_sf(
xlim=c(SOC_bbox$xmin,SOC_bbox$xmax),
ylim=c(SOC_bbox$ymin,SOC_bbox$ymax)

)+
labs(
fill="Mean SOC (g/kg)",
caption="Background map data: © EuroGeographics for the administrative boundaries")+
theme_bw()+
theme(
plot.caption=element_text(size=7))

48°N

49°N

50°N

51°N

52°N

53°N

54°N

55°N

 6°E  8°E 10°E 12°E 14°E

Mean SOC (g/kg)

25

50

75

100

Map source: © EuroGeographics for the administrative boundaries

Figure 6. Hexbin map of mean soil organic carbon (SOC) in Germany measured in the period
2011–2018 (tesselation performed before planar projection).

The main disadvantage of the dggridR approach is that the cell area must be selected
among available ones.

3.4. Bubble Map

A bubble map is very similar to a scatter map, except that the sizes of the dots (or
another shape) are proportional to a variable (instead or in addition to color).

In the following example, a bubble map is used to illustrate the mean concentration
of particulate matter with an aerodynamic diameter smaller than 10 µm (PM10) across
the United Kingdom in the period 2016–2019 (source data: [56,57]). Again, the data
are read from tabular format (in this case, .csv) and converted to an object of class sf
using sf :: st_as_sf [20]. Since the CRS is not specified, the default WGS84 (EPSG 4326) is
assumed. To produce a more accurate map, the CRS is changed to the British National Grid
(EPSG 27700), a more specific CRS for this region. The CRS of the map is also changed to
match the CRS of the data.

For this example, the location data were deliberately converted to a simple feature
before merging with the measurement data. When merging an object of class sf with an
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object of class df using sp :: merge [58], the first must be supplied to the x argument and the
second to the y argument.

#Read data from .csv
UKStations<-read.csv("UK air quality dataset/site_location_data.csv")
UKAirPoldata<-read.csv("UK air quality dataset/UK_air_quality_data.csv")

#Convert object to sf and change CRS to EPSG 27700
UKStations_sf<-st_as_sf(
x=UKStations,
coords=c("longitude","latitude"),
crs="EPSG:4326") |>
st_transform(crs="EPSG:27700")

#Retrieve map of european countries only in EPSG 27700
UK_sf_27700<-gisco_get_countries(country="United Kingdom") |>
st_transform(crs=paste("EPSG",st_crs(UKStations_sf)$epsg,sep=":"))

#Calulate mean for each station
UK_PM10_mean<-UKAirPoldata |>
drop_na(PM10_mean) |>
group_by(site_id) |>
summarise(
PM10_mean=mean(PM10_mean))

#Append calculated means to corresponding geometry in sf object
UKStations_sf$PM10_mean<-UK_PM10_mean$PM10_mean[
match(UKStations_sf$site_id,UK_PM10_mean$site_id)]

A single combined legend for multiple aesthetics (size and color) can be obtained
by using ggplot2 :: guides and supplying ggplot2 :: guide_legend [25] to arguments of each
aesthetic. The labels in the legend for both aesthetics (specified using ggplot2 :: labs [25])
must also be identical. The map obtained is displayed in Figure 7.

#Calculate range of data of interest
map_range<-st_bbox(UK_sf_27700)

ggplot()+
geom_sf(
data=UK_sf_27700)+
geom_sf(
data=UKStations_sf,
mapping=aes(
size=PM10_mean,
color=PM10_mean),
shape=16,
alpha=0.5)+
scale_color_gradientn(
colours=c("royalblue2","green","tomato"))+
guides(
color=guide_legend(),
size=guide_legend())+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
labs(
size="PM10 (µg/m³)",
color="PM10 (µg/m³)",
caption="Background map data: © EuroGeographics for the administrative boundaries)+
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theme_bw()+
theme(
plot.caption=element_text(size=7))
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Map source: © EuroGeographics for the administrative boundaries

Figure 7. Bubble map representing the mean PM10 concentration across the UK in the period 2016–2019.

3.5. Faceted Map

In a faceted map, data are subsetted into groups and a map is generated for each
group. The generated maps are typically displayed in a grid layout. Faceted maps are
a common way of representing geospatial data at different points in time or for other
categorial variables.

The following example shows how to produce a faceted map of the maximum daily
PM10 concentration per year in the UK in the period 2016–2019. First, the year is extracted
from the timestamps of each measurement with base :: format [1]. Then, means are calculated
for each station and each year.

The faceted map is generated in the same way as a bubble map, except that the function
ggplot2 :: facet_wrap [25] is added. The result is shown in Figure 8.

#Convert timestamp from YYYY-mm-dd to YYYY
UKAirPoldata$year<-format(as.Date(UKAirPoldata$timestamp, format="%Y-%m-%d"),"%Y")

#Calulate mean for each station
UK_PM10_yearlymax<-UKAirPoldata |>
drop_na(PM10_max) |>
group_by(site_id,year) |>
summarise(
PM10_max=max(PM10_max))

#Append calculated means to corresponding geometry in sf object
UK_PM10_yearlymax_sf<-merge(UKStations_sf,UK_PM10_yearlymax)

#Calculate range of data of interest
map_range<-st_bbox(UK_sf_27700)
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ggplot()+
geom_sf(
data=UK_sf_27700)+
geom_sf(
data=UK_PM10_yearlymax_sf,
mapping=aes(
size=PM10_max,
color=PM10_max),
alpha=0.4)+
scale_color_gradientn(
colours=c("royalblue2","green","tomato"))+
guides(
color=guide_legend(),
size=guide_legend())+
coord_sf(
xlim=c(map_range$xmin,map_range$xmax),
ylim=c(map_range$ymin,map_range$ymax))+
labs(
size="PM10 (µg/m³)",
color="PM10 (µg/m³)",
caption="Background map data: © EuroGeographics for the administrative boundaries")+
theme_bw()+
theme(
plot.caption=element_text(size=7),
plot.margin = unit(c(0.4,0.4,0.4,0.4), "cm"))+
facet_wrap(vars(year))

2018 2019

2016 2017

 6°W 4°W 2°W 0°  6°W 4°W 2°W 0°

50°N

52°N

54°N

56°N

58°N

60°N

50°N

52°N

54°N

56°N

58°N

60°N

PM10 (µg/m³)

500

1000

1500

2000

Map source: © EuroGeographics for the administrative boundaries

Figure 8. Maximum daily PM10 concentration per year in the UK in the period 2016–2019.

3.6. Insets

Some countries have remote non-contiguous territories such as overseas territories
which are not convenient to represent on a map while respecting their actual position
on the globe. In such cases, insets are useful. There are several approaches already
documented on the web for this task, e.g., using cowplot [59] 3,4,5 or only using gg-
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plot2 6. In the following example, the last approach is used to represent a map of the
United States with insets for Hawaii and Alaska based on simple features extracted using
rnaturalearth :: ne_countries [42]. The result is shown in Figure 9.

#Load map of USA
USA<-ne_countries(country="United States of America")

#Recover sf for each region
USA_mainland_sf<-st_crop(
x=USA,
xmin=-130,xmax=-60,
ymin=20,ymax=50)

Alaska_sf<-st_crop(
x=USA,
xmin=-125,xmax=-175,
ymin=50,ymax=75)

Hawaii_sf<-st_crop(
x=USA,
xmin=-162,xmax=-140,
ymin=18,ymax=23)

#Generate plot for each inset
Alaska_inset<-ggplot()+
geom_sf(
data=Alaska_sf)+
theme_bw()+
theme(
axis.text=element_blank(),
axis.ticks=element_blank(),
plot.margin = unit(c(0,0,0,0), "cm"))

Hawaii_inset<-ggplot()+
geom_sf(
data=Hawaii_sf)+
theme_bw()+
theme(
axis.text=element_blank(),
axis.ticks=element_blank(),
plot.margin = unit(c(0,0,0,0), "cm"))

#Generate map with insets
ggplot()+
geom_sf(
data=USA_mainland_sf)+
annotation_custom(
grob=ggplotGrob(Alaska_inset),
xmin=-65,
xmax=-78,
ymin=25,
ymax=34)+
annotation_custom(
grob=ggplotGrob(Hawaii_inset),
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xmin=-115,
xmax=-126,
ymin=24,
ymax=33)+
theme_bw()
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Figure 9. Map of the United States of America with Alaska and Hawaii insets.

4. Conclusions

The present tutorial article briefly presented the concepts of vector data, raster data
and coordinate reference systems. The implementation of basic vector geospatial data
representation and operations (reading, creating geometries from scratch, buffers from
existing geometries, intersecting geometries. . . ) using the R language was demonstrated.
Finally, the main types of maps and their generation and fine tuning through R were
described. The present tutorial can be used as a teaching resource for data scientists and
students beginners in geospatial analysis. The full RMarkdown script and the datasets
used to prepare this manuscript available in Supplementary Materials.

Supplementary Materials: The full RMarkdown script used to prepare this manuscript and the .bib
file containing the bib-liographic references can be downloaded at: https://www.mdpi.com/article/
10.3390/data9040058/s1.
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GIS Geospatial Information System
CRS Coordinate Reference System
SOC Soil Organic Carbon
NUTS Nomenclature of Territorial Units for Statistics

Notes
1 Technical documentation on this function is available in the vignette at https://cran.r-project.org/web/packages/ggplot2

/ggplot2.pdf (accessed on 20 March 2024)
2 Technical documentation on this function is available in the vignette at https://cran.r-project.org/web/packages/ggplot2

/ggplot2.pdf (accessed on 20 March 2024)
3 https://dieghernan.github.io/202203_insetmaps/ (accessed on 20 March 2024)
4 https://upgo.lab.mcgill.ca/2019/12/13/making-beautiful-maps/ (accessed on 20 March 2024)
5 https://r-spatial.org/r/2018/10/25/ggplot2-sf-3.html (accessed on 20 March 2024)
6 https://r-spatial.org/r/2018/10/25/ggplot2-sf-3.html (accessed on 20 March 2024)
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