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Simple Summary: Athletic horses are often exposed to traumatic injuries, resulting in severe financial
losses. Adipose tissue possesses a high potential as an easily accessible source and provides a higher
yield of mesenchymal stem cells for various applications in regenerative medicine. Concerning
the identification of the stemness features of isolated cells, some of the most commonly applied
standards are not applicable because of the species-specific responses to the differentiation protocols.
In many cases, the cells cannot reveal their multipotent properties, so their stemness features remain
questionable. The adaptation, optimization, and standardization of equine-specific protocols for cell
isolation and culture conditions are also discussed. The presented new approaches elucidate the
possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as
an alternative treatment to cellular therapy. The current review summarizes aspects of the specificity
of equine adipose stem cells concerning their features, immunophenotyping, secretome profile,
differentiation abilities, culturing conditions, and consequent possibilities for clinical application in
some equine-specific disorders.

Abstract: Adipose tissue is recognized as the major endocrine organ, potentially acting as a source
of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are
often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-
derived stem cells’ regenerative potential depends on many factors. The extraction of stem cells from
subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources.
Since there is a lack of unique standards for identification, the isolated cells and applied differen-
tiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent
properties, so their stemness features remain questionable. The current review discusses some aspects
of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secre-
tome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical
application in concrete disorders. The presented new approaches elucidate the possibility of the
transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative
treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due
to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the
healing and tissue regeneration process and the ability to amplify the effects of traditional treatments.
More profound studies are necessary to apply these innovative approaches when treating traumatic
disorders in racing horses.

Keywords: equine; species-specific stemness features; regenerative therapy

1. Introduction

Adipose tissue is an abundant and convenient source of mesenchymal stem cells
(MSCs) [1] that, together with those derived from bone marrow (BMSCs), possess a higher
potential for application in cell-based therapy, where the primary purpose is to provoke and
support regenerative processes in damaged tissues [2,3]. To date, in veterinary medicine,
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stem cells from adipose tissue have successfully been used mainly in horses and dogs for
treating tendons and joint injuries, bone defects, musculoskeletal disorders, and even some
kidney and ophthalmic diseases [3–6]. Obtaining material for the isolation of MSCs from
adipose tissue (Figure 1) is relatively non-invasive and non-traumatic; liposuction surgery
is a cheaper and safer method than bone marrow aspiration [7].
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The higher content of MSCs in adipose tissue compared to bone marrow in large
animals, such as horses, explains its preferability as a source of stem cells, due to the
abundant amount of cell mass required to achieve a therapeutic effect [8]. Furthermore,
the amount of stem cells in one gram of subcutaneous adipose tissue is 500 times higher
than what can be obtained from the same quantity of bone marrow aspirate [9]. For
cell-based therapy in horses, autologous bone marrow mesenchymal stromal cells are
used due to their differentiation into different cell types and their ability to reproduce
regenerative processes at the site of damage in difficult-to-repair tissues such as tendons
and ligaments [10]. The same abilities have been established for ASCs from lipoaspirates in
humans when compared to bone marrow MSCs [11]. In the event that the amount of the
isolated cells from lipoaspirates exceeds that from bone marrow, the adipose tissue would
be the preferable source of MSCs.

Stem cells’ classification and mesenchymal stem cells (MSCs) discovery: In general,
stem cells can be classified depending on their origin (embryonal, adult, and induced
pluripotent stem cell, [12], or to their differentiation potential (totipotent, pluripotent,
multipotent, oligopotent, and unipotent) [13]. The last one does not possess any ability
for multilineage differentiation, except at the site of their origin. MSCs in particular are
multipotent adult stem cells that can differentiate into various mesodermal cell types,
including adipocytes, chondrocytes, and osteoblasts [14,15].

First identified in bone marrow, MSCs can also be obtained from almost all tissues and
organs of the adult organism or the fetus: adipose tissue [16]; umbilical cord blood [17];
peripheral blood [18,19]; the dermis or dental pulp [20,21]; or skeletal muscle [22].

Features of MSCs: Following the discovery of MSCs, it was found that at low seeding
densities, individual precursors can proliferate to generate new colonies of cell structures
known as colony forming units-fibroblast (CFU-F), which are inherent in stem cells [23]
and are considered as the gold standard in the analysis of their identification. In humans,
for example, one cell could produce only a single colony, whereas in mice and rats, one cell
may reproduce into multiple colonies [24]. However, in horses, even at a seeding density
of 100 cells, colony formation is almost non-existent [25].
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The knowledge of stem cell properties and features has improved over the years. Re-
searchers still face the Gordian Knot in finding an algorithm for equalizing the quality and
homogeneity of animal MSCs to increase their clinical efficacy. To address this problem, the
International Society for Cellular Therapy (ISCT) has published minimal criteria, according
to which MSCs must meet the following standards: the ability to attach to the surface of
the vessel during cultivation; multipotent potential for differentiation, i.e., the cells must
have the ability to differentiate into osteoblasts, chondrocytes and adipocytes (cells of
mesodermal origin); expression of specific surface antigens (CD-cluster of differentiation,
superficially located on the cell membrane glycoproteins), with more than 91% of the MSC
population having to express markers for less the differentiated cells CD73, CD90, and
CD105 and not expressing (be negative) markers specific for endothelial and hematopoietic
cells CD34, CD45, CD14 or CD11b, CD19 or CD79α and HLA-DR [26].

Immunophenotyping of ASCs: Adipose-derived stromal and stem cells (ASCs) are
mesenchymal stem cells (MSCs) that exhibit similar properties since they adhere to plas-
tic culture flasks, can be expanded in vitro, and may differentiate into multiple cell lin-
eages [27]. ASCs include different subgroups associated with their various functions, e.g.,
as precursors of adipocytes or vascular support cells. Therefore, it is difficult to reconcile a
definite and independent expression profile [7]. Under the authority of the International
Federation of Adipose Therapeutics (ISCT), international standards have been developed
based on reproducible parameters as minimal definitions of stromal cells, wherein they
are evaluated both as an uncultured stromal vascular fraction (SVF) and as an adherent
stromal/stem cell population. The further expansion of this fraction gives rise to an ad-
herent cell population termed adipose tissue-derived stromal cells (ASCs). Accordingly, to
be accepted as ASCs, the cellular population should be negative (<2%) for hematopoietic
markers such as CD11b and CD45 and positive (>90%) for stromal markers such as CD13,
CD73, and CD90 [1]. The latter allows us to conclude that, as in humans, the aforemen-
tioned CD73, CD105, CD44, and CD90 can also be considered markers for identifying ASCs
in horses. The CD29 marker should also be included because over 90% of the cells have
been found positive, confirmed by flow cytometric and qPCR analysis [28].

As negative markers for equine ASCs have been identified, the hematopoietic marker
CD45 is expressed by monocytes and macrophages, CD14, and endothelial marker
CD31 [28]. In human ASCs, the hematopoietic marker CD34 has shown positive expression,
which tends to decrease with the increasing number of passages [29]; in horses, however,
such a trend has not been explored. Some authors propose additional markers that have
not been previously studied, such as CD61, CD91, CD228, and CD315, in adipose and bone
marrow MSCs in humans and horses [30].

In addition to the above-mentioned CD markers, stemness transcriptional factors
such as NANOG, OCT4, SOX2, REX1, NOTCH1, and NESTIN should also be investigated
at present [31]. To characterize human ASCs, new approaches such as flow cytometry,
quantitative PCR, transcriptome sequencing [32], the evaluation of cell surface proteins
by mass spectrometry [33,34], and the determination of ASCs’ secretome profile [35] have
been used. In horses, the combination of enrichment of the MSCs surface proteome by
biotinylation and consequent MS analysis has been reported as a valuable alternative to im-
munophenotyping surface markers when suitable antibodies are not available [30]. In other
words, the requirements for ASCs increase, improving their efficacy in clinical application.

To date, the detailed expression profile of ASCs is still arguable [36] and very compli-
cated, especially in animals, since it depends on various factors arising from the microenvi-
ronmental extracellular conditions, isolation methods, and tissue origin.

Features of ASCs: To a large extent, the characteristics of ASCs overlap with those
common in mesenchymal stem cells due to their similar embryonic origin. However, they
have some specific features that need to be addressed. An older method developed to
isolate ASCs from white adipose tissue in humans is still in use, whereas in 2001, Zuk
et al. identified those cells as MSCs [37,38]. Accordingly, adipose tissue is mechanically
minced and then subjected to enzymatic digestion with collagenase, which disrupts the
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peptide bonds in the collagen molecules to release cells and centrifuge. The resulting
pellet (Figure 2) is referred to as stromal vascular fraction (SVF), which contains stem cells,
endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, leukocytes,
and erythrocytes [39].

Vet. Sci. 2023, 10, x FOR PEER REVIEW 4 of 14 
 

 

and then subjected to enzymatic digestion with collagenase, which disrupts the peptide 
bonds in the collagen molecules to release cells and centrifuge. The resulting pellet (Figure 
2) is referred to as stromal vascular fraction (SVF), which contains stem cells, endothelial 
cells, endothelial progenitor cells, pericytes, smooth muscle cells, leukocytes, and eryth-
rocytes [39]. 

 
Figure 2. Stages of isolating procedure for equine adipose stem cells. Abbreviations: SVF—stro-
mal vascular fraction; CFU-F—colony forming unit fibroblast; adipose stem cells (ASCs). 

There are multiple terms for stem cells derived from adipose tissue, for example 
preadipocytes, adipose-derived stromal cells, processed lipoaspirate cells, adipose-de-
rived mesenchymal stem cells, and adipose-derived adult stem cells. The International Fat 
Applied Technology Society has adopted the term “adipose-derived stem cells” (ASCs) to 
identify the isolated-from-fat-tissue, plastic-adherent, multipotent cell population [40]. 

After seeding in culturing plates, the SVF cells give rise to a subset of elongated cells, 
which are less heterogeneous [1,41], adherent to plastic, easily cultivated and expanded 
in vitro, and whose average doubling time is approximately 2–5 days, depending on the 
number of passage and culturing conditions [29,42]. The ASCs can easily cryopreserve in 
a medium containing serum and dimethyl sulfoxide (DMSO) while retaining their prolif-
eration and differentiation ability after defrosting [43]. 

As already mentioned, ASCs have a higher proliferative and adipogenic capacity 
than BMSCs, which are easier to differentiate into chondro- and osteogenic directions [44]. 
With appropriate inducers and under favorable microenvironmental conditions, ASCs 
can be differentiated even in cardiomyocytes [45,46]. 

Bioactive ASC products have clinical significance; the main healing effects of ASCs 
are due to their paracrine function and immunomodulation at the application site (Figure 
3). 
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There are multiple terms for stem cells derived from adipose tissue, for example
preadipocytes, adipose-derived stromal cells, processed lipoaspirate cells, adipose-derived
mesenchymal stem cells, and adipose-derived adult stem cells. The International Fat
Applied Technology Society has adopted the term “adipose-derived stem cells” (ASCs) to
identify the isolated-from-fat-tissue, plastic-adherent, multipotent cell population [40].

After seeding in culturing plates, the SVF cells give rise to a subset of elongated cells,
which are less heterogeneous [1,41], adherent to plastic, easily cultivated and expanded
in vitro, and whose average doubling time is approximately 2–5 days, depending on the
number of passage and culturing conditions [29,42]. The ASCs can easily cryopreserve
in a medium containing serum and dimethyl sulfoxide (DMSO) while retaining their
proliferation and differentiation ability after defrosting [43].

As already mentioned, ASCs have a higher proliferative and adipogenic capacity than
BMSCs, which are easier to differentiate into chondro- and osteogenic directions [44]. With
appropriate inducers and under favorable microenvironmental conditions, ASCs can be
differentiated even in cardiomyocytes [45,46].

Bioactive ASC products have clinical significance; the main healing effects of ASCs are
due to their paracrine function and immunomodulation at the application site (Figure 3).

As part of the MSC community, ASCs also produce many cytokines, growth factors,
and biologically active molecules, the spectrum of which largely overlaps with those of
other MSCs. Many signals from the local microenvironment could provoke MSCs and ASCs
to respectively secrete a wide range of cytokines, growth factors, and bioactive molecules
with neurotrophic, antiapoptotic, immunomodulatory, angiogenic, re-epithelization, anti-
scar, and paracrine effects, which is one of the primary mechanisms related to their potential
to repair damaged tissue and regenerate [47–49].

MSCs also have a paracrine function thanks to their ability to secrete extracellular
vesicles (EVs) that include exosomes, microvesicles, and apoptotic bodies, whose composi-
tion depends on the tissue of origin. The exosomes secreted by ASCs have a diameter of
30–100 nm and are reported to promote vascularization; however, their transplantation
could be used for clinical applications in regenerative medicine [50]. Physiologically, they
play an essential role in regulating biological functions, homeostasis, and the body’s im-
mune response. The activity of microvesicles is comparable to that of MSCs [51]. Their ECVs
are responsible for tissue repair even at higher magnitudes [52]. As a paracrine product of
stem cells, exosomes have the same functions and are rich in proteins, mRNA, miRNA, and
other substances [53]. However, there are also some specific substances that come from cells
isolated from adipose tissue. Through the mass spectrometry analysis of the ASC secretome
profile in humans, 342 proteins in normoxic condition were identified to be functionally re-
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lated to angiogenesis and vasculature development, extracellular matrix (ECM) formation,
cell adhesion/migration, cell survival/death, and immune regulation [54]. An analysis
of ASC secretome composition revealed various trophic growth factors, such as vascular
endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like growth
factor (IGF) −1, β-nerve growth factor (NGF), stromal cell-derived factor (SDF) −1α, and
exosomes, which are functional in cardiovascular disease therapy [35], platelet-derived
growth factor (PDGF), basic fibroblast growth factor (bFGF) [55,56], cytokines, RNAs, and
lipid mediators [57].
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which ASCs are involved. Abbreviations: ASCs (adipose stem cells); bFGF (basic fibroblast growth
factor); ECM (extracellular matrix); EVs (extracellular vesicles); HGF (hepatocyte growth factor);
IGF-1 (insulin-like growth factor); ILs (interleukins); MMPs (matrix metalloproteinases); mRNA
(messenger ribonucleic acid); miRNA (micro-ribonucleic acid); NGF (nerve growth factor); PDGF
(platelet-derived growth factor); SDF -1α (stromal cell-derived factor); TIMPs (tissue inhibitors of
metalloproteinases); VEGF (vascular endothelial growth factor).

Since adipose tissue is recognized as a major endocrine organ, the type and quantities
of its products are highly dependent on the health status and individual deviations of
the subjects in vivo and on microenvironment conditions in vitro. Simultaneously, as a
metabolically active tissue, the secretome expression profile of ASCs varies profoundly as
well. In this respect, a considerable lack of findings related to the products of equine ASCs
exists, and future research is necessary to elucidate the best purpose and preconditions for
using ASCs as cell-free therapy in equine regenerative medicine.

Immunomodulatory effect of ASCs: MSCs influence the immune T and B cellular
response [58] by enhancing/exerting immunoregulatory effects on acquired and innate
immune cells, such as T and B lymphocytes, dendritic cells, natural killer cells, and mono-
cyte [58,59]. They directly suppress the activation and proliferation of immune cells [60]
and also limit the synthesis of immunoglobulins, such as IgM, IgG, and IgA secreted by
activated B cells, preventing their further differentiation into plasmatic cells and their
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ability to migrate [61]. Activated equine MSCs derived from bone marrow, adipose tissue,
umbilical cord blood, and umbilical cord tissue secrete high concentrations of mediators
that are similar to those of MSCs from rodents and humans in their immunomodulatory
profiles [62]. The application of ASCs in both pathological and healthy equine endometrial
tissues has shown some opposite effects on the regulation of inflammatory processes in
the endometrium by changing the expression levels of IL1B, IL10, TNFA, IL1RN, IL6, and
IL8 [63].

Aside from producing bioactive substances, MSCs migrate far from the application
area and regenerate damaged tissue. Despite the effects on the immune–inflammatory
response, ASCs influence regenerative processes by modulating the extracellular matrix
structure. A specific family of proteins regulates this process: matrix metalloproteinases
(MMPs) and their inhibitors (TIMPs), which together cause the degradation of the protein
components of the extracellular matrix and, thus, can modulate the stem cells’ homing [64].
This feature of MSCs is used in trials for mares’ endometriosis treatment with allogeneic
equine ASCs, where differences in the biological response are observed. They concern
not only the above-mentioned pro- and anti-inflammatory factors, but also changes in the
expression levels of MMP2 and TIMP2 (decreased) and MMP9 (increased) [63]. Therefore,
the behavior of ASCs and the composition of secreted products will depend on the condition
of the treated tissue and could provoke unexpected consequences and adverse side effects.
Extracellular conditions and nutritional factors could also influence the ability of ASCs
in extracellular matrix remodeling. In vitro studies in rabbits, for example, have revealed
that some anti-inflammatory dietary additives, such as PUFAs (polyunsaturated fatty
acids), DHA (docosahexaenoic acid), and EPA (eicosapentaenoic acid), which are PPAR-γ
ligands, seem to influence the transcriptional profile of MMPs differently in subcutaneous
and visceral ASCs in vitro [65,66]. In this aspect, it is necessary to balance between pro-
and anti-inflammatory, lytic, and fibrotic environments [63] and estimate all factors that
could potentiate the regeneration and healing processes of an injured tissue. The co-
administration of nutritional anti-inflammatory factors together with cell-based and non-
cell-based therapy could promote clinical efficacy.

Factors influencing ASCs productivity and multipotency: The development of the
regenerative potential of ASCs depends on many factors. In that sense, if even one of the
requirements postulated by ISCT regarding the ability of ASCs to attach to the surface
of the vessel and the multipotent potential for differentiation and expression of specific
surface antigens is not fulfilled, the stemness features of the cells will be questionable.
Most of the induction mixtures have been adopted from human MSC differentiation
protocols, but there is spice-specific responsiveness in mammals, and the concentrations
and combinations of the main inducers should be reconsidered and optimized accordingly.
In horses, adipogenesis as part of the tri-lineage differentiation program is a challenge. The
main inductors are insulin, IBMX, dexamethasone, and indomethacin, where the commonly
reported concentrations of the latter range between 0.2–0.1 mM [16,67,68]. When applied
in those concentrations to equine ASCs, indomethacin causes a high level of cytotoxic
effects, accompanied by a massive cellular detachment. For the successful performance of
tri-lineage differentiation, the dosage of indomethacin as an adipogenic inductor should be
revised to 0.05 mM [69], which in proper combinations with other inductors seems to be
sufficient to preserve cellular vitality and enchase adipogenic differentiation capability in
equine ASCs.

The next main component of culturing media is the serum. Currently, up-to-date
testing of the consequences of the different serum types on MSC functionality is still un-
clear [70], and is even less so for equine ASCs. Bovine serum is mostly used in cell culture
protocols, but horse serum could also be analyzed for growth factors and hormones [71].
On the one hand, FBS deprivation lowers metabolic and proliferative activity at the tran-
scriptomic level in ASCs. However, its surplus could cause the clonal expansion of cells that
have lost their ability to differentiate and do not respond to environmental inhibition [32].
FBS could also pose the hidden risk of zoonotic transmission and xeno-immunization to
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the recipients in clinical applications [72]. Since FBS (fetal bovine serum) could signifi-
cantly alter the MSC phenotype, rendering these cells immunogenic, the bovine-derived
exogenous proteins expressed on the MSC’s cellular surface may be recognized by the host
immune system as non-self and thus would be rejected [73]. The culture conditions could
also influence the marker expression of the MSCs, which can change the phenotype of the
cells and lead to contradictory reports on marker expression [74]. It has been reported
that the removal of FBS from both canine and equine MSC culture systems alters their
immunomodulatory properties, and more studies are necessary before the transition to
FBS-free culture conditions is effectuated [75].

In contrast, the comparison between the immunomodulatory and the antibacterial
properties of equine bone marrow MSCs cultured in FBS or autologous or allogeneic equine
serum has established that cells in FBS are more functionally active than those in equine
serum [70]. Recently, platelet lysate has been proposed for culturing equine bone-marrow-
derived MSCs as an alternative supplement to serum-free media to escape the negative
consequences of FBS [73]. The influence of serum conditions on equine ASC phenotype
and functionality is yet to be fully evaluated.

The origin tissue of the isolated cells can significantly affect their physiological proper-
ties, and ASCs from different sources have displayed distinct characteristics [76]. In rabbit
ASCs, directly seeded cells from subcutaneous fat depots have shown a more vital ability
to differentiate into adipocytes than those from visceral fat depots and their corresponding
supernatants [77]. When comparing ASCs in mice and humans, significant differences in
the surface markers, such as a predominant expression of CD10 in subcutaneous tissue and
that of CD200 in visceral adipose tissue depots, have been established [76].

2. Discussion

Clinical application of ASCs in equine disorders
In contrast to humans, regulatory agencies do not control the clinical application of

ASCs in veterinary patients and horses. The relevant preclinical studies are pure [78], and
the protocols are not unified. Although the European Medicines Agency’s (EMA) Commit-
tee for Medicinal Products for Veterinary Use (CVMP) has suggested some fundamental
principles for stem-cell-based treatments for animals, the unified law governing stem cell
therapy usage in veterinary medicine is still missing, and each member of the European
Union regulates this area autonomously [79].

Factors such as senescence, genomic stability, differentiation potential, microbiological
contamination, the donors’ age, tumorigenicity [80,81], etc., should be considered when
it comes to cellular therapies’ standardization and quality control [82]. Another factor
of importance is the amount of the applied cellular mass. In general, it varies between
10–30 × 106 and depends on the clinical condition, the disease’s specificity, the size of
the lesion, and the application type (if they are applied subcutaneously, intravenously or
intra-articular, for example) [3,79,83]. For example, in horses, the recommended dosage for
intra-articular application for osteoarthritis is 20 × 106 MSCs [84].

There are two main directions for the outcome of clinical applications: cellular-based
and non-cellular therapy. In some diseases, the positive effect of ASC treatment is categori-
cally proven.

A considerable potential has been noted for the spontaneous migration of equine ASCs
toward injury sites, which is accompanied by the up-regulation of a critical musculoskeletal
progenitor marker, which may be helpful in regeneration therapies for musculoskeletal
disorders such as tendon and ligament injuries or osteoarthritis, which are common in
horses [85,86]. In athletic horses, the flexor tendons often work close to the rupture limit,
especially the superficial flexors, and under intense pressure, these degenerative injuries
may lead to frequent ruptures of the tendon fibers, which can be the end of a sporting
career [87,88]. Scar formation usually follows the initial inflammatory reaction that occurs
at the onset of the injury. The application of allogeneic ASCs in horses leads to a lack of
local inflammatory response [89], which supports the healing process. The damaged tissue
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is characterized by atypical mineralization, which can result in rupture upon overload
due to an increased expression of type III collagen. In comparison to collagen I, which is
predominant in a healthy tendon, it possesses less strength, elasticity, and resilience [90,91].
In these cases, MSC administration aims to restore standard collagen fibers and regular
tendon activity, with minimal risk of recurrence [92,93]. After the combined application of
ASCs with PRP (platelet-rich plasma) to the lesion of the superficial flexor, and after the
completion of the rehabilitation program, a reduction of the defect, a better organization of
collagen fibers, increased blood flow, and an up-to-90% recovery of treated horses have
been observed [94–96].

Another problem in athletic horses is osteoarthritis, evidenced by lameness related
to degenerative joint alteration, which usually causes complete exclusion from endurance
exercising [97]. In a comparative study of the effect of the intra-articular administration of
ASCs against steroid treatment in this type of injury, no inflammatory process was observed
at the end of the experimental period in both group, but the improvement was noted only
in the horses treated with ASCs [98].

Wound healing is another attractive aspect of ASCs’ clinical application in equines,
but their potential in horses are still poorly explored. In humans, an ASC exosomal concen-
tration of 50 µg/mL promotes collagen III and I expression, suggesting that exosomes may
promote wound repair by optimizing fibroblasts and, in that way, accelerate cutaneous
wound healing [99]. In rabbits, the combined treatment of ASCs and plasma rich in growth
factors (PRGF) could potentiate significantly and hasten the epithelialization rates and the
healing process in cutaneous wounds [100]. To date, it is clear that in athletic horses, the
amount of body fat is low, but even quantities from this source can yield a sufficient number
of MSCs from adipose tissue; together with the above-mentioned potential of equine ASCs
for spontaneous migration toward the injury sites, they might provide a benefit during
wound healing by transplanted cells [85].

Equine metabolic syndrome (EMS) is characterized by adiposity, insulin dysregulation,
and an increased risk of laminitis. Increased levels of specific liver enzymes in the periph-
eral blood are typical findings in horses diagnosed with EMS. However, new potential
treatment options are available, such as the transplantation of autologous ASCs [101]. In
addition, in rabbit visceral ASCs in vitro, the activation of additional lipolysis pathways
has been observed compared to a subcutaneous group, where EPA up-regulates the mRNA
expression of lipolysis-associated genes to a greater extent than DHA [102]. Regarding the
PUFAs, it has been reported that combined EPA-DHA treatment negatively affects leptin
and obesity-related membrane-type MT1-MMP (MMP-14) mRNA expression in rabbit
subcutaneous ASCs in vitro [66]. As an anti-inflammatory agent and as they functionally
correlate with the modulators of ECM, PUFAs could play a supportive role when targeting
the benefits of ASCs’ clinical application in metabolic syndrome and related disorders.

Unfortunately, the results of ASCs’ clinical application could be disappointing in some
cases. By acting in a paracrine manner, ASCs accelerate tumor growth in co-cultures with
cancer cells and stimulate the secretion of interleukin-6 in ASCs, which in turn causes the
cancer cells to enhance their malignant properties in a paracrine manner [27,103]. A lack
of positive outcomes have been observed in mare endometriosis, which has resulted from
chronic inflammatory damage where glandular fibrosis takes advantage of the intact tissue.
The researchers reported that the application of ASCs in that case changed some of the
pro-and anti-inflammatory substances, such as some interleukins, MMPs, and their TIMPs
related to the extracellular matrix components, but led to no apparent clinical effects [63].

ASCs are mainly used with proven positive clinical effects in musculoskeletal disor-
ders such as tendons and ligament injuries and in joint diseases not only in horses, but also
in dogs [104]. In contrast to horses, where the ASCs have significant healing potential in
aforementioned disorders, ASCs have also been successfully applied in orodental diseases
in cats [105]; digestive tract diseases in dogs and cats [106,107]; and liver [108] and neuro-
muscular diseases such as chronic spinal cord injury [109] and keratoconjunctivitis [110]
in dogs.
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3. Conclusions

Subcutaneous adipose tissue is an easily accessible and potent source of ASCs for
regenerative purposes in horses. Due to the higher yield and physiological features of stem
cells related to the healing of malfunctioned tissues, their clinical application could benefit
and amplify the effects of traditional treatments. It is a big challenge in veterinary medicine
to classify isolated cells as stem cells due to the wide variety and specificity among animals.
The adaptation, optimization, and standardization of equine-specific protocols for cell
isolation and culture conditions should focus on revealing the real regenerative potential
of their ASCs. The future direction of the exploration of ASCs as allogeneic transplants in
veterinary medicine and as a supportive therapy should be towards the transition from cell-
based to cell-free therapy. More profound studies are necessary to apply those innovative
approaches to the treatment of traumatic disorders in racing horses.
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Derived Stromal/Stem Cells from Large Animal Models: From Basic to Applied Science. Stem Cell Rev. Rep. 2021, 17, 719–738.
[CrossRef]

79. Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front. Vet.
Sci. 2020, 7, 278. [CrossRef]

80. FDA. CVM GFI #218 Cell-Based Products for Animal Use. 2015. Available online: https://www.fda.gov/media/88925/download
(accessed on 15 February 2020).

81. Debnath, T.; Chelluri, L.K. Standardization and quality assessment for clinical grade mesenchymal stem cells from human adipose
tissue. Hematol. Transfus. Cell Ther. 2019, 41, 7–16. [CrossRef]

82. Marx, C.; Silveira, M.D.; Nardi, N.B. Adipose-derived stem cells in veterinary medicine: Characterization and therapeutic
applications. Stem Cells Dev. 2015, 24, 803–813. [CrossRef]

83. Barrachina, L.; Romero, A.; Zaragoza, P.; Rodellar, C.; Vázquez, F.J. Practical considerations for clinical use of mesenchymal stem
cells: From the laboratory to the horse. Vet. J. 2018, 238, 49–57. [CrossRef]

84. Zayed, M.; Adair, S.; Ursini, T.; Schumacher, J.; Misk, N.; Dhar, M. Concepts and challenges in the use of mesenchymal stem cells
as a treatment for cartilage damage in the horse. Res. Vet. Sci. 2018, 118, 317–323. [CrossRef]

85. Shojaee, A.; Parham, A.; Ejeian, F.; Nasr Esfahani, M.H. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher
potential for migration and musculoskeletal differentiation. Res. Vet. Sci. 2019, 125, 235–243. [CrossRef] [PubMed]
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