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Simple Summary: Lumpy skin disease virus (LSDV) poses a significant threat to the livestock
industry, causing considerable economic losses due to decreased animal productivity, hide quality,
and reproductive efficiency. In China, the goat pox vaccine (AV41 strain) has been used to combat
LSDV; previous detection methods could not easily differentiate between LSDV and the vaccine
strain. The real-time recombinase polymerase amplification (RPA) method developed in this study
offers a rapid, specific, and sensitive solution for detecting LSDV, reducing diagnostic time, and
minimizing the risk of false positives. The high consistency of this method with the real-time PCR
recommended by the World Organisation for Animal Health (WOAH) further highlights its potential
for widespread application in clinical diagnosis and LSDV detection in China. By enabling more
accurate and efficient diagnosis, this novel technique can help improve disease prevention and control
strategies, ultimately benefiting the livestock industry and reducing economic losses.

Abstract: Lumpy skin disease virus (LSDV) infection, accompanied by loss of hide quality, poor
reproductive efficiency, consistent degenerative emaciation, and milk yield reduction of animals,
causes severe economic implications in endemic zones. The heterologous attenuated goat pox
(GTPV) vaccine (AV41 strain) was used in China to prevent LSDV infection. Only a few LSDV
detection methods that distinguish LSDV from GTPV vaccine strains have been reported before. For
simple, rapid, and specific detection of LSDV, the real-time recombinase polymerase amplification
(RPA) method was established with the specific primers and probes designed according to the
conserved regions of ORF132 gene sequences. The assay could be finished within 20 min at a constant
temperature (39 °C). This method had a limit of detection (LOD) of 15 copies/pL for LSDV and
no cross-reaction with the nucleic acids of goat pox virus, infectious bovine rhinotracheitis virus,
Pasteurella multocida, and bovine healthy tissue. Furthermore, 43 clinical samples were detected
by this method and the real-time PCR recommended by the World Organisation for Animal Health
(WOAH), with a kappa value, was 0.94. These results demonstrated that the real-time RPA method
for detecting LSDV developed in this study was characterized by high sensitivity and specificity,
which has wide application value in the clinical diagnosis and detection of LSDV in China.

Keywords: lumpy skin disease; lumpy skin disease virus; real-time recombinase polymerase
amplification; specific detection; bovine

1. Introduction

Lumpy skin disease (LSD) is a contagious viral disease caused by the causative agent
lumpy skin disease virus (LSDV) with a double-stranded DNA genome of approximately
151 kb. LSDV, which belongs to the Capripoxvirus genus within the Poxviridae family,
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is closely related to the other Capripoxvirus, goat pox virus (GTPV) and sheep pox virus
(SPPV) [1]. The three viruses have several subtle genetic variations, causing differences in
the pathogenesis and host range of the capripoxviruses, especially the presence of LSDV
and GTPV-specific gene ORF132 [2,3].

LSDV can infect cattle and buffalos naturally, displaying pyrexia, generalized pox
lesions of the skin and internal organs, and generalized lymphadenopathy. Additionally, it
causes a significant reduction in milk yield in cows and can induce temporary or permanent
infertility in bulls [4,5]. Historically, LSD was first reported in Africa [6]. However, due
to economic development and increased trade, its geographic distribution has expanded
dramatically, recently affecting the Middle East, the European continent, and Central
Asia [7,8]. More recently, LSD has started spreading into East Asia and South Asia, like
China [9], India [10], Bangladesh [11], Thailand [12], and Vietnam [13]. The spreading of
LSD caused substantial economic losses in the local cattle industry [14,15].

At present, the effective strategy for LSDV eradication and control is vaccination,
which can utilize either heterologous vaccine preparations, typically based on sheep pox
or goat pox viruses, or homologous LSDV vaccines, such as the Neethling vaccine and
KSGP 0240 [16]. For biosafety reasons, the Ministry of Agriculture and Rural Affairs of
the People’s Republic of China only recommends vaccinating susceptible animals with
a heterologous attenuated goat pox AV41 strain vaccine. In most cases, using the live
attenuated vaccine to prevent LSD is effective [17]. However, the live attenuated vaccine
could also replicate in vaccinated animals and cause adverse reactions in some clinical
cases [18,19]. Therefore, developing an effective specific surveillance tool is necessary to
differentiate LSDV from the GTPV vaccine strain.

Recombinase polymerase amplification (RPA) is an isothermal amplification technique
that relies on three essential enzymes: recombinase (for primer-template DNA pairing),
DNA polymerase (for amplification and extension), and single-stranded DNA-binding
protein (for stabilizing the DNA configurations). The RPA system is conducted without
the need for a complex thermal cycler and can be completed within 30 min at a constant
temperature (3742 °C) using a simple water bath. The inclusion of a specific fluorescent
probe in the RPA system enables real-time monitoring, referred to as real-time RPA [20].

In this study, a real-time RPA assay for the detection of lumpy skin disease virus was
established and compared for consistency with the real-time PCR recommended by the
World Organisation for Animal Health (WOAH). This method can be more convenient for
LSDV detection without affecting the accuracy of the test results, especially for some farms
with simple test conditions. More importantly, it is also significant for the availability of
diagnostic assays capable of specific detection for LSDV isolates but not GTPV vaccine
strains.

2. Materials and Methods
2.1. Strains of Virus, Bacteria Strains, and Clinical Samples

Goat pox virus (GTPV, AV41 strain), Infectious bovine rhinotracheitis virus (IBRV,
LY strain), and Pasteurella multocida (HY strain) were preserved in our laboratory. A total
of 32 positive clinical samples of LSD, including EDTA blood, nasal and oral swabs, and
skin nodule tissue, were supplied by the animal disease prevention and control center of
Guangdong Province. Our laboratory obtained 11 negative clinical samples and healthy
bovine tissue from different farms and stored them at —20 °C until use.

2.2. DNA Extraction

The DNA of the virus from clinical samples was extracted using the QlAamp DNA
mini kit (Qiagen, Dusseldorf, Germany) according to the manufacturer’s instructions and
was stored at —80 °C until needed.
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2.3. Primers and Probes Design

The LSDV ORF132 sequence (MH646674, position 119,870-120,400) was obtained from
GenBank and aligned with the GTPV AV41 vaccine strain using the multiple sequence
alignment tool DNAMAN (the versions 7.0.2.176). After alignment and analysis, a specific
primer-probe set (Table 1) that can differentiate the GTPV AV4lvaccine and LSDV strains
was designed according to the TwistAmp exo kit manual (TwistDX, Cambridge, UK).
Meanwhile, Primer-blast in NCBI was run to check the specificity of the primers and probes.
Then, the primers and probes were synthesized by Sangon Biotech Co., Ltd. (Shanghai,
China).

Table 1. Primers sequence and probe for the RPA assay.

Name Sequence 5'-3’ Amplicon Length (bp)
LSD-F TATAMTGGTCTATTTTTAACTTTTTTATGCAAT
LSD-R GAYAACAACACTTTTTCCTTATCTAAAGAGYC

LSD-Pro TAATTCACTTTTAACTTTTTTATTAT /i6FAMAT/A/idSp/A 176

/iBHQ1dT/CCATCGATACATGTA-C3 Spacer

2.4. Generation of Standard DNA

The ORF132 gene fragment of LSDV was incorporated into the recombinant plasmid
pUC57-ORF132, which was synthesized by Sangon Biotech Co., Ltd. DNA concentration
was quantified using Thermo Scientific NanoDrop Lite (Wilmington, DE, USA), and the
copy number was calculated as the following equation:

¢ X 6.022 x 105

Number of copies per L. = n x 660

where c = concentration of pUC57-ORF132 (g/uL); n = number of base pairs in a single
pUC57-ORF132.

2.5. Real-Time RPA Assay

The RPA assay was performed in a 50 pL volume recommended by the TwistAmpTM
exo lyophilized kit (TwistDX, Cambridge, UK). The reaction system included 29.5 uL of
rehydration buffer, 1.5 puL of forward and reverse primer (10 uM), a 1 pL probe (10 uM),
a5 uL DNA template, 2.5 uL of magnesium acetate (280 mM), and 9 pL of nuclease-free
water. A reaction mixture using ultrapure water instead of a DNA template served as a
negative control. The RPA assay was performed in an MA-1600 isothermal fluorescence
PCR system (Molarray, Suzhou, China) at 39 °C for 20 min in the 6-carboxy-fluorescein
(FAM) channel. The threshold time (TT) was calculated based on the “fluorescence increase
above threshold” when the RPA reaction was completed.

2.6. Analytical Sensitivity and Specificity Test

To determine the sensitivity of the RPA assay, the pUC57-ORF132 plasmid was di-
luted in a 10-fold gradient with nuclease-free water to 103 copies/uL, 102 copies/pL,
10 copies/uL, and 1 copy/uL. The assay was carried out three times. The estimated detec-
tion limit is determined when all replicates in each dilution step (TT value presents) are
detected. Then, several gradient concentration plasmids were prepared near the estimated
detection limit, and each concentration was repeatedly detected 20 times. The lowest
detection limit was the concentration level, with a positive detection rate of more than 95%.

The nucleic acid of GTPV, IBRYV, Pasteurella multocida, and healthy bovine tissue was
tested to evaluate the assay’s specificity, and the positive and negative controls were also
simultaneously run.
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2.7. Validation of Performance Using Clinical Samples

The performance of the RPA assay was evaluated with 43 clinical samples. For
comparison, all the samples were tested with the real-time PCR method recommended by
the WOAH in parallel [21]. The RPA assay’s diagnostic sensitivity and specificity were
evaluated with the WOAH real-time PCR as the standard. The kappa value and p-value
were calculated using SPSS for Windows version 22 (SPSS, Chicago, IL, USA), as reported
previously [22,23], and p-value (p) < 0.05 was considered as statistically significant.

3. Results
3.1. Primer and Probe Selection
Through the multiple sequences alignment and analysis, the selected forward primer

sequence (LSD-F) has a difference of 5 bases from the GTPV AV41 vaccine strain, including
a 4-nt deletion (TTTT). The reverse primer (LSD-R) and the probe (LSD-Pro) sequence have

differences of 3 bases and 7 bases from the vaccine strain, respectively (Figure 1).

LSD-F 33
LSD-Pxo 0
LSD-R 0
GTPV_AV41 (MH381810) 95
LSDV/Kenya (MNO72619) 89
LSDV/KSGP_0240 (KX€83219) 89
LSDV/China_GDOl_2020_(_MW355944.1) 89
LSDV/Cro2016 (MG972412) 89
LSDV/EvrosGR1S (KY829023) 89
LSDV/Israel_2012_(KX894508) 89
LSDV/Neethling_2490 (AF325528) 89
LSDV/Neethling_vaccine_LW_1959 (AF409138) 89
LSDV/Neethling_Warmbaths_LW (AF409137) 89
LSDV/Neethling-LSD_vaccine-OBP (KX764645) 89
LSDV/RussiaDagestan_2015 (MH893760) 89
LSDV/SERBIABujanovac2016 (KY702007) 89
LSD-F 33
LSD-Pxro 49
LSD-R 32

GTPV_AV41 (MH381810)

LSDV/Kenya (MN0O72619)

LSDV/KSGP_0240 (KX€83219)
LSDV/China_GDO1_2020_(_MW355944.1)
LSDV/Cro2016 (MG972412)

LSDV/EvrosGR15 (KY829023)
LSDV/Israel_2012_(KX894508)
LSDV/Neethling_2490 (AF325528)
LSDV/Neethling_vaccine_l.w_l 959 (AF409138)
LSDV/Neethling_Warmbaths_LW (AF409137)
LSDV/Neethling—LSD_vaccine-—OBP (KX764645)
LSDV/RussiaDagestan_2015 (MH893760)
LSDV/SERBIABujanovac2016 (KY702007)

Positive control

Figure 1. Multiple sequence alignment of the real-time RPA assay sequences with GTPV AV41 vaccine
strain and different LSDV isolates.

3.2. Analytical Sensitivity and Specificity Analysis

For the analytical sensitivity test, serial dilutions of pUC57-ORF132 plasmid were
used to determine the LOD. The results showed that the detection rate of 10° copies/uL,
102 copies/uL, and 10 copies/uL was 100%, and 1 copy/pL was not detected in the three
duplicate assays (Figure 2), so 10 copies/uL was taken as the estimated detection limit.
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Figure 2. Analytical sensitivity analysis of the real-time RPA assay. 10-fold gradient dilutions of
pUC57-ORF132 plasmid ranging from 103 to 10° copies/pL were used as the template for estimating
the detection limit. The (A—C) represents three replications.
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Samples with gradient concentrations of 15 copies/uL, 10 copies/uL, 5 copies/uL,
and 1 copy/uL were prepared near the estimated detection limit, and each concentration
was repeated 20 times. The results showed that the detection rates of samples with concen-
trations of 15 copies/uL and 10 copies/puL were 100% and 90%, respectively. The detection
rate of 5 copies/ L is 50%, and 1 copy/uL is not detected (Table 2), so the 15 copies/pL is
determined as the LOD.

Table 2. Minimum detection limit test results.

Re.actlon 15 Copies/uL 10 Copies/uL 5 Copies/uL 1 Copy/uL
Times
TT Value (min) Result TT Value (min) Result TT Value (min) Result TT Value (min) Result
1 00:11:04 + 00:14:42 + 00:17:44 + Unde -
2 00:10:16 + 00:14:46 + 00:17:58 + Unde -
3 00:10:31 + 00:17:19 + 00:18:13 + Unde -
4 00:13:16 + 00:14:26 + 00:16:38 + Unde -
5 00:09:51 + 00:15:21 + 00:15:38 + Unde -
6 00:09:47 + 00:14:52 + Unde - Unde -
7 00:10:37 + 00:15:35 + 00:15:56 + Unde -
8 00:08:43 + 00:13:37 + Unde - Unde -
9 00:09:27 + 00:11:25 + Unde - Unde -
10 00:08:47 + 00:14:24 + Unde - Unde -
11 00:08:25 + 00:12:44 + Unde - Unde -
12 00:11:27 + Unde - Unde - Unde -
13 00:08:51 + 00:14:40 + 00:18:01 + Unde -
14 00:10:05 + 00:12:28 + 00:17:12 + Unde -
15 00:08:57 + 00:14:00 + 00:17:34 + Unde -
16 00:09:17 + Unde - 00:16:33 + Unde -
17 00:08:18 + 00:09:04 + Unde - Unde -
18 00:08:17 + 00:14:28 + Unde - Unde -
19 00:09:03 + 00:12:02 + Unde - Unde -
20 00:10:44 + 00:13:48 + Unde - Unde -

Note: “Unde” means that no signal is detected, “+” means that the result is positive, and “-” means that the result
is negative.

As for the analytical specificity test, a specific fluorescence signal was observed only
from the corresponding LSDV nucleic acid. None of the other selected viruses and bacteria
strains tested positive, demonstrating the superior specificity of the RPA assay (Figure 3).

8000
7 000 /
6000

5000

4000

Fluorescence

3000

2000

1000 2-6

- =
00:00  00:02 00:04 00:06  00:08 00:10  00:12 00:14 00:16  00:18  00:20

Time (hh:mm)

Figure 3. Analytical specificity analysis of the real-time RPA assay. 1: Positive templates of LSDV.
2-6: GTPV, IBRYV, Pasteurella multocida, healthy bovine tissue, and nuclease-free water control.
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3.3. Qualitative Agreement Test between the Real-Time RPA Assay and WOAH Real-Time
PCR Method

Forty-three samples were evaluated by both the real-time RPA assays and the WOAH
real-time PCR method. Among these clinical samples, the RPA assays detected 31 positive
and 12 negative samples, while the WOAH real-time PCR detected 32 positive and 11 nega-
tive samples. Taking the WOAH real-time PCR as the standard, the diagnostic sensitivity
and specificity of the real-time RPA assay were estimated to be 96.88% and 100% (Table 3),
respectively. The kappa value was 0.94, exhibiting a strong agreement between the two
methods, and the p-value was 6.4349 x 10710, indicating strong statistical significance. The
results suggested the potentiality of the RPA assay in clinical diagnosis.

Table 3. The detection results of 43 clinical samples using the real-time RPA assay and the
WOAH method.

Real-Time RPA

Diagnostic Sensitivity = Diagnostic Specificity Kappa Value
Positive Negative Total

WOAH method

Positive
Negative
Total

31 1 32
0 11 11 96.88% 100% 0.94
31 12 43

Note: Diagnostic sensitivity = no. of true positives/(no. of true positive + no. of false negatives), and diagnostic
specificity = no. of true negatives/(no. of false positive + no. of true negatives).

4. Discussion

LSDV is a poxviral threat pathogen of cattle currently widespread in Asia, and the
disease situation is not encouraging [24]. The availability of diagnostic assays capable
of differentiating detection among LSDV, SPPV, and GTPV, especially the differentiation
between field LSDV isolates and vaccine strains, is urgently needed.

Recently, new diagnostic methods for detecting LSDV have been developed. A real-
time RPA assay for detecting the LSDV genome, targeting GPCR genes, was established in
2016 [25]. An innovative diagnostic method targeting the LSDV-ORF068 gene, employing
an RPA-CRISPR-Cas12a integration (RPA-Cas12a-fluorescence assay), exhibited a high
sensitivity with 5 copies/puL without any cross-reactivity to prevalent bovine viruses [26].
However, these RPA assays can simultaneously detect SPPV and GTPV, and do not apply
to the diagnosis and surveillance of LSDV in China due to the heavy use of the GTPV AV41
strain vaccine in cattle farms. A real-time HRM PCR assay based on a high-resolution
melting curve analysis for detection and differentiation between field isolates and vaccine
strains of LSDV was developed in 2018 [27]. Researchers have developed several real-time
quantitative RT-PCR assays for detecting and differentiating field-type and vaccine strains
of LSDV [28,29]. The two detection methods can distinguish LSDV wild strains from
vaccine strains but require expensive and high-precision gPCR instruments with complex
reaction procedures. It has application value during vaccination based on homologous
LSDV vaccine strains but is also unsuitable for China.

The TagMan assay systems for differentiation between LSDV and GTPV were devel-
oped recently [30,31]. Compared to probe-based real-time PCR, the real-time RPA assay
requires simpler and less-expensive qPCR instruments and can save reaction time and
accelerate detection progress. Therefore, for farms and laboratories without a sophisticated
thermal cycler or with limited funds, real-time RPA is a practical and cost-effective option.
In this study, we described the development of a new real-time RPA assay for the specific
detection of LSDV. The design of the primers and probes was based on the ORF132 gene
sequences of LSDV, which have some differences and deletions compared to the GTPV
AV41 sequence, and this design can enable specific detection of LSDV isolates, including
the recombinant LSDV circulating in China. The RPA with the fluorescent probe method
amplifies DNA rapidly at a constant temperature (39 °C), and the detection can be finished
within 20 min, which is simple and time-saving. This method was highly sensitive with the
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minimum detection limit of 15 copies/pL for LSDV, meanwhile there was no cross-reaction
with GTPV, IBRYV, Pasteurella multocida, and healthy bovine tissue. Forty-three clinical sam-
ples were detected by this method and the WOAH real-time PCR with good consistency.
However, there are no commercially available and recognized LSDV antibody test kits
in China; we cannot conduct a comparison with antibody testing methods. The results
demonstrated that this study’s real-time RPA detection method merits in specific detection
of LSDV DNA, high sensitivity, convenient operation, and short detection time, which is
suitable for LSDV surveillance and diagnostic need in China.

5. Conclusions

In summary, a real-time RPA amplification assay for specific detection of lumpy skin
disease virus was established, which has wide application value in clinical diagnosis and
helps us better control LSDV in China.
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