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Simple Summary: Chemical signals are essential for communication between living organisms.
Dogs possess two sensory organs enabling chemical communication: the main olfactory system and
the vomeronasal organ (VNO). Additionally, contact chemoreception is also pertinent, by which
non-volatile molecules, including but not limited to proteins, are recognized as chemical signals.
However, non-volatile chemical signals have been sparsely studied in dogs. Therefore, we aimed
to examine the urinary proteins of female domestic dogs during the estrus and anestrus phases to
detect and identify such non-volatile chemical signals.

Abstract: The presence and identity of non-volatile chemical signals remain elusive in canines.
In this study, we aim to evaluate the urinary proteins of female domestic dogs in the estrus and
anestrus phases to evidence the presence of non-volatile chemical signals and to elucidate their
identities. We collected urine samples from eight female dogs in the estrus and anestrus phases.
A total of 240 proteins were identified in the urine samples using liquid chromatography–mass
spectrometry (LC–MS analysis). The comparison of the proteins revealed a significant difference
between the estrus and anestrus urine. We identified proteins belonging to the lipocalin family of
canines (beta-lactoglobulin-1 and beta-lactoglobulin-2, P33685 and P33686, respectively), one of whose
function was the transport of pheromones and which was present only in the estrus urine samples.
Moreover, proteins such as Clusterin (CLU), Liver-expressed antimicrobial peptide 2 (LEAP2), and
Proenkephalin (PENK) were more abundant in the estrus urine when compared to the anestrus urine.
LEAP2 was recently described as a ghrelin receptor antagonist and implicated in regulating food
intake and body weight in humans and mice. Proenkephalin, a polypeptide hormone cleaved into
opioid peptides, was also recognized as a candidate to determine kidney function. As of yet, none of
these have played a role in chemical communication. Clusterin, an extracellular chaperone protecting
from protein aggregation implicated in stress-induced cell apoptosis, is a plausible candidate in
chemical communication, which is a claim that needs to be ascertained further. Data are available via
ProteomeXchange with the identifier PXD040418.

Keywords: dogs; urine; proteome; estrus; chemical signals; LC–MS/MS

1. Introduction

Communication using chemical signals is widespread in the world of living organisms.
A variety of information regarding different physiological and pathological conditions

Vet. Sci. 2023, 10, 292. https://doi.org/10.3390/vetsci10040292 https://www.mdpi.com/journal/vetsci

https://doi.org/10.3390/vetsci10040292
https://doi.org/10.3390/vetsci10040292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0001-6976-5691
https://orcid.org/0000-0001-9058-1598
https://orcid.org/0000-0002-2022-6766
https://orcid.org/0000-0003-1056-0784
https://orcid.org/0000-0002-5063-4306
https://doi.org/10.3390/vetsci10040292
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/article/10.3390/vetsci10040292?type=check_update&version=3


Vet. Sci. 2023, 10, 292 2 of 15

in animals is transmitted through this mode [1,2]. Semiochemical communication using
sex pheromones is one of the best-known examples of this mechanism. In dogs, sex
pheromones secreted by a female during the proestrus and estrus phases are responsible
for the modulation of physiology and behavior of male dogs [3–7]. While the composition
of volatile compounds in the urine during various stages of the ovarian cycle in female
canines has been extensively studied, current studies also emphasize the role of less volatile
compounds [7–11]. Such compounds, present in the female secretions and collected by
males during direct contact with the female (licking a vulva), may be involved in inter-
individual communication and recognition of sexual attractiveness [11].

Like many other vertebrates, dogs use two sense organs for chemical communica-
tion: the main olfactory system and the vomeronasal organ (VNO). Both of these organs
were reported to function in chemical signaling; however, the molecules perceived by
the two systems vary. For instance, the MOS detects general odorants; whereas, the
VNO, in some species, is reported in the detection of pheromones. However, in dogs, the
vomeronasal type 2 receptor is missing, which raises the question of whether the VNO is
functional [1,2,12–14]. Evaluation of the detected chemical compounds (including odors)
helps assess the reproductive status of the signal emitter. It is also important to note that
the chemical signals are used by the estrus females to attract males. However, exhibition
of consummatory sexual behaviors is a multi-step process [6]. Similar to other species,
male dogs approach, sniff, and lick the vulva of the females. The peculiar behavior is that
the males also lick the urine of females [7,11,15,16], which could facilitate the transfer of
volatile and non-volatile compounds. Indeed, the volatile and non-volatile compounds
play an important role in estrus detection [11].

Urinary proteins are unequivocally vital in chemical communication. For instance,
MUPs and α2u-globulins are the best-studied chemical signals reported in the urine of
mice and rats, respectively. MUPs are lipocalins (proteins that transport small hydrophobic
molecules) that bind with pheromones [13]. In mice, urine-derived scent marks have
multiple roles in communication, mainly because of MUPs and other pheromones [17].
MUPs provide stability to the bound pheromones and can also function as pheromones
themselves. It has been shown that MUPs modulate the behavior of males in that it
promotes inter-male aggression [18,19]. Additionally, MUPs also stimulate reproductive
behaviors and accelerate puberty attainment in females. Some of these functions are
postulated as not being unique to rats and mice alone [20]. Mentioned above, Logan
et al. [20], in evaluating parallel expansions of non-rodent MUP clusters, found that apart
from other species, such as pigs, baboons, chimpanzees, bush babies, and orangutans,
dogs also have a single MUP gene. Studies on rats by Rajkumar et al. [21] detected alpha
(2u)-globulin and demonstrated its functional analogy in the Indian commensal rat (Rattus
rattus). Changes in the composition and concentration of the volatile compounds are
considered to develop estrus detection methods in some species [10,22–25]. Evaluation
of the urinary protein profile (unique proteins at a particular phase or the difference in
the concentration) was also conducted in several species [25–29]. However, information
about urinary proteomes that may have implications in estrus detection is scanty for
domestic dogs.

Ferlizza et al. [30] stated that urine is an ideal sample for the studies of proteomics
and metabolomics; however, specific urinary biomarkers are currently lacking in dogs. The
urinary proteins were investigated in regard to kidney diseases, emphasizing the potential
of a dog as an animal model for human disease states [28,30,31]. A recent study [32] also
stated that the body fluids of dogs still need to be better characterized in the context of
proteomic studies.

The serum proteome was mapped using 2D PAGE in humans [33], horses [34], and
dogs [35]. Altherton et al. [36] also characterized the canine serum proteome using mass
spectrometry; wherein, 32 proteins were identified, and the reference ranges for albumin
and globulin sub-fractions were established in 17 dogs. In a subsequent study, the changes
in the canine serum proteome were attributed to the homeostatic disturbance resulting
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from various diseases [37]. Interestingly, Szczubiał et al. [38] described plasma proteins
in pregnant and non-pregnant female dogs. In contrast, Dąbrowski and Franco Martínez
described the roles of blood and salivary acute proteins in the condition known as pyome-
tra [39,40]. Despite this, neither urinary proteomes nor reproduction-related aspects of
proteomes have been investigated in canines.

Apart from blood, other body fluids (e.g., cerebrospinal fluid (CSF), follicular fluid),
as well as tissues (e.g., parietal cortex) were investigated in dogs in the context of proteome
evaluation [41]. In the aforementioned study, in both genders, the urine contained proteins
derived from the serum through ultrafiltration and incomplete reabsorption. For instance,
albumin was a predominant protein in the urine. Authors also identified unique proteins
in the urine of males and females, confirming the sexual dimorphism urinary proteins in
canines. Teinfalt et al. [42] identified a prostate-specific protein (PSP; 30 kDa) in the urine of
intact males, which was absent in females and castrated males. This study indicated that the
composition of the urine collected during natural micturition and cystocentesis varied and
underscored the involvement of the prostate gland in regulating the urinary constituents.

Studies on chemical communication in canines hitherto mainly focused on volatile
compounds. Taking this into account, in this study, we aimed to evaluate the changes in the
composition of the female canine urinary proteome during various stages of the ovarian
cycle to ascertain any relevant biomarkers of estrus.

2. Materials and Methods
2.1. Ethics Statement and Animals

The study was conducted following the regulations on animal experimentation and
guidelines for the use of animals in research. The experimental protocol was approved by
the 2nd Local Commission for Animal Experimentation in Wrocław, Poland (permission
no. 17/2017). The animals used in the experiments were Beagle breed dogs belonging to
the Local Experimental Kennel and patients of the local clinic of reproduction.

2.2. Sample Collection
Urine Sampling

Midstream urine samples from the healthy female donor dogs were collected in the
morning during spontaneous urination using a sterile steel ladle. Samples were stored in
glass vials at −20 ◦C. The experiment was conducted with eight individuals, and twelve
samples were collected. The samples after pooling constituted nine experiments:

• One animal in estrus only; single sample (Female 1).
• Two animals in estrus; two samples each (Female 2 and Female 3):

# One estrus sample of Female 3 contributed to pool P1.
# Additional sample of Female 2 in anestrus, out of which a portion was analyzed

independently and the remaining contributed to pool P2.

• One animal in estrus and anestrus; one sample each (Female 4):

# Estrus sample was used as part of pool P1.
# Due to low volume, anestrus sample was used as part of pool P2.

• Four immature ones (constituting experimental pools P3: Female 5 and Female 6; P4:
Female 7 and Female 8).

• Exact sample coding is described in Supplementary Materials along with the specific
protein results. Sample scheme is also further described in Table 1.

2.3. Determination of the Phases of Cycle

The estrus cycle stages’ determination was based on vaginal cytology and plasma pro-
gesterone concentrations. Additionally, the consummatory sexual behaviors of male dogs
toward females and owners’ observations of the female dogs were also considered [10,43].
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Table 1. Samples included in the study.

Individual Samples Pooled Samples

Sample Number Dog Ovarian Cycle Phase Sample Number Dogs Ovarian Cycle Phase

S1 Female2 Estrus P1 Female3, Female4 Estrus
S4 Female1 Estrus P2 Female3, Female4 Anestrus
S5 Female3 Estrus P3 Female5, Female6 Immature
S6 Female2 Estrus P4 Female7, Female8 Immature
S7 Female3 Anestrus

2.3.1. Vaginal Cytological Examination

Vaginal smear samples were stained with Haemacolor® (Merck KGaA, Darmstadt,
Germany) stain, and based on the percentage of the cornified superficial cells, the estrus
cycle stages were evaluated [44].

2.3.2. Progesterone Level Evaluation

The plasma progesterone concentration was determined by an enzyme-linked fluores-
cence assay (ELFA; mini VIDAS® Biomerieux, Marcy-L’étoile, France) with the mean level
of progesterone 21.66 ng/mL (with a standard deviation of 0.823 ng/mL, i.e., coefficient of
variation (CV) of 3.8%) [45].

2.4. Proteomic Approach
2.4.1. BCA Assay

The urine samples (n = 18) were centrifuged (1000× g, 10 min, 4 ◦C) to remove any
insoluble particles and cell debris. The resulted supernatants were diluted 10-fold with
2 M urea and stored as aliquots of 1.5 mL at −80 ◦C to use in protein measurement. Protein
concentration in the urine samples was determined using Pierce™ BCA Protein Assay Kit
(Thermo Scientific, Waltham, MA, USA).

2.4.2. Sample Pooling

Some samples from the same stage (either estrus or anestrus) were pooled to facilitate
experiments; whereas, several samples were analyzed individually. This also created the
reference sample, which was used in every run for inter-run comparison and scaling.

2.4.3. Reduction, Alkylation, Digestion, and Tandem Mass Tag (TMT) Labeling

FASP (Filter-Aided Sample Preparation) was used to prepare samples for mass spec-
trometric analysis. In FASP, a mass weight cut-off of 3 kDa was used. The urine samples
containing 80 µg of protein were treated with 8 M urea (Sigma-Aldrich, St. Louis, MO, USA)
and 10 mM DTT (dithiothreitol, Sigma-Aldrich) (prepared in 100 mM trimethylammonium
bicarbonate (TEAB)) for 1 h at 55 ◦C. Subsequently, the samples were alkylated with 17 mM
iodoacetamide (Thermo Scientific) in 100 mM TEAB at room temperature for 30 min. After
incubation, the samples were transferred to cut-off membrane-fitted tubes and centrifuged
at 10,000× g for 30 min. The resulting flow-through was collected from the lower portion
of the tube and digested with trypsin (sample: trypsin at a ratio of 40:1) in 50 mM TEAB
(Promega) at 37 ◦C for 18 h. The peptides were labeled with the TMTsixplex (Tandem Mass
Tags) Label Reagent Set (Thermo Scientific) according to the manufacturer’s instructions.
The resulting samples were stored at −80 ◦C until further processing. All the samples were
prepared in triplicates. To facilitate comparison between samples, we included the samples
from Pool 1 in both TMT six-plexes. The sample division across six-plexes can be found in
Supplementary Table S2.

2.4.4. LC–MS/MS

All the measurements were performed using LTQ Elite Orbitrap ETD (Thermo Scien-
tific, USA) connected to the Easy nLC 1000 chromatograph (Thermo Scientific) at the Mass
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Spectrometry Laboratory of Łukasiewicz Research Network, Polish Center for Technology
Development, Wrocław, Poland. Peptides were trapped using Acclaim PepMap C-18, 2 cm
trap column (Thermo Scientific) and separated on Acclaim PepMap C-18 column (100 Å,
500 mm × 0.075 mm × 3 µm) (Thermo Scientific) in ambient temperature. Mobile phases
A and B were 0.1% formic acid in water and in acetonitrile: water [90:10 (v/v)], respectively.
Five microliters of the sample was injected at a flow rate of 300 nL/min with a gradient from
2 to 55% of phase B (during 200 min). The external calibration of mass spectrometer with
LTQ Velos Positive calibration standard was employed, achieving the standard deviation
of measurements below 1 ppm. Measurements were performed in positive ion mode with
m/z ratio between 110 and 2000. The capillary voltage was 3 kV. Higher energy collisional
dissociation (HCD) fragmentation of top 10 peaks was employed with normalized collision
energy set to 35 eV in 1 m/z isolation window with minimum 2+ charge state of parent ion
and dynamic exclusion for 30 s after two spectra.

2.4.5. Protein Identification and Quantification

Mass spectra were processed with Proteome Discoverer 2.4, and Sequest HT search
engine was used to extract and annotate MS/MS spectra. To assign spectra to canine
proteomes, we conducted a Sequest HT search against a custom database, which com-
prised SwissProt and TrEMBL protein sequences of Canis lupus familiars and its subspecies,
which were extracted from UniProtKB 2022_12. Trypsin was selected as an enzyme with a
maximum of two missed cleavages. Maximum precursor and fragment tolerances were
set to 20 ppm and 0.1 Da, respectively, to permit for higher sensitivity of the experi-
ment. We also explored a more stringent set of thresholds of 10 ppm/0.05 Da, as well
as 10 ppm/0.02 Da. Modifications were set as follows: quantification—TMT 6plex; static
modification—carbamidomethyl (C); and dynamic modifications—acetyl (protein N-term)
and oxidation (M). Reporter ion quantification was performed using Proteome Discoverer
2.4. Spectra were normalized to the total amount of peptides in the sample and scaled to
the reference sample channel (TMT 126 in urine samples). Unique and razor peptides were
used for quantification with at least two peptide matches per protein. The false discovery
rate was set to 0.01 (strict) and 0.05 (relaxed).

2.5. Statistical Methods

Statistical analysis of collected data was performed using the functionality imple-
mented in Proteome Discoverer 2.5 [46]. Protein FDR rate was assessed at two levels:
0.01 (as a strict criterion) and 0.05 (relaxed criterion). The statistical significance of quan-
tification values for proteins was tested with background-based multiple t-testing. This
method considers the prior distribution of protein and peptide abundance rates, allowing
for the estimation of a relative change for this background. As the samples came from
comparable animals, the fundamental assumption of this approach, that the expected
protein abundances between samples remain invariant, holds in this case. Protein ratio
calculation was performed on protein abundance basis with a maximum fold change of
1000 allowed to avoid unduly confounding effects of outliers. For missing values, low
abundance resampling was introduced.

PCA analysis and hierarchical clustering were performed using standard implementa-
tions of these methods, as available in Proteome Discoverer 2.5 software, using all measured
samples, excluding pooled control. The inter-relationship of principal components #1 and
#2, depicted in Figure 1, showed a clear separation between estrus and anestrus samples
along the first principal component, with high dispersion for anestrus samples along the
second component. The relationships within protein expression profiles were assessed
using the l2 (Euclidean) norm as a distance metric with complete-linkage clustering, with
results illustrated in Figure 2.
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3. Results

A total of 240 proteins were identified in the urine samples. The lists of identified
and quantified proteins are provided in Supplementary Table S1a. We observe that our
results are robust to the tightening of thresholds, as illustrated in Supplementary Table S1b,
which comprises nearly the same proteins as these used in this work, but are identified with
0.05 Da fragment and 10 ppm maximum precursor tolerances. Increasing the threshold of
fragment tolerance further to 0.02 Da results in the identification of no meaningful protein
signal (as demonstrated in Supplementary Table S1c).

Use of classic evaluation techniques for elucidating signal in the identified proteins
has yielded interesting results congruent with the expectations, yet not fully informative
(shown in Tables 2–5). Therefore, PCA analysis (Figure 1) and hierarchical clustering
(Figure 2) were performed for the differentiation of specific biological states. Results are
presented in the figures below.

Table 2. Results of DAVID analysis. Clusters with an enrichment score of at least 1 were selected
with a raw p-value and Benjamini–Hofberg adjusted metric (BH p-value).

Annotation Description Count p-Value BH p-Value

Annotation Cluster 1

UP_KW_DOMAIN Signal 8 1.5 × 10−2 7.7 × 10−1

GOTERM_CC_FAT extracellular region 6 1.6 × 10−2 3.9 × 10−1

UP_KW_CELLULAR_COMPONENT Secreted 4 1.7 × 10−2 1.7 × 10−1

GOTERM_BP_FAT response to other organism 3 8.2 × 10−2 1.0

GOTERM_BP_FAT response to external biotic
stimulus 3 8.3 × 10−2 1.0

GOTERM_BP_FAT response to biotic stimulus 3 9.1 × 10−2 1.0

GOTERM_BP_FAT response to external
stimulus 4 1.2 × 10−1 1.0

UP_KW_PTM Disulfide bond 5 1.4 × 10−1 9.7 × 10−1

Annotation Cluster 2

GOTERM_CC_FAT extracellular region 6 1.6 × 10−2 3.9 × 10−1

GOTERM_BP_FAT cellular amide
metabolic process 4 4.7 × 10−2 1.0

GOTERM_CC_FAT extracellular space 4 7.5 × 10−1 1.0
GOTERM_CC_FAT extracellular region part 4 1.2 × 10−1 1.0

UP_KW_PTM Glycoprotein 3 7.4 × 10−1 1.0

Table 3. List of proteins with significantly affected abundance rates in estrus vs. anestrus samples
(identified as involved in response to external stimuli).

NCBI Gene ID Protein Name Relevant GO Term Abundance Change
(Estrus vs. Anestrus)

442971 Clusterin (CLU)
Smoothened

signaling pathway
GO:0007224

2.153

609750
Liver-expressed

antimicrobial peptide
2 (LEAP2)

Antimicrobial
humoral immune

response mediated by
antimicrobial peptide

GO:0061844

1000

100687307 Proenkephalin
(PENK)

signal transduction
GO:0007165

sensory perception
GO:0007600

1000
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Table 4. List of proteins significantly altered in estrus vs. anestrus samples, which were identified as
involved in signaling and as secreted/extracellular.

NCBI Gene ID Protein Name Relevant GO Term Abundance Change
(Estrus vs. Anestrus)

442971 Clusterin (CLU) Smoothened signaling pathway
GO:0007224 2.153

609750 Liver-expressed antimicrobial
peptide 2 (LEAP2)

Antimicrobial humoral immune
response mediated by antimicrobial

peptide
GO:0061844

1000

487447 MBL associated serine protease 2
(MASP2)

cell surface pattern recognition
receptor signaling pathway

GO:0006958
complement activation, classical

pathway
GO:0002752

positive regulation of opsonization
GO:1903028

1000

100687307 Proenkephalin (PENK) signal transduction
GO:0007165 1000

Table 5. List of other proteins significantly altered in estrus vs. anestrus samples.

NCBI Gene ID Protein Name Relevant GO Term Abundance Change
(Estrus vs. Anestrus)

403831 Beta glucuronidase (GUSB)

Enzyme. Plays an important role in
the degradation of dermatan and

keratan sulfates. Present in
lysosomes (very much inside the

cell, not secreted).

0.432

490630 Granzyme B (GZMB)
Cytosolic enzyme released by

lymphocytes to kill virus-infected
cells. Not signaling.

2.147

609112 Lymphocyte antigen 6 family
member D (LY6D)

Involved in leukocyte
differentiation, affected by

stilbenoid, present on the cell
surface, but not really secreted or

signaling.
GO:1900740: positive regulation of
protein insertion into mitochondrial

membrane involved in apoptotic
signaling pathway

GO:0017148: negative regulation
of translation.

1000

489503 Myosin heavy chain 13
(MYH13)

Myosin is a structural protein
involved in muscle contractions. 0.396

476279
Sphingomyelin

phosphodiesterase acid-like
3A (SMPDL3A)

Enzyme regulating levels of
cyclic AMP. 1000

From the above figure, it is evident that there is a clear separation between the estrus
and anestrus samples. PC1 clearly separates the estrus samples from anestrus ones, and in
conjunction with PC2, the separation is even clearer. We also observe that two immature
pools (in green) tend to follow the anestrus samples in the PC2 dimension, but reside near
opposite limits of the PC1 range in the vicinity of either of the estrus or anestrus groups.
This suggests that the proteomic profile of the estrus urine may be convergent; meanwhile,
there is a significant dispersion in the case of anestrus samples.
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There is a clear separation at the first layer of the tree between the bulk of the estrus
samples and the anestrus ones. Both clusterings appear to be influenced by the absence of
certain proteins in the estrus and anestrus groups, respectively (indicated in blue).

We performed a BLAST search of known murine MUPs against dog proteomes with
an e-value cut-off of 1e-10 to permit the identification of more distant homologs. Naturally,
the most relevant hits included lipocalins predominantly present in saliva. However,
canine beta-lactoglobulin-1 and beta-lactoglobulin-2 (P33685 and P33686), belonging to the
lipocalin family and sharing 90% sequence identity, were identified with high confidence
in the mass spectrometry experiment. Both beta-lactoglobulins were identified only in the
estrus samples.

Another highly homologous hit to murine MUPs in our results was A0A8P0NKK8
(lipocln_cytosolic_FA-bd_dom domain-containing protein), whose close homologs can be
identified uniquely in mammals (predominantly Eutheria) with more distant homologs
present in Archelosauria. This protein was found across all samples and pools; its abundance
in the estrus pool was 44.3% higher than in the anestrus one (anestrus: estrus ratio: 0.693).

4. Discussion

The results of our study show the presence of several proteins in the urine samples
which are characteristic of the estrus female. Considering that urine is expected to be
relatively devoid of protein with proteinuria being associated with pathology in dogs, the
amount of identified proteins in the estrus urine was unexpectedly high.

Changes in the composition of urinary proteins in the context of the estrus/ovarian
cycle were investigated in other species. Muthukumar et al. [47] studied urinary proteins
in female house rats and evidenced a correlation of lipocalin concentration with the phases
of the estrus cycle. In dogs, lipocalin proteins were primarily examined in the context of
allergenic agents, and the source used was saliva [48]. The lipocalins are predominantly
involved in the transport of small molecules, such as steroids; therefore, it is plausible that
they are key molecules in chemical signaling. In fact, the major respiratory allergens of
dogs, mice, rats, horses, and cows belong to the this group of proteins [48]. According to
our best knowledge, there were no previous studies on identifying estrus-specific proteins
in domestic dogs.

Promisingly, we identified proteins belonging to the lipocalin family of canines (beta-
lactoglobulin-1 and beta-lactoglobulin-2, (P33685 and P33686, respectively)) in the estrus
urine samples. However, due to a high degree of sequence similarity between the two
proteins, it was impossible to ascertain which homolog was present in the urine. It is worth
noticing that beta-lactoglobulins are small, very stable proteins that contain a hydrophobic
pocket, and we postulated them as carriers of semiochemicals in dog urine. It is also
interesting that beta-lactoglobulins were absent in the anestrus samples.

It is worth mentioning that A0A8P0NKK8 was present across all the samples and
pools. In particular, its abundance (43% higher) in the estrus pool was higher than in
the anestrus pool (anestrus: estrus ratio—0.693). Close homologs of this protein are also
found among human lipocalins. LCNL1 and LCNL15 (UniProt accession IDs: Q6ZST4 and
Q6UWW0) are preferentially expressed in the testes and seminal ducts implicating them in
reproductive processes. It could also be the same function the proteins exhibit in canines.

Although they were not yet proven to be related to semiochemical or chemical signals,
the other proteins identified in the female urine during estrus (Clusterin, Proenkephalin
(PENK), and Liver-expressed antimicrobial peptide 2 (LEAP2)) are also worth focusing on.
Clusterin, a heterodimeric glycoprotein, was isolated from the ram’s rete testis fluid that
elicited the clustering of Sertoli cells [49]. Clusterin is also produced by various tissues
and identified in biological fluids [50]. In dogs, Clusterin was identified concerning kidney
and urinary tract disorders, infections, and injuries [51]. Clusterin, on the other hand, is
involved in tissue remodeling, immune defense, and the transport of biologically active
peptides. Interestingly, Clusterin is also detected in the ovary where it may facilitate
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sperm–ovum interactions. It is crucial to note the involvement of Clusterin in sperm
maturation [50].

Taking into account the presence of Clusterin in many body fluids and a wide array of
species, its involvement in the process of semiochemical communication remains elusive.
However, Clusterin was found in greater concentrations in follicular fluids than in plasma.
It was also suggested that it may likely play a role in follicle physiology and ovarian
activity at the pre-ovulatory stage [52]. Clusterin was also identified in the estrus saliva
of buffaloes [47]. A study by Zwain et al. [53] proved the association of Clusterin with
programmed cell death (apoptosis) and follicular atresia in rats.

In the ovaries and uteri of rodents, the expression of the gene Proenkephalin (PENK)
is significantly altered during the estrus cycle, wherein the highest concentrations are
found during estrus [54]. Given the changes in the concentration, the association of
Proenkephalin within the female reproductive system is expected. However, the interaction
between the reproductive hormones (estrogens and progesterone) and Proenkephalin gene
expression varies among species [55]. Proenkephalin is cleaved into opioid peptides (met-
enkephalin and leu-enkephalin), whose role in nociception is widely studied. The role
of the estrus cycle in opioid antinociception in dogs has not been systematically studied.
However, similar investigations in rats demonstrate that opioids are least potent during
estrus compared to metestrus and proestrus. Konturek et al. [56] showed that enkephalins
inhibit pancreatic bicarbonate and protein (somatostatin) secretion during endogenous or
exogenous stimulation (secretin or cholecystokinin-octapeptide) in dogs. Therefore, the
presence of PENK in urine is expected due to the influence of sex steroid hormones on
insulin homeostasis.

Liver-expressed antimicrobial peptide 2 (LEAP2) is a 40-residue cationic peptide that
exhibits antimicrobial activity. It is highly expressed in the liver but also produced by
other tissues and organs, such as the kidney [57]. It was proposed that antimicrobial
peptides (AMPs) in domestic animals have beneficial effects on immune regulation and the
reproductive system [58]. LEAP2 is also postulated to be involved in the control of sperm
maturation [58]. Furthermore, LEAP2 is an endogenous antagonist of the ghrelin receptor;
meanwhile, the spikes of ghrelin expression in estrus are an established phenomenon.

The role of bacteria in the process of synthesis of semiochemical signals has been
discussed in many animals. Microbes are potential regulators of chemical signals, as
evidenced by their presence in the vaginas of canines [59,60]. It could also be possible that
the microbes facilitate the attraction of males toward females through the compounds they
synthesize [61–63]. In this purview, the presence of infection-associated proteins (GUSB,
GZMB, LEAP2, LY6D) in estrus urine is interesting.

Non-volatile compounds, such as proteins, can play various roles in chemical com-
munication. The proteins may themselves act as pheromones or carry specific volatile
ligands that act as pheromones. The proteins, in addition, can also be involved in other
physiological processes. In cats, a major allergen (Fel d 1-tetrameric glycoprotein of the
secretoglobin superfamily) is responsible for binding lipids, similar to the mouse androgen-
binding protein [64]. Despite the well-studied antimicrobial function, these peptides can
also be crucial in inter-individual communication.

Odorant binding proteins (OBPs) belonging to the lipocalin superfamily can be found
both in the main and additional olfactory systems [65], but they also were identified in
the glands responsible for the secretion of chemical signals, such as the canine anal sac
glands [66]. OBPs are closely homologous to the pheromone carrier proteins (such as
allergen Can f 4). The primary function of the mentioned proteins is to bind the pheromone
compounds and release them to the environment for manifesting the effect [67–69].

Some proteins of this kind were described in the nasal mucus of buffaloes and pigs,
suggesting that OBP may bind the odorants for further processing [68]. Despite the apparent
function in the process of odor/pheromone binding and transportation, other interesting
functions of the OBP have been described. In cattle, Mitchel et al. [70] proved that OBP
present in the lung and other parts of respiratory tracts might inhibit neutrophil recruitment
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by inflammatory mediators, having the ability to bind macrophage-derived inflammatory
mediators within the airways. The study performed by Cerna et al. [71] in mice showed the
co-expression of OBP with antimicrobial proteins. This confirmed that the same proteins
play various roles in the organism. Thus, their presence during some specific physiological
conditions could relate to particular events (can be directly involved in reproductive
processes, luring, or others) but also can play another role. (Overexpression of the proteins
increasing antibacterial defense mechanism is to be expected during the estrus period,
which is associated with an increased abundance of microorganisms.) Thus, the presence of
proteins seemingly not involved in the pheromone binding does not necessarily imply the
lack of importance for the whole process. Moreover, the lack of direct function connecting
their role with reproductive processes should not exclude them unequivocally in the pool
of characteristics for some period compounds.

The functions of some proteins detected in our study, which are connected with sperm
maturation, facilitating sperm–ovum interactions, and antibacterial activity, certainly justify
their presence in the urine of females in estrus. However, they do not exclude these proteins
from their implication with the compounds potentially involved in communication and
attractiveness modulation. Interestingly, a phenomenon of reduced attractiveness after
vaginal microflora reduction, which was observed in several species, could suggest the
importance of the microflora for creating adequate semiochemical signals [61–63]. In dogs,
sheep, and rats, reduced vaginal microflora (after antibiotic administration) decreased
the sexual attractiveness of treated females [61–63]. However, a detailed explanation of
this mechanism has not been presented. It is worth evaluating if reducing the vaginal
microflora by the use of antibiotics also leads to reducing the antimicrobial peptides in
female secretions. If it does, it may be that this phenomenon is involved in modifying
the attractiveness of females to the males. In this context, it is worth mentioning acute
phase proteins (APPs) in canine urine whose concentration remains unchanged during the
reproductive cycle [72].

Despite the proteins belonging to the lipocalin family, the other proteins are also
putatively involved in signaling by responding to external stimuli. These facts corroborate
the hypothesis that observed proteins might be involved in chemical communication.
However, conclusive confirmation of this claim requires further investigation.

5. Conclusions

In this paper, we presented the results of the proteomic examination of the urine
of female canines during various stages of the ovarian cycle. We found that several
proteins were significantly altered during estrus. Interestingly, some of these proteins
belong to the lipocalin family; whereas, other proteins identified in the present study are
involved in signaling and response to external stimuli. Some of the proteins identified
herein are known to be differentially expressed concentrations in the reproductive organs
or body fluids (e.g., serum, saliva, etc.) of other species. The association of specific
proteins with antimicrobial properties is another promising venue for continued exploration.
Furthermore, it is prudent to conduct follow-up studies to evaluate its possible involvement
in the chemical communication process. Overall, proteomic evaluation is only a preliminary
approach which needs additional evaluation with conspecifics to ascertain the role of
proteins in canine chemical communication.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci10040292/s1, Table S1a: Identified proteins using the tol-
erances used in the paper (precursor mass tolerance at 20 ppm, fragment mass tolerance at 0.1 Da);
Table S1b: Identified proteins using the more stringent tolerances than in the paper (precursor mass
tolerance at 10 ppm, fragment mass tolerance at 0.05 Da). Note that the proteins described in the
paper remain deetected with high confidence.; Table S1c: Identified proteins using the stringent
tolerances (precursor mass tolerance at 10 ppm, fragment mass tolerance at 0.02 Da). Note lack of
detectable proteins with high coverage; Table S2: Composition of TMT 6plexes used in the experiment.
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