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Simple Summary: Based on the fact that Gps are rooted in the upper respiratory tract of pigs, in
order to investigate whether secondary infection with HP-PRRSV can exacerbate lung disease and
chronic inflammation, our study was designed as follows. Our study randomly divided piglets
into four groups: Gps + HP-PRRSV, Gps, HP-PRRSV, and controls. Piglets in the Gps + HP-PRRSV
and Gps groups were infected through the intranasal route with the Gps W2 strain. The Gps + HP-
PRRSV and HP-PRRSV groups were challenged with the HP-PRRSV HuN4 strain by intramuscular
injection and intranasally at 5 days after the initial exposure to Gps. Alternatively, the control group
animals received phosphate-buffered saline (PBS). Then, we observed the influence of HP-PRRSV–
Gps coinfection on clinical outcomes, pathogen shedding and loading, cytokine production, and
specific antibody levels at various time points in infected piglets. Our results revealed synergistic
effects in HP-PRRSV–Gps coinfection, which increase the severity of clinical signs compared with
single infections. Therefore, in the unavoidable situation of Gps infection in piglets, necessary
measures must be made to prevent and control secondary infection of HP-PRRSV, which can save
huge economic losses to the pork industry.

Abstract: Glaesserella parasuis (Gps), Gram-negative bacteria, are a universal respiratory-disease-
causing pathogen in swine that colonize the upper respiratory tract. Highly Pathogenic Porcine
Reproductive and Respiratory Syndrome Virus (HP-PRRSV2HP-PRRSV2) and Gps coinfections are
epidemics in China, but little is known about the influence of concurrent coinfection on disease
severity and inflammatory responses. Herein, we studied the effects of secondary HP-PRRS infection
on clinical symptoms, pathological changes, pathogen load, and inflammatory response of Gps
coinfection in the upper respiratory tract of piglets. All coinfected piglets (HP-PRRSV2 + Gps)
displayed fever and severe lesions in the lungs, while fever was present in only a few animals with a
single infection (HP-PRRSV2 or Gps). Additionally, HP-PRRSV2 and Gps loading in nasal swabs
and blood and lung tissue samples was significantly increased in the coinfected group. Necropsy
data showed that coinfected piglets suffered from severe lung damage and had significantly higher
antibody titers of HP-PRRSV2 or Gps than single-infected piglets. Moreover, the serum and lung
concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) were also significantly higher
in coinfected piglets than in those infected with HP-PRRSV2 or Gps alone. In conclusion, our results
show that HP-PRRSV2 promotes the shedding and replication of Gps, and their coinfection in the
upper respiratory tract aggravates the clinical symptoms and inflammatory responses, causing lung
damage. Therefore, in the unavoidable situation of Gps infection in piglets, necessary measures must
be made to prevent and control secondary infection with HP-PRRSV2, which can save huge economic
losses to the pork industry.
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1. Introduction

China is the largest pork-producing country [1]. Porcine Respiratory Disease Com-
plex (PRDC) is the most challenging health concern for pig production worldwide, in-
cluding in China [2]. PRDC often involves coinfections of viruses, such as swine In-
fluenzas A Virus (swIAV) [3], PRRSV, and Porcine Circo Virus type 2 (PCV2), with bac-
teria such as Actinobacillus pleuropneumonia (APP), Mycoplasma hyopneumoniae (Mh), and
Bordetella bronchiseptica (Bb) [4]. PRRSV can cause coinfection or secondary infection with
bacteria such as Gps, Streptococcus suis (SS), and APP [3,5–7]. Notably, PRRSV outbreaks in
July 2006 caused huge economic losses to the pork industry in China [8–10]. Such outbreaks
can cause 100% morbidity and >40% mortality in infected piglets [11,12]. In PRRSV-infected
animals, the respiratory tract becomes more prone to other pathogens, such as PCV2 [13–15],
Classical swine fever virus (CSFV), SS, Gps, Mh, and various Salmonella species (spp), which
may affect the severity of PRRSV-induced pathogenesis [16–21]. Previous studies on bac-
terial ecology in Chinese pig farms identified SS (77.92%), Gps (51.25%), Escherichia coli
(52.39%), and Pasteurella multicide (26.77%) infections, along with the endemic of PRRSV,
under field conditions [1,20,22]. Interestingly, studies comparing pathogens in healthy pigs
with those with pneumonia found that PRRSV, PCV2, and Gps were prevalent among all
samples regardless of the presence/absence of related clinical symptoms [23–25]. Overall,
these data indicated that PRRSV and bacterial coinfections have high occurrences in the
Chinese pig population [7]. In most cases, multiple infectious agents involved in the de-
velopment of clinical conditions make the universal reductionist approach impractical to
examine the host–pathogen interactions, as in the case of single infections [20].

Gps is a Gram-negative, non-hemolytic, nicotinamide adenine dinucleotide (NAD)
dependent bacterium [26]. Gps is not only a universal bacterium of the upper respiratory
tract of pigs, but also an important universal respiratory pathogen causing fibrinous
polyserositis, arthritis, and meningitis in pigs [27–30]. Gps infections lead to high mortality
rates in pigs, causing significant economic losses to the swine industry worldwide [31,32].
Gps strain can also be obtained from the nasal cavities, tonsils, and tracheae of healthy
pigs [33,34]. Under favorable conditions, Gps activates innate immune responses promoting
the production of inflammatory cytokines [35]. Interestingly, PRRSV infection can have
an additive effect on Gps infection and loading [33]. However, the factors causing Gps
systemic infection in pigs have not yet been identified [36].

The PRRSV is a single-stranded positive-sense RNA virus with a capsid [37–39]. The
PRRSV disease was first identified in the United State of America in the late 1980s and in
Germany in the 1990s [40–44], and then it spread to other pig-producing areas, including
China, causing enormous economic losses to the pig industry [45–48]. PRRSV is classified
in the order Nidovirales, genus Arterivirus, family Arteviridae, together with Equine Arteritis
Virus (EAV), mouse Lactate Dehydrogenase-elevating Virus (LDV), and Simian Hemorrhagic
Fever Virus (SHFV) [42,49,50]. Based on genetic and antigenic determinants, PRRSV is
divided into two major genotypes: PRRSV1 (the European Lelystad strain) and PRRSV2
(the North American Vr-2332 strain) [51,52]. Phylogenetically, PRRSV1 is further classified
into three subtypes [53,54]: pan-European subtype 1, and East-European subtypes 2 and 3,
while PRRSV2 is classified into nine distinct subtypes [7,55]. PRRSV replicates in monocytic
lineage cell types, particularly porcine alveolar macrophages (PAMs), and the viral disease
is characterized by severe interstitial pneumonia, reduced growth, and high mortality
in young piglets, and reproductive failure in sows [20,56]. In China, PRRSV2 was first
reported by Baoqing Guo in 1996 [57], while HP-PRRSV2 was identified by Kegong Tian
from the Jiangxi Province in 2007 [58]. Then, HP-PRRSV2 spread to other pig-producing
regions, causing serious pecuniary losses. The NADC30-like PRRSV2 was described by
Zhao in 2015 [14,59,60]. HP-PRRS2V and NADC30-like PRRSV2 became prevalent after
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2015 [20]. PRRSV1 and NADC34-like PRRSV2 were separately reported by Nanhua Chen
in 2011 [61] and Hongliang Zhang in 2018 [62], which increased the difficulty of prevention
and control of PRRSV in China [20].

PRRSV infection makes pigs susceptible to secondary infection by damaging PAM cells
and inducing nasal mucositis [63]. For instance, a high detection rate of Gps is common in
pig farms infected with PRRSV [64]. Yu et al. found that HP-PRRSV2 promotes Gps prolif-
eration in blood and tissues, which increases the susceptibility to Gps in PRRSV-positive
pigs [31]. Li et al. found that the transfection of Gps RNA enhanced HP-PRRSV2-mediated
inflammatory response in coinfected animals [7]. Zhang et al. showed that the PRRSV2–
Gps coinfection aggravated lung diseases and chronic inflammation by modulating host
gene expression [33]. In the current trend, the high recombination rate and spread ability
of PRRSV strains increase the incidence and mortality rates in Gps infections [65].

Although HP-PRRSV2–Gps coinfection is very common, little is known about the
effects of coinfection on the pathogenicity, disease severity, inflammatory mediators, and
antibody responses in infected piglets [66]. Studying the mechanism of coinfection can
help control Gps outbreaks. Accordingly, in this study, we investigated the influence
of HP-PRRSV2–Gps coinfection on clinical outcomes, pathogen shedding and loading,
cytokine production, and specific antibody levels at various time points in infected piglets.
Our results revealed synergistic effects in HP-PRRSV2–Gps coinfection, which increase the
severity of clinical signs compared with single infections.

2. Materials and Methods
2.1. Ethics Statements

All animal experiments were carried out according to ethical guidelines and were ap-
proved by the Institutional Laboratory Animal Care and Use Committee of Shanghai Veteri-
nary Research Institute (SHVRI) CAAS, Shanghai (IACUC no: SHVRI-P-2018010503), and
performed in compliance with the Guidelines on Humane Treatment of Laboratory Animals
(Ministry of Science and Technology of the People’s Republic of China, policy no. 2006 398).

2.2. Virus and Bacterium

The HP-PRRSV2 HuN4 strain (GenBank: EF635006) was kindly provided by Professor
Guangzhi Tong (Shanghai Veterinary Research Institute, Chinese Academy of Agricultural
Sciences). The virus was propagated in the MARC-145 cell line and cultured in Dulbecco’s
modified eagle’s medium (DMEM; Invitrogen, Waltham, MA, USA), with 10% fetal bovine
serum (FBS; Thermo Scientific, Waltham, MA, USA) and antibiotics (100 units of peni-
cillin, 10 mg streptomycin, and 25 mg amphotericin B per mL; Sigma-Aldrich, St. Louis,
MO, USA) at 37 ◦C and 5% CO2. The stock virus titer for experimental infection was
3 × 103 TCID50/mL [45].

The virulent Gps W2 strain (serotype 13) was isolated from Shanghai, China, in March
2016, and confirmed by agglutination and agar diffusion tests. Gps was cultured on tryptic
soy agar (TSA; Difco Laboratories, Franklin Lakes, NJ, USA) containing 10 mg/mL NAD
and 5% calf bovine serum. The amount of W2 strain used for intranasal infection was
3 × 108 CFU/mL [67].

2.3. Pigs, Experimental Design, and Sampling

Thirty-two 4-week-old castrated male DLY (Duroc × Landrace × Yorkshire) weaned
piglets from the same commercial farm were used in this study. Before beginning the exper-
iments, all piglets were tested for PRRSV, CSFV, PCV2, swine influenza virus (SIV), and
Gps antigen by quantitative real-time PCR (qRT-PCR), and for PRRSV and Gps antibodies
using commercial ELISA kits. All piglets were negative for PRRSV and Gps. After arrival
at the animal house, the animals were acclimated for 7 days before starting the experiment.

Piglets were stochastically divided into four groups (n = 8): Gps + HP-PRRSV2, Gps,
HP-PRRSV2, and control. Each group was housed in a separate room and provided with
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a basal diet (based on the NRC (2012) recommendation for the nutrient requirements of
weaned piglets) [68] and water throughout the experiment.

Piglets in the Gps+ HP-PRRSV2 and Gps groups were infected through the intranasal
route with 2.0 mL of Gps W2 strain (3 × 108 CFU/mL). The Gps + HP-PRRSV2 and HP-
PRRSV2 groups were challenged with 3.0 mL of HP-PRRSV2 HuN4 strain (3 × 103 TCID50)
by intramuscular injection (1 mL) and intranasally (2 mL) at 5 days after the initial exposure
to Gps. Alternatively, the control group animals received phosphate-buffered saline (PBS).
The dose and timing of HP-PRRSV2 inoculation were according to Yang et al. (2012).

Piglets were monitored daily for clinical signs, and rectal temperatures were recorded
before feeding. At 0, 3, 6, 10, 14, 17 and 21 days post-infection (dpi), nasal swabs and
blood samples were collected to determine the pathogen (HP-PRRSV2 /Gps) load, HP-
PRRSV2/Gps antibody titer, and the serum levels of inflammatory cytokines. Three pigs
per group were randomly euthanized at 6 days post-HP-PRRSV2 challenge, and blood,
heart, liver, spleen, lung, and kidney samples were collected for analysis. The remaining
pigs in each group were euthanized at 21 dpi.

2.4. Clinical and Pathological Evaluation

After Gps and HP-PRRSV2 challenge, piglets were monitored daily and scored for
clinical signs, including mental state, rectal temperature, anorexia, dyspnea, coughing, and
other symptoms, such as mortality, trembling, cyanosis, vomiting, diarrhea, and limping.

The piglets were scored according to the scoring criteria in Table 1. All scores were
accumulated to give a total clinical score for each pig (0–8) [67]. For necropsy, lung
sections were fixed in 10% neutrally buffered formalin for histological examination using
hematoxylin and eosin (H&E) staining (Wuhan Service Biotechnology Co. Ltd., Wuhan,
China), and the histopathological changes were observed under an optical microscope
(Olympus, Tokyo, Japan).

Table 1. Scoring criteria for clinical symptoms of experimental piglets.

Scoring Criteria Respiratory Signs Nasal Discharge, Coughing,
Anorexia, and Sneezing Temperature Lung Lesions

0 normal (<34 breaths/min) absent normal no lesions

1 slightly elevated
(35–40 breaths/min) present rectal temperature

exceeded 40 ◦C
lesions affecting <25% of

the lobe surface

2
moderately elevated

(41–45 breaths/min with slight
abdominal breathing)

/ / lesions affecting 25–49% of
the lobe surface

3 elevated (>46 breaths/min with
distinct abdominal breathing) / / lesions affecting 50–74% of

the lobe surface

4 / / / lesions affecting >75% of
the lobe surface

“/” means that the standard does not have this score.

2.5. Detection of HP-PRRSV2/Gps Antibodies by ELISA

Serum samples were detected by an enzyme-linked immunosorbent assay (ELISA) kit
for PRRSV antibodies (IDEXX Laboratories, Atlanta, GA, USA) and a swine Gps ELISA kit
(Biovet, Karnataka, India) for Gps antibodies, according to the manufacturers’ instructions.

2.6. Detection of Pathogen Load by qRT-PCR

Bacterial DNA was extracted using the DNeasy Blood and Tissue Kit (QIAGEN,
Tokyo, Japan) and viral RNA was extracted with a Viral DNA/RNA Kit (OMEGA, Tokyo,
Japan), according to the manufacturers’ instructions [67]. The quantity of Gps and HP-
PRRSV2 in piglet samples was detected by qRT-PCR [31,44] performed on an ABI Step One
thermocycler (Applied Biosystem, Waltham, MA, USA).
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2.7. Cytokine Assays

Piglet lung tissues from necropsy were analyzed for cytokines [67]. Briefly, 1 g of lung
tissue was homogenized in 1 mL of PBS (1:1, w/v) with an X620 tissue homogenizer (CAT).
The homogenate was centrifuged at 3000 g for 10 min and the obtained supernatants were
stored at −80 ◦C for cytokine analysis. Piglet serum samples were collected at 0, 3, 6, 7,
14, 17, and 21 dpi. The lung tissues and serum concentrations of inflammatory factors
(IL-1β, TNF-α, IL-6, and IL-8) were quantified with respective ELISA kits (R&D Systems,
Minneapolis, MN, USA), following standard protocols. The corresponding mRNA levels
were determined using an ABI Step One thermocycler (Applied Biosystems) and relative
gene expression levels were normalized against β-actin using the 2−∆∆CT method [69]. All
tests were performed in triplicate.

2.8. Statistical Analysis

All statistical analyses were performed using Student’s t-tests in SPSS version 16.0
(SPSS Inc, Chicago, IL, USA). Data are presented as the mean ± standard deviation (SD),
and those with p-value < 0.05 were considered statistically significant.

3. Results
3.1. Clinical Evaluation

Piglets challenged with Gps alone showed mild clinical signs, while the same was
absent in the control group throughout the experiment. However, the animals infected with
HP-PRRSV2 alone or coinfected with Gps developed significant clinical signs including
depression, drowsiness, loss of appetite, fever, anorexia, lethargy, coughing, shivering, and
breathing difficulties. Among the two, the HP-PRRSV2–Gps-coinfected group was more
severely affected than the HP-PRRSV2 alone group (Figure 1).

Figure 1. Clinical observations in piglets. (A) Rectal temperature (mean ± SD) and (B) clinical
score (mean ± SD) of piglets inoculated with Gps and HP-PRRSV2 (Gps-PRRSV), Gps alone (Gps),
HP-PRRSV2 alone (PRRSV), and placebo (control). The coinfected piglets were challenged with
HP-PRRSV2 at 5 days post-Gps infection. After HP-PRRSV2 infection, piglets in the Gps+ HP-
PRRSV2 and HP-PRRSV2 alone groups displayed significantly higher mean temperatures than those
in other groups. Significant differences between the groups are marked by different superscript letters
(p < 0.05). The red dotted line in Figure 1A is the threshold of mean rectal temperature for piglets,
indicating that the temperature above the red line belongs to the range of fever, while below the red
line belongs to the range of normal.
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Animals inoculated with Gps alone exhibited low-grade fever at 1 and 2 dpi (tempera-
ture 40–40.5 ◦C), and only 50% of the animals (3/6) displayed a rise in body temperature.
On the other hand, piglets in the Gps + HP-PRRSV2 and HP-PRRSV2 alone groups had
fever following HP-PRRSV2 infection (rectal temperature ≥ 40 ◦C). Moreover, high rectal
temperatures were observed in piglets exposed to HP-PRRSV2 alone from 3 to 12 dpi
(Figure 1A).

HP-PRRSV2–Gps coinfection triggered major responses: the mean rectal temperature
was 41 ◦C at 6 days after the HP-PRRSV2 challenge and remained higher than normal until
14 dpi (Figure 1A). Animals exposed to Gps alone did not show any significant rise in body
temperature compared with the control group. There were significant differences among
mean rectal temperatures in animals of the three infected groups. However, at 14 days after
HP-PRRSV2 infection, fever disappeared in all challenged animals (Figure 1A). Clinical
scores in animals were obtained by observing clinical symptoms (dyspnea, coughing, runny
nose, anorexia, limping, and diarrhea). These clinical symptoms were most apparent from
day 3 to day 10 in the HP-PRRSV2–Gps-coinfected group. The mean clinical scores (±SD)
in all groups are shown in Figure 1B. Individual clinical scores ranged from 0 to 2 in Gps
alone (1.50 ± 0.41), and 0 to 4 in the HP-PRRSV2 alone group (3.17 ± 0.73), while the same
ranged from 2 to 6 in coinfected pigs (5.12 ± 0.61) (Figure 1B). Pigs in the control group did
not exhibit any clinical signs. There were statistically significant differences in the mean
clinical scores among the three infected groups (p < 0.05).

3.2. Pathological Examination

We conducted post-mortem examinations at 6 dpi and the results revealed gross
lesions, including lung congestion or consolidation, inguinal lymph node tumidity and
hemorrhage, submandibular lymph node tumidity and hemorrhage, liver congestion
tumidity, spleen infarction, kidney hemorrhage or grey spot, and brain hemorrhage or
edema in the coinfected group (Figure 2A). The HP-PRRSV2 alone group also displayed
pulmonary interstitial pneumonia and pulmonary alveolar epithelial damage, but these
viral-associated lesions were mild compared with coinfected piglets (Figure 2A). Three of
the coinfected animals presented serositis (3/6), while serositis was completely absent in
the Gps alone group. All control animals remained healthy throughout the experiment.

Figure 2. Pathological examination of the lung from all piglet groups at 6 dpi. (A) Histopatholog-
ical changes and (B) the lung score (mean ± SD) of piglets inoculated with Gps and HP-PRRSV2
(Gps +PRRSV), Gps alone (Gps), HP-PRRSV2 alone (PRRSV), and placebo (control). All lung tissues
were collected from each group of randomly euthanized piglets at 6 days post-HP-PRRSV2. The coin-
fected piglets were challenged with HP-PRRSV2 at 5 days post-Gps infection. Significant differences
between the groups are marked by different superscript letters (p < 0.05).
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Lung scores were assigned according to the pathological degree of infected lung tissue.
The mean lung scores (±SD) are shown in Figure 2B. There were significant statistical
differences between the coinfected group and the Gps alone group (0.75 ± 0.35) (p < 0.05),
while animals challenged with HP-PRRSV2 alone (4.50 ± 0.78) exhibited lung damage
similar to that of the coinfected group (7.05 ± 0.61). However, the damage was more serious
in coinfection with a significantly greater abnormal area than the HP-PRRSV2 infection
alone (Figure 2A). Furthermore, there were no significant differences among the Gps and
control groups, whereas both the Gps- and HP-PRRSV2-alone-infected animals exhibited
significant differences in lung scores (p < 0.05; Figure 2B).

3.3. Pathogen Shedding and Load

Coinfected pigs had higher Gps and HP-PRRSV2 titters in nasal swabs (Figure 3A,D).
In coinfected piglets, the mean Gps titers in nasal swabs were significantly higher from
3 dpi and remained elevated until the end of the study (Figure 3A; p < 0.01). The load
of HP-PRRSV2 in nasal swabs in coinfected piglets reached a maximum value on day 6
after HP-PRRSV2 infection, and the difference from the HP-PRRSV2 single-infection group
was statistically significant (p < 0.05). At day 10 after HP-PRRSV2 infection, the load of
HP-PRRSV2 in nasal swabs from the coinfected and HP-PRRSV2 single-infected groups
decreased abruptly, with no statistical differences between the two groups (Figure 3D;
p > 0.05).

Figure 3. Pathogen load in nasal, blood, and lung samples from infected pigs. Gps and HP-PRRSV2
genome copy numbers were measured by qRT-PCR at 0, 3, 6, 10, 14, 17, and 21 dpi. (A,D) Nasal
swabs and (B,E) blood samples were collected to determine mRNA copy numbers by qRT-PCR at
various time points. Data are presented as the mean ± SD; * compared to single-infected groups
within the same day (p < 0.05, Student’s t-test). (C,F) At 6 days post-HP-PRRSV2 challenge, piglet
lung tissues were collected in each group and analyzed by qRT-PCR. The data are expressed as
the mean logarithm of Gps or HP-PRRSV2 genomic copy number per gram (n = 3 in each group).
* Significant differences compared with Gps or HP-PRRSV2 alone groups (p <0.05, Student’s t-test).

The blood titers of Gps and HP-PRRSV2 are shown in Figure 3B,E. Gps was non-
detectable in the Gps alone group, but it appeared in coinfected animals at 6 days after
HP-PRRSV2 infection (peaked at 14 dpi), showing a significant difference (p < 0.01) from
single-infected animals (Figure 3B). However, HP-PRRSV2 was detected in serum samples
from both coinfected and HP-PRRSV2-alone-infected piglets at 3 days post-challenge
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(Figure 3E). The copy number of HP-PRRSV2 reached the maximum at 6 dpi in both groups,
which was significantly higher (p < 0.05) in coinfected animals (Figure 3E).

Lung tissue samples were collected at 6 dpi to further determine the Gps and HP-
PRRSV2 titers in single- and coinfected animals. The results were similar to those obtained
for serum samples: Gps was undetectable in Gps single-infected animals, whereas coin-
fected animals had significantly higher mean genomic copies of Gps (Figure 3C; p < 0.01).
HP-PRRSV2 was detected at a relatively high copy number in lung tissues from HP-
PRRSV2-alone-infected piglets compared with coinfected animals (Figure 3F; p < 0.05).
Together, these results are consistent with previous studies showing that Gps infection
enhances HP-PRRSV2 replication [31]. This also validates our hypothesis that coinfection
accelerates both HP-PRRSV2 and Gps replication in coinfected animals, causing greater
damage than a single infection.

3.4. Serum Antibody Levels of Gps and HP-PRRSV2

Specific humoral immune response against HP-PRRSV2 and Gps in challenged animals
is presented in Figure 4. At 0, 6, 14, and 21 days after HP-PRRSV2 infection, serum samples
were determined for antibody levels by ELISA. The coinfected piglets produced specific
antibodies against Gps, while animals infected with Gps alone did not exhibit a significant
humoral response (Figure 4A). At 14 dpi, the coinfected animals produced much higher
levels of Gps antibodies, which remained high (p < 0.05) until the end of the experiment
(21 dpi; Figure 4A). By contrast, HP-PRRSV2 triggered antibody levels showed similar
patterns in coinfected and HP-PRRSV2 alone groups (Figure 4B); however, S/P levels in
coinfected animals were significantly higher than in HP-PRRSV2 single-infected animals
at 14 and 21 dpi (Figure 4B). Consistent with a previous study in 2012 [31], these findings
confirmed that HP-PRRSV2 infection enhanced Gps replication in coinfected animals,
which promoted a strong antibody response against Gps.

Figure 4. Antibody responses against Gps and HP-PRRSV2 infections. (A,B) Scheme 0 to 21 dpi and
anti-Gps/HP-PRRSV2 antibodies were determined by ELISA. The horizontal line represents cut-off
values for assays. Data are presented as the mean ± SD. * Compared with single-infected groups
(Gps or HP-PRRSV2 alone) within the same day (p < 0.05, Student’s t-test).

3.5. Cytokine Analysis

Microbial infection can change cytokine levels in animals [3,67]. Herein, we measured
changes in the expression and abundance of cytokines TNF-α, IL-1β, IL-8, and IL-6 at 6 dpi
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in lung tissue homogenates and serum by ELISA and qRT-PCR [70]. The levels of IL-1β,
TNF-α, and IL-8 were significantly higher (p < 0.05) in coinfected animals (up to 1500, 3000,
and 3000 pg/mL, respectively), while both the single-infected animals had similar titers
(p > 0.05; Figure 5A,B). Similar patterns were observed for TNF-α and IL-6 in lung and
serum samples. However, the IL-6 serum titer did not significantly differ between the
HP-PRRSV2 single-infected and coinfected animals (Figure 5A,B).

Figure 5. Proinflammatory cytokine levels in lungs and sera. At 6 days post-HP-PRRSV2 challenge,
lung tissues and serum samples were collected from the pigs in each group. (A) Levels of IL-1β,
TNF-α, IL-6, and IL-8 in lung homogenates were detected by ELISA. (B) Serum levels of IL-1β, TNF-α,
IL-6, and IL-8 were detected by ELISA. (C) Cytokine mRNA levels in the lungs were determined
by qRT-PCR. Data are the mean ± SD for three independent experiments (error bars). Data with
different letters indicate significant differences at p < 0.05.

Furthermore, there were no statistical differences in gene expression levels of IL-1β
and TNF-α among both types of single-challenged animals (Figure 5C), while IL-1β and
TNF-α were upregulated in co-infected animals. In addition, the expression levels of IL-8
and IL-6 were much lower in both types of single-infected animals (Figure 5C). Interestingly,
lung tissues from coinfected animals displayed an upregulation of IL-6 (12-fold) and IL-
8 (14-fold) more than the single-infected groups (Figure 5C). The tested cytokines were
statistically more upregulated in all infected animals than in control animals (Figure 5).

Concisely, in general, the maximum levels of cytokines were observed in coinfected
animals at 6 dpi (Figure 5). Gps alone infection did not upregulate any of the investigated
cytokines, while HP-PRRSV2 exposure following Gps inoculation stimulated the produc-
tion of the same nature. These results are consistent with the localization of gross lung
lesions: significant correlations were observed between pathological changes in the lungs
and concentrations of TNF-α, IL-1β, IL-8, and IL-6.
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4. Discussion

Although single infections with bacteria or viruses alone can induce respiratory infec-
tions in pigs, coinfection with various pathogens is very common [28,71]. A Gps infection
initiates an innate immune response and induces the production of inflammatory cy-
tokines [72,73]. HP-PRRSV2 targets the immune system of pigs, impairing immune defense
against pathogenic microbes and increasing host susceptibility to primary and secondary
pathogens [64,74]. In this study, we found that HP-PRRSV2–Gps coinfection had aggra-
vated clinical outcomes, increased pathogen shedding and load, and specific antibody
and cytokine production at various time points following HP-PRRSV2 challenge after
Gps infection. We observed that the coinfection enhanced the severity of the disease in
different ways, including increased Gps and HP-PRRSV2 replication, which modulated the
inflammatory response. In addition, pulmonary lesions in coinfected animals were more
severe compared to those in single-infected animals.

Previous studies reported that piglets infected with HP-PRRSV2 alone or in combina-
tion with Gps suffered from severe interstitial pneumonia [7,74,75]. It is also suggested that
secondary bacterial infection followed by HP-PRRSV2 infection exacerbates illness and
mortality in infected piglets [76–78]. Here, we provided more comprehensive information
on the effect of HP-PRRSV2 and Gps coinfection on respiratory disease pathogenicity in
challenged piglets. We examined Gps and HP-PRRSV2 mRNA levels in nasal swabs, blood,
and lung tissues at various time points of coinfection and single infection. The Gps load
in nasal swabs was significantly higher from day 3 to 17 in coinfected animals compared
with Gps single-infected animals (Figure 3A). Additionally, the serum Gps loads were
significantly different between the coinfected and Gps single-infected animals at 10 and
14 days post-HP-PRRSV2 infection (Figure 3B). There was a significant increase in the Gps
copy number in lung tissues of coinfected animals, while Gps was undetectable in Gps
single-infected pigs (Figure 3C). From the above results, we concluded that HP-PRRSV2
infection promotes the proliferation of Gps in the nose, blood, and lungs.

Based on our in vivo findings, we concluded that Gps alone infection did not cause
significant lesions in the lungs (Figure 2). Clinical signs and symptoms showed no rise in
temperature, and even the post-mortem examination confirmed the same. This indicated
that PPRSV2 infection enhances Gps colonization, which ultimately increases its copy
number in the lung and blood (Figure 3). These in vivo findings are consistent with a
previous report showing that Gps causes typical systemic polyserositis lesions only after
coinfection with HP-PRRSV2 [78,79]. Notably, Mycoplasma hyrhinis coinfection with HP-
PRRSV2 can also enhance pathological lesions in the lungs [80], which is consistent with
our results showing that Gps coinfection with HP-PRRSV2 leads to lung consolidation and
severe interstitial pneumonia.

We further investigated whether Gps infection affects HP-PRRSV2 pathogenicity. HP-
PRRSV2 proliferation in nasal mucosa takes a very short time. There were significant
differences of PRRSV load in the nasal mucosa between coinfection and HP-PRRSV2 single-
infection groups at 6 dpi (Figure 3A). Moreover, HP-PRRSV2 copy numbers (400) were
significantly higher in the coinfected animal blood and lung tissues (Figure 3B,C). From
the above results, we concluded that Gps infection has a significant impact on HP-PRRSV2
pathogenicity. Additionally, lung consolidation and severe interstitial pneumonia were
observed in coinfected animals (Figure 2). Enhanced HP-PRRSV2 replication in coinfected
animals led to more severe clinical outcomes, involving earlier and greater immune and
inflammatory responses (Figures 4 and 5). This conclusion is consistent with the study of
Yu et al. in 2012 [31].

How the coinfection of viruses and bacteria enhances disease severity is not fully
understood [81]. Coinfection often upregulates various cytokines that help microbes
with replication, but causes detrimental damage to infected tissues [3,82]. HP-PRRSV2
infection has several mechanisms that make infected animals prone to secondary bacterial
infection, including increased expression of cellular receptors that enhance colonization
and modification of host immune responses [7,83,84]. Here, we found that the production
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of inflammatory cytokines (TNF-α, IL-1β, IL-8, and IL-6) was significantly increased in
coinfected animals compared with both types of single-infected pigs (Figure 5). This is
consistent with a previous study showing that PRRSV infection upregulated cytokines
(TNF-α, IL-1β, IL-8, and IL-6) in pig sera and promoted the bacterial load of 11 bacterial
species in the lungs, including Gps (Li et al., 2017). In this study, coinfection upregulated
inflammatory cytokine in lung tissue and blood as well (Figure 5), but the exact molecular
mechanism is unknown.

HP-PRRSV2 and Gps are known to stimulate each other’s replication when coinfected,
but the impacts of coinfection on clinical outcomes, the kinetics of the immune system
and inflammatory responses, and pathogen load and shedding in piglets remain poorly
understood [7,31]. Herein, piglets challenged with HP-PRRSV2 alone displayed significant
differences in cytokine production, lung score, and macroscopic lesions in the lungs com-
pared with coinfected animals (Figures 2 and 5). The mRNA levels and antibody titer results
showed that both HP-PRRSV2 and Gps replicated more rapidly and elicited more severe
local inflammatory responses in coinfected animals than in any of the single-infected ani-
mals (Figures 3 and 4). A similar trend has been reported for SIV and Gps coinfection [67].
The significant influence of both pathogens on the systemic inflammatory response was
only present in coinfected animals (Figure 5). These outcomes are consistent with the fact
that PRRSV and S. suis serotype 2 coinfection upregulated TNF-α, IL-1β, IL-8, and IL-6
gene expressions, compared with single-infected animals [7]. Nonetheless, further studies
are needed to elucidate the molecular mechanism by which HP-PRRSV2–Gps coinfection
enhances the production of pro-inflammatory cytokines increasing the disease severity.

5. Conclusions

There were lung lesions among all of the challenged piglets. HP-PRRSV2 infection
potentiates the degree of lung lesions and facilitates Gps replication in porcine lungs.
Gps infection enhances the copy number of HP-PRRSV2 in nasal shedding, blood, and
lung tissues. Enhanced Gps and HP-PRRSV2 replication and stronger systemic/local
inflammatory responses aggravate clinical signs in coinfected piglets. The coinfected
piglets had a more severe fever, pathological changes, microscopic lung lesions, and a
higher pathogen load than any of the single-infected piglets. These results showed that the
secondary infection of HP-PRRSV2 will aggravate lung disease and chronic inflammation
in the case of common Gps infection of the upper respiratory tract in piglets. Therefore, it
is necessary to prevent and control HP-PRRSV2 infection in such cases.
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