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Simple Summary: Artificial intelligence is emerging in the field of veterinary medical imaging. The
development of this area in medicine has introduced new concepts and scientific terminologies that
professionals must be able to have some understanding of, such as the following: machine learning,
deep learning, convolutional neural networks, and transfer learning. This paper offers veterinary
professionals an overview of artificial intelligence, machine learning, and deep learning focused
on imaging diagnosis. A review is provided of the existing literature on artificial intelligence in
veterinary imaging of small animals, together with a brief conclusion.

Abstract: Artificial intelligence and machine learning have been increasingly used in the medical
imaging field in the past few years. The evaluation of medical images is very subjective and complex,
and therefore the application of artificial intelligence and deep learning methods to automatize the
analysis process would be very beneficial. A lot of researchers have been applying these methods
to image analysis diagnosis, developing software capable of assisting veterinary doctors or radiolo-
gists in their daily practice. This article details the main methodologies used to develop software
applications on machine learning and how veterinarians with an interest in this field can benefit from
such methodologies. The main goal of this study is to offer veterinary professionals a simple guide to
enable them to understand the basics of artificial intelligence and machine learning and the concepts
such as deep learning, convolutional neural networks, transfer learning, and the performance eval-
uation method. The language is adapted for medical technicians, and the work already published
in this field is reviewed for application in the imaging diagnosis of different animal body systems:
musculoskeletal, thoracic, nervous, and abdominal.

Keywords: artificial intelligence; machine learning; deep learning; veterinary imaging

1. Introduction

Artificial intelligence is a branch of computer science dedicated to the creation of sys-
tems capable of performing tasks that generally require human intelligence. It is composed
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of a great number of subfields and techniques, one of them being machine learning [1].
Artificial neural networks have been used for decades, but only recent advances in the
image-processing machine learning field, such as access to greater computer power and
larger quantities of labeled images, have led to great progress in the study of medical
image analysis [2–4]. Alex Krizhevsky et al. (2012) entered an annual international image
classification competition using a deep convolutional network, and achieved a perfor-
mance in image classification that had never been seen before when using traditional
computer techniques [5]. Since then, multiple studies have been conducted in this area,
leading to improvements in tasks such as image classification, object detection, and image
segmentation [1].

The evaluation of medical images is very subjective and complex; therefore, the
application of artificial intelligence and deep learning methods to automatize the analysis
process would be of great value. Many developments have occurred in the field of human
medical image analysis over the past few years; however, in the veterinary field, progress
is also starting to happen [6,7].

This article aims to provide veterinarians with an interest in this field with definitions
and information on machine learning and its components, including deep learning, con-
volutional neural networks, transfer learning, and performance evaluation methods in a
simple way and using a language adapted to medical technicians, followed by a review of
machine learning in the small animal imaging field.

2. Machine Learning

Machine learning (ML) is a field of artificial intelligence (AI) used for the analysis and
prediction of data [1,6]. Instead of using explicit programming, the computer recognizes
patterns in the given data in order to develop an algorithm with which to execute tasks [1].

There are two major types of machine learning: unsupervised and supervised learn-
ing [6,8]. In unsupervised learning, the data are not labeled; only the input data are
presented to the computer, and the AI learns patterns in these data to determine the output.
The computer uses techniques such as clustering to group similar patterns in images [9,10].
However, this model has some limitations, such as unpredictability since it does not receive
previous patterns to guide it through the learning process, and good results are difficult
to obtain [1]. In supervised learning, the computer is given labeled data (images with
landmark annotations by expert humans in the field), known as “ground truth data”, to
train the model [8,11]. The computer then learns a mathematical function that maps inputs
to outputs based on the dataset pairs provided [12]. In the medical imaging field, the most
common type of ML used is supervised learning [7].

This section introduces a classical type of machine learning model, artificial neural
networks, as a way of illustrating the fundamentals of machine learning. The issue of over-
fitting is explored, highlighting its basis and some solutions. Following this, other models
and techniques of machine learning aimed more at image analysis are presented, such
as convolutional neural networks, transfer learning, object detection, and segmentation.
Lastly, some ways of evaluating the model’s performance are described.

2.1. Artificial Neural Networks and Deep Learning

Artificial neural networks (ANNs) are a mathematical model used for machine learn-
ing, generally associated with supervised learning and inspired by the human nervous
system [7,13]. They are formed by two principal components: the architecture and the
weights [2]. This architecture is composed of nodes or neurons (the ANN’s basic units),
which are arranged in vertical node layers. The layers are joined by connections so that
each node has a connection with all the nodes in the following layer [8,14,15]. The first
layer is the input layer, which receives the data to be analyzed, the last layer is the output
layer, and between these two, there are hidden layers [9]. These layers are called hidden
because neither the user nor the software has access to the results computed in them [7].
Each node in the hidden layers learns a different feature (i.e., curves, lines, brightness in
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a given image) [9]. The weights are numbers, usually randomly assigned and multiplied
by each node, which are then adjusted in the process of network training [1,12]. Their
purpose is to demonstrate the strength of one node’s influence on its neighboring nodes [7].
Then, the information passes through an activation function, and in the end, all the data
are combined together to determine the final output [9]. For example, consider a network
whose goal is to identify dogs in images: the input node would be the digital images; the
hidden layers would be composed of nodes that consider different dog features such as
typical lines or curves in the nose, eyes, ears, and fur; the weights would give different
importance to each feature for the classification; and finally the output nodes would be
“dog” or “not dog” (Figure 1).
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Figure 1. Architecture of an artificial neural network, in which the pixels of a digital image of a dog
serve as input. There are four hidden layers and two possible outputs, “dog” or “not dog”. The nodes
are arranged in layers and joined by connections. The weights are represented by the letter W (W1,
W2, and Wi in the figure).

Complex decisions require multilayer neural networks [14]. Neural networks with
multiple hidden layers result in deep neural networks, that is, deep learning models [16].
The features learned by each layer are not determined by a human engineer, but determined
by the model itself. The data scientist only needs to define the input layer, the number of
hidden layers and nodes in each hidden layer, as well as the number of repetitions of the
training [2]. Therefore, deep learning does not require much programming by humans
and recognizing patterns in multi-dimensional data through examples [17,18]. However,
increasing the number of hidden layers in deep learning means more computing power,
and this makes it harder to understand the logic and interpretation of features used by the
computer to achieve the output. This is called a black box problem [19]. Each node in the
first hidden layer searches for something specific in the input layer but, entering deeper
layers, the components become more and more abstract and complex than what a human
would use to describe the same data [13].

The process of finding the weights that best fit the neural network is called optimiza-
tion [9]. Forward propagation is the process of the AI reaching the predicted values, passing
the input data through the model using an activation function, while backpropagation is
the process of adjusting the parameters to minimize the loss function [15]. The loss function
evaluates the difference between the ground truth and the model’s predicted values. The
goal of the optimization is to minimize the loss function [15].

Gradient descent is one of the algorithms used to train neural networks to minimize
the loss function [19–22]. Returning to the example of dog identification in images, this
entails training the network to search for the best combination of weights (parameters) by
presenting a set of images with and without dogs in order to obtain a final output of “dog”
or “not dog”, respectively. This training has to be repeated a number of times and using the
number of images necessary so that the identification error is minimized to a predefined
acceptable error level.
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2.2. Overfitting

Overfitting is a problem encountered in machine learning when a model fits too closely
to a particular set of data and cannot be generalized to new data [10]. This happens when
the model also fits the noise in the training data and lacks performance when presented
with a new dataset [23]. To avoid overfitting, several measures can be considered when
building a model: a large dataset, dropout, dividing the dataset, and stopping the train
early (i.e., avoiding having too many iterations).

As large a dataset as possible should be collected to train the model, since reduced
datasets can lead to overfitting [1,23]. Augmentation techniques can be performed to
artificially increase data, transforming the dataset while keeping the same label. For
this, the images can be blurred, rotated, zoomed, cropped, filtered, or the contrast can
be modified, for example [15,24]. Active learning identifies the most useful data for the
learning process to be annotated or labeled by an expert. It can therefore be helpful to
maximize the model’s performance while using the least amount of data [25].

Dropout consists of removing a random percentage of the nodes on each training
repetition [14]. This will prevent over-reliance on certain units and enable the system to
be more robust even in the absence of certain nodes, allowing it to function in a more
generalized way [21].

Dividing the dataset into training data (from which the model will learn) and testing
data is also important in order to avoid overfitting and to assess whether the model can
predict correct outputs when presented with different data [10]. The training data can
be further divided into a training set and a validation set, where the validation set is a
dataset used to evaluate and optimize the training [1]. The test data are used to evaluate
the functioning of the model after the training sessions [10]. With this division, the model
is trained to generalize, and not only to predict the data on which it was trained [15,23].

Stopping the training early is also important because while repeating it is necessary to
reduce the error, too many iterations can lead to overfitting the model [9,26].

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep learning model used mostly
for image analysis [6]. They are generally composed of three types of layers: convolution,
pooling, and fully connected [15,22].

Image convolution is a technique in which filters are applied to extract useful features
in an image [9]. This is performed by applying a mathematical operation between a kernel
matrix and an image patch (a section of the digital image). Each pixel in the patch region
is multiplied by the values of the matrix, and then it is all summed up (Figure 2) [12].
This enables the image to be changed and emphasizes the relevant features, such as edges,
different shapes, and blurred areas, enabling the model to transform the initial data into
patterns that can be more easily identified by the AI [15,18]. The end result is a feature
map resulting from the multiplications and additions, which passes through an activation
function. The idea is that when a pixel is similar to neighboring pixels, they cancel each
other out, leading to lower values appearing on the feature map, and if they are different,
higher values appear in the feature map. The filters can be adjusted by altering the kernel
matrix values based on the output error [12,18]. Entire image processing in a neural network
is computationally expensive due to the great number of pixels used as input. The reduction
in image size by sampling from regions in the input is thus a necessary step. This is called
pooling or downsampling. The most commonly used form of pooling is max polling, where
the pixel with the highest value is selected to represent a whole area [7,12,15]. There is
also average pooling, in which the mean value of the pixels is used [7,15]. These two steps,
convolution and pooling, are generally repeated multiple times, with each convolution
layer being followed by a pooling layer. After this process, the resulting feature maps are
flattened to reduce their dimensions and become a traditional neural network, which can
have multiple hidden layers until the final output layer is reached (Figure 3). This final
layer can function as a classifier, mapping the extracted features into outputs [12,15,21,22].
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Figure 3. Representation of the architecture of a convolutional neural network. The input passes
through a series of convolutional and pooling operations, then through a fully connected layer to
determine the output.

2.4. Transfer Learning

Transfer learning can be employed to overcome the problem of small datasets when
using a CNN. Large datasets with thousands of images are necessary for effectively training
deep learning models. However, obtaining such datasets in the field of medical imaging
is exceedingly challenging [1,11]. This is both because there is a limited number of these
images available to the public, and also because labeled data require annotations by experi-
enced professionals, and therefore labeled data is even scarcer [3,17]. In transfer learning, a
convolutional neural network model is pre-trained with other images in which the final
layers are removed and replaced by the appropriate layers for the model [9,15]. Frequently,
the model used is the ImageNet database if the network is fine-tuned with general images
(such as images of animals, everyday objects, landscapes, and cars), but the network can
also be pre-trained with medical images that were used for different classifications or
tasks [9,15,27]. By using pre-trained networks, instead of starting the training with random
weights, the weights of a similar model are transferred, which has been proven to obtain
better performance and reduce the training time (Figure 4) [17,27]. The pre-trained model
is already adjusted to detect features such as corners and shapes. Since these components
are similar in all types of images, this already-created initial part of the model can be used
and trained with the intended dataset, and the final part is adapted to our needs [15].
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sify radiographs.

2.5. Object Detection and Segmentation Tasks

Object detection refers to the task of estimating the concept and localization of an object
of interest within the images [28]. YOLO–You Only Look Once–is a recent open-source
unified model for object detection. It localizes the region of interest in an image, that is, the
region with the detail of an image that needs to be detected for a certain task. Previously
described methods repurposed classifiers or localizers to perform object detection, applying
the model to an image at multiple locations and scales. On the other hand, YOLO uses
only a single convolutional neural network, processing the whole image at one forward
propagation to obtain the classification and location simultaneously. YOLO divides the
image into regions, predicting bounding boxes with an associated probability. By looking
only once at the image, the network works much faster and is able to generalize better than
other detection methods, because it understands the global context [29].

Image segmentation, also called pixel-based classification, is used to delimitate the
boundaries of an area of interest [19]. The most commonly used deep learning architecture
for this medical imaging segmentation is the U-Net. U-Net is a symmetrical, u-shaped
network with a structure that consists of two parts: the first is called the encoder or
contracting path, which functions as a standard CNN, with convolution and pooling layers
to down-sample the images. The second part is called the decoder or expansive path,
which uses deconvolutional operations to up-sample the images [19,30]. Between every
encoder and decoder path, there are skip connections that link high-level features with
low-level features, using a copy and crop operator, and resolving problems of special
loss. This enables the network to increase the output’s resolution while learning localized
classification [30].

2.6. Evaluation of the Model’s Performance

After training, it is crucial to evaluate the quality of the model built, to understand its
performance [31]. To evaluate the model’s performance, metrics such as accuracy, precision,
specificity, sensitivity, F1 score, and dice score can be used. These are obtained through
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parameters such as true negatives, true positives, false negatives, and false positives based
on the prediction given by the AI model and the labeled data, which serve as the ground
truth [32]. For classification tasks, there are also receiver operating characteristic curves
(ROCs) and confusion matrices [15,31].

Accuracy is measured by the division between the correctly predicted data and the
total number of predictions [31].

Accuracy =
True positives + True negatives

True positives + True negatives + False positives + False negatives

Precision is measured by the ratio between true positives and the sum of true positives
and false positives. This indicates how accurate the model is in predicting positively [33].

Precision =
True positives

True positives + False positives

Specificity is the ratio between true negatives and the sum of the true negatives with
false positives [32,34].

Specificity =
True negatives

True negatives + False positives

Sensitivity is one of the most important metrics for the medical field of machine
learning. It is measured by the division between true positives and the sum of true
positives and false negatives [33,34].

Sensitivity =
True positives

True positives + False negatives

F1 measure uses the precision and recall scores, combining the two into only one
performance test [7,33].

F1 = 2 × Precision × Recall
Precision + Recall

Dice score is generally used in segmentation. If the region of interest annotated by the
expert and the one predicted by the model overlap completely, the score is one; if they do
not overlap at all, the score is 0 [1,35].

Confusion matrices are a way of visualizing the performance of the model by repre-
senting the counts from predicted and actual values in the form of a table (Figure 5) [1,33].

The ROC is a graphical representation of the model’s performance, with the true
positive rate (or recall) on the y-axis and the false positive rate (or specificity) on the x-axis,
which shows the performance for a number of different candidate threshold values between
0.0 and 1.0. With the ROC, the area under the curve (AUC) is calculated. This can vary
between 0 and 1: when the value is 0.5, the model is unable to distinguish between two
classes, and when it is 1, it predicts correctly 100% of the time [7,33].
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3. Veterinary Imaging

Several authors have already applied machine learning technology in veterinary
medicine. In this section, some of the advances made in small animal imaging using AI are
presented (Table 1).

Table 1. Machine learning in veterinary imaging diagnosis.

Body
Region ML Type Image Dataset Objective Diagnostic

Imaging Reference

M
us

cu
lo

sk
el

et
al

Partial least squares
discriminant analysis

and an ANN

256 images: 200 for training
and 56 for testing

Identification of the hip
region X-ray [36]

Principal component
analysis and support

vector machine

1993 images: 936 from
diseased dogs and 1057 from

healthy dogs

Identification of Golden
Retriever Muscular

Dystrophy
MRI [37]

Support vector machine,
Adaptive boosting, and

Monte Carlo
feature selection

38 images: 5 from diseased
and 5 from healthy dogs

Classification of Golden
Retriever Muscular

Dystrophy
MRI [38]

YOLO network (YOLO v3
Tiny ConvNet)

1835 images: 1686 for training
and 149 for testing to the

identification of the hip region

Identification of the hip
region and hip dysplasia
classification as normal

or dysplastic

X-ray [11]

CNN (Inception-V3) 225 images: 165 images for
training and 60 for testing

Hip dysplasia
classification as normal

or dysplastic
X-ray [39]

CNN (AlexNet,
GoogLeNet, and
ResNet-50) and

multi-class support
vector machine

1000 images to evaluate the
dog’s maturity, 410 images for
fracture dating, and 2027 for

fracture detection

Determination of the
dog’s maturity, fractures’

dating, and fractures’
detection in long bones

X-ray [40]
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Table 1. Cont.

Body
Region ML Type Image Dataset Objective Diagnostic

Imaging Reference

CNN (ResNet-50)

200 images: 80 of tissue with
cancerous margins and 80 of

normal tissue for training;
20 of tissue with cancerous
margins and 20 of normal

tissue for validation

Classification of surgical
tissue margins as

healthy or cancerous
SDOCT [41]

3D CNNs
1400 images: 800 for training,

400 for validation, and
200 for testing

Hip dysplasia
classification as normal

or dysplastic

X-ray
MRI [31]

U-Net and Feature
Pyramid Network (FPN)

138 images normal and
dysplastic: 70% for training,

15% for validation, and
15% for testing

Segmentation of the
dog’s femur and

acetabulum bones
X-ray [35]

U-Net
202 images: 70% for training,

15% for validation, and
15% for testing

Active learning in the
segmentation of the

dog’s femur and
acetabulum bones

X-ray [25]

Th
or

ax

Principal component
analysis, partial least
square discriminant

analysis, and support
vectors machines

35 images: 29 images from
diseased dogs and 6 images

from healthy dogs

Diagnosis of pulmonary
thromboembolism

in dogs
CT [42]

Bag of features
and a CNN

3142 images for cardiomegaly
(1571 normal and

1571 abnormal); 2086 images
for pulmonary patterns

(1043 normal and
1043 abnormal); 892 images

for mediastinal shift
(446 normal and

446 abnormal); 940 images for
pleural effusion (470 normal

and 470 abnormal); and
78 images for pneumothorax
(39 normal and 39 abnormal)

Identification of
cardiomegaly,

pneumothorax, pleural
effusion, pulmonary

patterns, and
mediastinal shifts

X-ray [43]

CNN (DenseNet-121) 2862 images: 80% for training
and 20% for validation

Pulmonary lesions
identification X-ray [44]

CNN (Inception V3,
Inception-ResNet V2,

VGG-19, and ResNet-101)

1468 images: 1153 images for
training and 315 images

for testing

Detection of
cardiomegaly in

thoracic radiographs
X-ray [45]

CNN (Visual Geometry
Group 16 network)

792 images: 711 images for
training and 81 for testing

Detection of left
atrial enlargement X-ray [46]

CNN
(DenseNet-“PicoxIA”—a

commercial program)

15780 images: 90% for
training and 10%

for validation

Identification of 15 types
of primary

thoracic lesions
X-ray [47]

CNN (Inception,
MobileNet, ResNet, VGG,
and a four-layer network)

1174 images (65% from
healthy dogs and 35% from
diseased dogs) and training

and test sets sorted using
ten-fold cross-validation

Detection of pulmonary
coccidioidomycosis X-ray [48]
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Table 1. Cont.

Body
Region ML Type Image Dataset Objective Diagnostic

Imaging Reference

CNN (ResNet-50 and
DenseNet-121)

3839 images randomly
divided into training,

validation, and test sets in the
ratio of 8:1:1

Classification of dog’s
thoracic radiographs as

unremarkable,
cardiomegaly, alveolar,

bronchial, and
interstitial patterns,
presence of masses,

pleural effusion,
pneumothorax, and

megaesophagus

X-ray [34]

CNN (ResNet-50 and
Inception V3)

1062 images randomly
divided into training,

validation, and test sets in the
ratio of 8:1:1

Classification of cat’s
thoracic radiographs X-ray [49]

CNN (HRNet)
2643 images: 1875 for training,

399 for validation, and
369 for testing

Determination of the
vertebral heart score to
identify cardiomegaly

X-ray [50]

CNN (DenseNet-121-
“PicoxIA”—a commercial

program)

60 images: 30 canine and
30 feline

Calculation of the
vertebral heart score to
identify cardiomegaly

X-ray [51]

U-Net (Improved
Attention U-Net)

1000 images: 800 for training,
100 for validation, and

100 for testing

New automated cardiac
index to improve the

vertebral heart score and
identify cardiomegaly

X-ray [52]

CNN (ResNet-50 v2)
500 images: 455 for training

and validation and 45
for testing

Pulmonary patterns
identification in cats X-ray [53]

CNN (DenseNet-121-
“PicoxIA”—a commercial

program)

55780 images: 90% for
training and 10% for testing

Classification of thoracic
radiographs with 15

possible labels
X-ray [54]

CNN (“Vetology”—a
commercial program) 481 images

Accuracy determination
of the “Vetology” for

cardiogenic pulmonary
edema diagnosis

X-ray [55]

CNN (“Vetology”—a
commercial program with

VGG-16 CNN
architecture)

4000 images: 2000 of pleural
effusion and 2000 of normal

patients for training

Accuracy determination
of the “Vetology” for

pleural
effusion diagnosis

X-ray [56]

N
er

vo
us

sy
st

em

Linear discriminant
analysis

58 sets of MRI scans of dogs
with meningioma, 27 for

training and 31 for testing

Prediction of the
histological grade in
dog’s meningiomas

MRI [57]

CNN (AlexNet and
scrDNN)

56 images: 60% for training,
10% for validation, and

30% for testing

Prediction of the
histological grade in
dog’s meningiomas

MRI [58]

CNN (GoogleNet)
80 images: 70% for training,

15% for validation, and
15% for testing

Distinction between
canine glioma and

meningioma
MRI [59]
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Table 1. Cont.

Body
Region ML Type Image Dataset Objective Diagnostic

Imaging Reference

Sequential floating
forward selection, support

vector machine

32 images: 10 normal, 11 with
the malformation and clinical

signs, and 11 with clinical
signs without malformation

Identification of Cavalier
King Charles dogs with

Chiari-like
malformation-

associated pain and
syringomyelia

MRI [60]

CNN
500 images: 375 images for

training and 125 images
for testing

Identification of
thoracolumbar spinal

cord pathologies in dogs
MRI [61]

Random Forest classifier
119 images: 80 images for

training and 39 images
for testing

Differentiation and
identification of glial

tumor cells and
non-infectious
inflammatory

meningoencephalitis

MRI [62]

A
bd

om
en

CNN (AlexNet)
48 images: 70% for training,

15% for validation, and
15% for testing

Detection of diffuse
degenerative

hepatic diseases
US [63]

Quadratic discriminant
analysis 40 images

Detecting canine hepatic
masses and

predicting malignancy
CT [64]

ANN, artificial neural network; CNN, convolutional neural networks; CT, computed tomography; ML, ma-
chine learning; MRI, magnetic resonance imaging; SDOCT, spectral domain optical coherence tomography;
US, ultrasound.

3.1. Musculoskeletal

McEvoy and Amigo (2013) were the first researchers to apply machine learning to the
musculoskeletal region in the veterinary imaging field [7,36]. Firstly, in 2013, they used a
partial least squares discriminant analysis model and an artificial neural network model to
identify dogs’ hips in radiographs, classifying the images as “hip” or “not hip” [36]. Later,
in 2021, McEvoy et al. used deep learning for the binary classification of hip dysplasia,
in the first phase using a YOLO network to detect the hip region and then, in the second
phase, to determine if hip dysplasia was present or not [11]. The obtained model was
highly accurate [11]. Both studies showed that ML could be applied to veterinary imaging,
specifically to hip dysplasia detection [11,36]. Gomes et al. (2021) carried out a similar
study to McEvoy et al. (2021), using a CNN to classify dogs’ radiographs as dysplastic or
not and measuring the model’s efficiency by comparing the results with the classification
by an expert radiologist. Ultimately, the model and the veterinary radiologist produced
similar results. Their work demonstrated that it is possible to use smaller datasets and still
obtain accurate results by using transfer learning and pre-trained CNNs [39]. Akula et al.
(2022) also applied CNNs for hip dysplasia, both in radiographs and in MRI, developing
two models, one to identify canine hip dysplasia and another to classify the hips into
FCI categories. The dysplasia detection model achieved good results, with an accuracy of
89.7%, whereas the classification model only achieved 70%. The small dataset could be
one of the limitations of the study [31]. The Dys4vet group also used machine learning to
create software to detect and classify hip dysplasia. Moreira da Silva et al. (2022) used a
U-net for femur and acetabulum segmentation and active learning to maximize the model’s
performance with the least amount of data. This led to the creation of a high-performing
model which required 18.98% less annotated data [25,35].

Ergun and Guney (2021) used CNNs and compared the results with a support vector
machine for the classification of radiographs to determine a dog’s maturity (accordingly to
the growth plates), and also to detect fractures and date fractures in long bones and compare
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the results of each one. The group achieved good performance in all models, obtaining F1
scores from 0.62 to 0.89. This work also evaluated the effect of using data augmentation
and transfer learning. Both were found to be useful, increasing the effectiveness of the
models. However, the augmentation technique was shown to negatively affect the support
vector machine model, although not the deep learning algorithms [40].

Ye et al. (2021) developed an automatic system to assist in the interpretation of spectral-
domain optical coherence tomography of surgical margin tissue in dogs, using a CNN to
classify the tissue as healthy or cancerous with high accuracy and precision [41].

Yang et al. (2015) and Duda et al. (2018) applied machine learning to magnetic
resonance images (MRI) to identify muscular dystrophy in Golden Retrievers. Yang et al.
(2015) used two different machine learning classifiers to classify the images as healthy or
diseased. Duda et al. (2018) used three machine learning classifiers to classify the dystrophy
progression in four phases. Both studies concluded that muscle texture analysis could be a
promising tool. However, a larger dataset and other methods should be considered [37,38].

3.2. Thoracic

Yoon et al. (2018) and Burti et al. (2020) both used CNNs to evaluate radiographs from
dogs. Burti et al. (2020) used it to evaluate the presence or absence of cardiomegaly, while
Yoon et al. (2018) used it to assess cardiomegaly, the presence of pneumothorax, pleural
effusion, pulmonary patterns, and mediastinal shifts. Yoon et al. (2018) also applied a
bag-of-features machine learning model in the same study, which performed worse than
the CNN [43,45]. Dumortier et al. (2022) used CNNs pre-trained with human chest X-ray
images to identify pulmonary patterns in cats’ radiographs, training 200 different networks,
each one with different randomly chosen training and validation sets, in order to improve
the model’s performance [53]. Banzato et al. (2021) also used CNNs with transfer learning,
using two different pre-trained models, ResNet-50 and DenseNet-121, to test which would
be more efficient. The goal was for the model to classify dogs’ thoracic radiographs, labeling
them as unremarkable, cardiomegaly, alveolar, bronchial, and interstitial patterns, presence
of masses, pleural effusion, pneumothorax, and megaesophagus. ResNet-50 performed
better, obtaining an area under the receiver–operator curve of above 0.8 in all parameters
except for bronchial patterns and mass identification [34]. This group also developed a
similar study to evaluate cats’ radiographs, testing a ResNet-50 and Inception V3 CNN.
Both networks had similar performances, with high accuracy, except for mass detection [49].

Zhang et al. (2021) used deep learning to determine the vertebral heart score by
measuring 16 key points in the vertebra and heart, which was then used to evaluate if
there was cardiomegaly on dog X-rays, with an average performance of 90.9% [50]. More
recently, Jeong and Sung (2022) proposed a new automated cardiac index for dogs to
improve the classical vertebral heart score, using an algorithm that combined segmentation
and measurements. The results showed that this new method could be used to diagnose
cardiomegaly at an earlier stage and with a high degree of effectiveness [52].

Li et al. (2020) used CNNs for the detection of left atrial enlargement, comparing the
results with veterinary radiologists’ evaluations. They trained two models, one that valued
accuracy more highly and another that valued sensitivity more highly. The results revealed
that the performance of the model with the emphasis on accuracy achieved an identical
accuracy and sensitivity to the radiologists, with a concordance of 85.19% between the
two [46].

Marschner et al. (2017) used ML in computed tomography of the pulmonary parenchyma
to diagnose pulmonary thromboembolism in dogs. The model was able to distinguish be-
tween healthy and abnormal lung tissue. However, it was not able to efficiently distinguish
dogs with this pathology from dogs with other lung pathologies [42].

Ott et al. (2021) applied the concept of deep CNNs to develop an AI capable of
detecting pulmonary coccidioidomycosis, a zoonotic disease, in dog radiographs, achieving
high-performance results [48].
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Arsomngern et al. (2019) developed a radiograph diagnosis application (Pet-X) to
detect lung abnormalities in cats and dogs using CNNs, by mapping the lesions and
classifying them as alveolar, interstitial, and bronchial. The software performed better in
lateral position X-rays, which can be explained by the fact that ventrodorsal images present
more noisy features. As for the lesion classification, bronchial and interstitial detection
models showed poorer performances than the alveolar model [44].

Boissady et al. (2020) used an AI program, PicoxAI, to screen thoracic X-rays for
15 types of primary thoracic lesions in cats and dogs. They used three different CNNs
with three different pre-trained models: one without pre-training, another one pre-trained
with images from ImageNet, and another pre-trained with ImageNet followed by training
with a dataset of human thoracic X-rays. The network pre-trained only with unspecialized
data (ImageNet) achieved the best results. The best model was then compared with
classification by veterinarians, comparing the error rate in both [47]. In 2021, Boissady
et al. also used PicoxAI’s CNN to calculate the vertebral heart score, comparing the results
obtained with the annotations of veterinary specialists in order to evaluate the model’s
performance. The final results showed a high agreement [51]. Hespel et al. (2022) also
evaluated the performance of the PicoxAI program. They compared the error of using four
different CNNs with the error rates of 13 veterinary radiologists in the analysis of thoracic
radiographs, classifying the images with 15 possible labels. The results varied depending
on the label [54].

Kim et al. (2022) studied another AI application—“vetology”—and compared its
analysis with veterinary radiologist evaluations in the diagnosis of canine cardiogenic
pulmonary edema. The accuracy, sensitivity, and specificity of the model were above 90%.
However, despite the negative predictive value of 99%, the positive predictive value was
only 56%, with several images being diagnosed differently from the veterinary expert’s
evaluation [55]. Müller et al. (2022) carried out a similar study comparing evaluations in
the diagnosis of pleural effusion, obtaining 88.7% accuracy, 90.2% sensitivity, and 81.8%
specificity [56].

3.3. Nervous System

Banzato et al. conducted three studies in which they used AI to analyze the nervous
system in MRIs. In 2017, they used machine learning texture analysis to predict the
histological grade in dogs’ meningiomas [57]. In 2018, they carried out a new study
on meningioma grading, this time using two different CNNs, one pre-trained, and one
without pre-training. The de novo CNN proved to be more efficient [58]. Another study
using a CNN and transfer learning was conducted by Banzato’s group in 2018 in order
to differentiate between canine glioma and meningioma [59]. In all these studies, it was
concluded that machine learning was an effective tool for assisting clinicians in MRI
analysis [58,59].

Spiteri et al. (2019) applied machine learning and support vector machines to iden-
tify Cavalier King Charles dogs with Chiari-like malformation-associated pain and sy-
ringomyelia by detecting distinguishing features in MRI [60].

Biercher et al. (2021) developed a CNN to identify several thoracolumbar spinal
cord pathologies in dog MRIs, such as intervertebral disc extrusion, intervertebral disc
protrusion, fibrocartilaginous embolism, syringomyelia, and neoplasia. The model showed
successful results in the detection and distinction of all pathologies except for syringomyelia
and neoplasia. The authors concluded that more data should help in correcting this
issue [61].

Wanamaker et al. (2021) used texture analysis machine learning to differentiate and
identify glial tumor cells and non-infectious inflammatory meningoencephalitis in MRI
and found the designed model to be efficient. Wanamaker also tried to grade subtypes
within the two diseases, but without much success [62].
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3.4. Abdominal

Banzato et al. (2018) used a deep neural network and transfer learning in ultrasound
images to detect the presence of diffuse degenerative hepatic diseases in dogs. The results
were compared to evaluate the model’s accuracy with serum biochemistry and cytology,
using histopathology results as ground truth. They concluded that the model was more
efficient at predicting disease than biochemistry and cytology [63].

Shaker et al. (2021) developed a machine learning model for CT analysis in detecting
canine hepatic masses and predicting their malignancy by evaluating their heterogene-
ity [64].

4. Conclusions

Machine learning in veterinary imaging diagnosis has mostly been applied to the
thoracic region, with various studies on the identification of pulmonary patterns and
cardiomegaly detection. In addition, some commercially available software, such as “Pi-
coxIA”, enable abdominal, thoracic, and hip image analyses, although studies have only
been published validating the thoracic analysis. “Vetology” is another clinically certified
software, which was created for the analysis of radiographs of the thorax, heart, and lungs
in dogs. There are also a few studies on the musculoskeletal region, mainly the hip, for
the detection of hip dysplasia. The nervous system and the abdominal region are the least
studied regions for ML in veterinary medicine.

The most commonly used type of machine learning is supervised learning, with expert
radiologists first labeling the images to train the AI. CNNs are the most commonly used
model for image analysis since they are the best model for this purpose and have been
improved in recent years.

The number of images used varies greatly since the necessary number of required
images varies depending on the type of machine learning method applied and depending
on whether or not augmentation techniques or transfer learning are employed.
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