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Simple Summary: Hemangiosarcoma (HSA) is a highly aggressive vascular tumor. It is the most
common splenic cancer and the cause of non-traumatic abdominal hemorrhage in dogs. The short
overall survival and high dissemination potential of HSA demonstrate the necessity of new and more
effective therapies, especially with specific tumoral targets. This study investigates recent advances
in molecular aspects of canine hemangiosarcoma and presents promising therapeutic targets.

Abstract: Canine hemangiosarcoma (HSA) is a relatively common neoplasia, occurring mainly in
the skin, spleen, liver and right atrium. Despite the numerous studies investigating the treatment
of canine HSA, no significant improvement in survival has been achieved in the last 20 years.
Advancements in genetic and molecular profiling presented molecular similarities between canine
HSA and human angiosarcoma. It could therefore serve as a valuable model for investigating new
and more effective treatments in people and dogs. The most common genetic abnormalities in canine
HSA have been found in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
(PIK3CA) and neuroblastoma RAS viral oncogene homolog (NRAS) pathways. Mutations are also
found in tumor protein p53 (TP53), phosphatase and tensin homolog (PTEN) and cyclin dependent
kinase inhibitor 2A (CDKN2A). Known abnormal protein expression could be exploited to trial new
target treatments that could be beneficial for both canine and human patients. Despite the high
expression of vascular endothelial growth factor (VEGF) and its receptor (VEGFR), no correlation with
overall survival time has ever been found. In this review, we explore the most recent developments
in molecular profiling in canine HSA and discuss their possible applications in the prognosis and
treatment of this fatal disease.
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1. Introduction

Angiosarcoma is an aggressive cancer that carries a poor prognosis in people, with
5-year survival tallying at less than 30% [1]. In dogs, malignancies of lymphatic vessels
are rarely described, while a tumor of the blood vessels—hemangiosarcoma (HSA)—is
relatively common. HSA may arise in any region of the body, especially the skin, spleen,
liver and atrium [2,3]. Skin lesions can be multiple, often small and related to ultraviolet
radiation (UV) and actinic damage, especially in the lower abdomen of dogs with white or
thin hair coats [4,5]. However, HSA may also occur in the subcutis, muscle and visceral
organs. Non-cutaneous HSAs are highly aggressive tumors with a high metastatic rate [6–9].
The splenic form shows nonspecific clinical signs during its initial progression, yet is the
most common cause of acute hemoperitoneum [10,11] with a high rate of metastases
to the liver, mesentery, abdominal lymph nodes and lungs [7,8]. Cardiac HSA has a
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poor prognosis due to its fast local growth and progression, with frequent concurrent
involvement of the lungs, spleen and liver [6]. HSA has a variable breed predisposition.
Whereas dermal neoplasia seems to be directly caused by UV exposure in white dog breeds,
especially in Pitbull Terrier and Boxer [4,5], the visceral forms are overrepresented in
breeds such as Golden Retriever, Labrador Retriever, German Shepherd and Miniature
Schnauzer [3,7,8,12–14].

The anatomical form of HSA is directly related to its cytogenetic origin. Older studies
suggest the development of HSA from transformed mature endothelial cells based on
the histological presentation and negative staining for leukocytes and histiocytes but
positive for CD31, CD105, CD146, VEGFR, factor VIII and avb3-i-integrin (from activated
endothelial cells) [15,16]. This theory may be true for cutaneous HSA, which justifies the
biological behavior and rare identification of metastases. However, this classic model, in
which a primary tumor arises in an organ and metastasizes from there, does not completely
explain the behavior of canine HSA in its other forms [15–17].

A second theory has been gaining momentum over the last 15–20 years. Except for the
actinic cutaneous form, canine HSA could arise from a precursor (pluripotent) endothelial
cell. This theory has been confirmed in several molecular studies, based on the expression of
CD34, CD45, CD133 and KITr, which are endothelial precursor cell proteins [15,16]. These
cells can be identified in the circulation, with values higher than 0.5% in dogs with HSA and
less than 0.3% in dogs without HSA or dogs with HSA already submitted to surgery. These
pluripotent cells leave the bone marrow to disseminate to different parts of the body [15].
Their survival, growth and proliferation are dependent on the microenvironment. Possibly,
the spleen is a more favorable environment, followed by the liver and right atrium. One
study classified HSA according to distinct endothelial, myeloid and hematopoietic markers
(CD14, CD34, D105, CD115, CD117, CD133 and CD146), suggesting that it could arise
from different pluripotent progenitors [18], further classified as angiogenic, inflammatory
and adipogenic [16]. Figure 1 illustrates an adaptation of the hematopoietic progenitor
theory for HSA dissemination presented by Kim et al. (2015) and Lamerato-Kozicki et al.
(2006) [15,16].
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Figure 1. Canine hemangiosarcoma dissemination: (1) Hematopoietic progenitor cells in bone
marrow develop mutations and from non-neoplastic stem cells transform to HSA cells. (2) Initial
migration and dissemination of the tumor occur from the bone marrow to systemic circulation,
able to reach multiple organs. (3) Cancer cells reach and colonize targeted organs with viable
microenvironments, such as the spleen, liver and right atrium. (4) Secondary dissemination may
occur from the tumors to lungs or through cavitary implantation in cases of rupture, as in the
peritoneum and omentum [15,16,19,20].
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The diagnosis of canine HSA is commonly achieved by histopathology due to the
inherent limitations of cytology [21,22]. Histopathology, however, is not always possible
without performing invasive surgery. A novel minimally invasive diagnostic test (liquid
biopsy of a blood sample) was recently validated. Although based on a small sample
size (n = 12), this test was shown to achieve a specificity of 83.3% for the diagnosis of
canine HSA [23]. A different liquid biopsy test, which measured plasma nucleosome
concentrations for canine HSA, included a six times higher number of cases than the
previous study (n = 77), demonstrated improved specificity (97%) and exhibited a sensitivity
of 81.2% [24]. However, the sensitivity of liquid biopsy is likely to be affected by the stage of
the disease, with lower stages less likely to be detected [23,24]. Even though more research
is needed, liquid biopsy could become a non-invasive screening exam, especially for certain
breeds of dogs with a high predisposition for HSA.

The prognosis for actinic cutaneous lesions is favorable and surgery is usually curative
with long survival rates [25,26]. Nevertheless, aggressive systemic forms of disease are
associated with poor prognosis with a median survival time (MST) of 23–292 days [4,25–27].

Despite the numerous studies investigating the treatment of canine HSA, no signifi-
cant improvement in survival has been achieved in the past 20 years. Standard treatment
consists of surgical resection followed by anthracycline-based chemotherapy at the highest
tolerated dose. The most used tyrosine kinase inhibitors in dogs, toceranib and masitinib,
were not effective in the treatment of canine HSA [28,29]. In a study of dogs with splenic
hemangiosarcoma treated with standard splenectomy and subsequent adjuvant doxoru-
bicin, the addition of toceranib phosphate did not result in an improvement in overall
survival or disease-free interval [29]. Although masitinib has some anti-proliferative ef-
fects on canine HSA cells in vitro, the in vivo effect has not been reliably demonstrated
in clinical trials [28]. The addition of maintenance metronomic chemotherapy was not
effective in enhancing overall survival either [30]. However, treatment with metronomic
chemotherapy with or without thalidomide could be as effective as the standard-of-care
adjuvant doxorubicin [31–34]. The outcomes of studies exploring different treatments,
including immunotherapy strategies, for HSA have been largely disappointing [35–39].
Advancements in the genetic and molecular profiling of specific cancers have opened new
avenues for personalized and targeted treatment in both human and veterinary medicine.
Few studies have investigated the molecular profiling of HSA in dogs [40–42]. Although
the morphological and immunohistochemical studies of canine HSA have deciphered
important aspects concerning its origin and behavior, research on the molecular basis of
the disease may be more important for targeted therapy. Several molecular similarities be-
tween canine HSA and human angiosarcoma could be advantageous for the development
of targeted therapies [43,44].

Histone acetylation is an epigenetic mechanism of cancer modulation, recently studied
for potential targeted therapies [45,46]. One in vitro study has demonstrated its potential
for canine HSA: histone acetylation levels were high in canine HSA cell lines and some
in vivo cases, suppressed by a bromodomain and extraterminal domain inhibitor (BETi),
JQ1 [46]. The potential for this therapy is still unclear, so new studies are required to
characterize it properly.

A study analyzed DNA copy number variations and found distinct patterns of gain
or loss of specific loci in dogs diagnosed with intrabdominal HSA [47]. Significative gains
occurred in chromosome 13 in VEGFR2, PDGFRA and KIT genes. In chromosome 12, the
dogs also presented VEGFA gene gain, a potential prognostic factor for HSA treatment,
especially in Flat-Coated Retrievers, due to the higher rate of gene gain [47,48]. Most
cases presented a loss of the CDKN2AIP gene (genomic location 16:49.9), an important
tumoral suppressor gene, which encodes p14 and p16 [47]. Data regarding CDKN2AIP
mutations in canine HSA are still scarce; however, a recent study revealed mutations in
11% of cases [40], a higher rate compared to mutations of PTEN, which is the most studied
tumoral suppressor gene [49–51].
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Canine HSA has been divided into specific subtypes according to the molecular pat-
terns that might originate from different pathogenic pathways [18,43,44]. The differentiation
of three distinct subtypes of HSA) in canines relies on the analysis of specific somatic muta-
tions occurring most frequently in driver genes among affected canine patients: oncogene
Phosphatidylinositol-4,5-bisphosphate3-kinase catalytic subunit alpha (PIK3CA), oncogene
neuroblastoma rat sarcoma virus (NRAS) activation and tumoral suppressor gene tumor
protein p53 (TP53). Changes in the NRAS and PIK3CA pathways may occur in up to 24%
(15/50) and 46% (23/50) of canine HSA, respectively, and might be especially interesting
for target therapies [18]. Figure 2 presents a summary of the recent literature regarding
the main driver mutations associated with canine HSA. Golden retrievers’ HSAs express a
different pattern of mutations compared to other pure breeds, present a higher frequency of
mutations in AKT and PIK3CA genes and demonstrate the importance of heritable factors
in analyzing mutations [41,52]. Thus, they may be beneficial for therapies targeting the
products of such genes.
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cases [40,41,43,44,53].

To write this review, a PubMed search was conducted using the following key words:
hemangiosarcoma, canine, dogs, angiosarcoma. The search strategy involved evaluating
articles spanning 2015 to 2023. Additional studies were incorporated based on their
relevance and references from the initially selected articles.

Inclusion criteria considered studies obtained through institutional access or an inter-
net search, especially from peer-reviewed journals. We did not impose any restrictions re-
garding the characteristics of in vitro and in vivo studies for the selection process. Conven-
tional and well-established treatments for canine HSA, such as surgery and chemotherapies
such as doxorubicin and carboplatin, were not extensively evaluated and therefore served
as exclusion criteria, considering that the focus of this study was to analyze molecular
features. The process entailed several phases, including an initial search, the identification
of relevant articles, screening for suitability, an assessment of the eligibility criteria and
ultimately determining the final inclusion.

2. Hemangiosarcoma Carcinogenesis

Primary canine HSA can occur in distinct organs, at different frequencies. The most
commonly diagnosed presentations are splenic, hepatic, cutaneous and cardiac [6,7,54,55];
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however, this neoplasm can originate in the lungs, peritoneum, kidneys, skeletal muscles,
pleura, oral cavity, pancreas, bones, intestines and virtually every malignant-transformed
endothelial vascular tissue [8,9,52,53]. Thus, it should always be considered as a potential
differential diagnosis.

The etiopathogenesis of this complex neoplasm relies on genetic predispositions, ac-
quired mutations, hormonal aspects and exposure to environmental carcinogens, such as
UV light [4,53,56,57]. These etiological factors can also influence individual clinical presenta-
tion, according to the dog’s breed, age, weight and skin characteristics [8,26,52,58]. The im-
pact of gonadal steroids in HSA carcinogenesis is still discussed, with some studies demon-
strating an increased risk for the development of HSA in neutered dogs [57,59,60]. Typical
mutations in dogs with HSA occur in the TP53 genes, commonly called the “guardian
of the genome”, and PIK3CA, active in the PI3K-AKT-mTOR cell proliferation signaling
pathway [41,43,44].

Over the last decade, cell culture studies have significantly enhanced our understand-
ing of ’as’s etiopathogenesis and its underlying mechanisms, including the characterization
of mutations and cancer mechanisms through genome-wide and transcriptomic analy-
ses [19,20,61,62]. In 2017, Im et al. presented a mechanism of cell migration and invasion
through the CXCR4/CXCL12 axis, in which HSA may disseminate [19]. In 2022, Maeda
et al. performed the first cloning of canine PIK3CA (GenBank accession no. LC625864),
which is highly homologous to the respective human gene. The findings further highlight
another potential similarity between human angiosarcoma and canine HSA [61].

A variety of oncogenes and tumoral suppressor genes are associated with the devel-
opment and progression of HSA in dogs. Table 1 illustrates the genes and their role in
canine HSA:

Table 1. Genes associated with etiopathogenesis of canine HSA [40–44,47,53,56,63–65].

Gene Role Reference

AKT1 Oncogene Wong et al. (2022) [40].

CDKN2A Tumoral supressor gene Wong et al. (2022), Thomas et al. (2014) [40,47].

EGFR Oncogene Wu et al. (2023), Wong et al. (2022) [40,42].

NRAS Oncogene Wu et al. (2023), Wong et al. (2022), Alsaihati et al. (2021), Kim et al. (2021),
Wang et al. (2020) [40–44].

PIK3CA Oncogene Wu et al. (2023), Wong et al. (2022), Alsaihati et al. (2021), Kim et al. (2021),
Wang et al. (2020), Megquier et al. (2019), Wang et al. (2017) [40–44,53,65].

PTEN Tumoral supressor gene Wong et al. (2022), Wang et al. (2020), Megquier et al. (2019), Wang et al. (2017),
Dickerson et al. (2005) [40,43,53,63,65].

RASA1 Oncogene Wong et al. (2021), Megquier et al. (2019) [64,65].

TP53 Tumoral supressor gene
Wu et al. (2023), Wong et al. (2022), Alsaihati et al. (2021), Kim et al. (2021),
García-Iglesias et al. (2020), Wang et al. (2020), Megquier et al. (2019),
Wang et al. (2017) [40–42,44,53,56,65].

3. Mutations and Potential Therapeutic Targets

Table 2 presents the recently studied and potential therapeutic targets, as discussed
in the following sections. This table provides details of specific targets and their potential
target therapies. The specification of experimental conditions is relevant to determining
whether the study was conducted in humans and/or dogs, rather than exclusively focusing
on canine HSA.
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Table 2. Targets and potential targeted therapies for canine HSA [45,46,61,66–78].

Targets Targeted Therapies, Experiment
Conditions (Species) Reference

Histone acetylation JQ1/BETi, in vitro and in vivo (humans
and dogs).

Neganova et al. (2022), Suzuki et al.
(2022) [45,46].

p53
Gendicine/recombinant human p53
adenovirus, in vitro and in vivo
(humans).

Hasbullah and Musa (2021), Zhang et al.
(2018) [66,67].

PD-1/PD-L1 complex

Pembrolizumab/ICI, in vitro and in vivo
(humans). Atezolizumab/ICI, in vitro
and in vivo (humans) and ca-4F12-E6
(dogs).

Igase et al. (2022), Pantelyushi et al.
(2021), Jiang et al. (2019) [68–71].

PDGFR Sorafenib/TKI, in vitro and in vivo
(humans and dogs).

Cawley et al. (2022), Marconato et al.
(2020), Foskett et al. (2017) [72–74].

PI3K/AKT/mTOR

Alpelisib/PIK3 inhibitor, in vitro
(humans and dogs) and in vivo (humans),
and Gedatolisib/PIK3 inhibitor, in vitro
and in vivo (humans).

Maeda et al. (2022), Murase et al. (2022),
Wilson et al. (2021), Liu et al. (2021),
Markham (2019) [61,75–78].

RAS-RAF-MEK Sorafenib/TKI, in vitro and in vivo
(humans, dogs).

Cawley et al. (2022), Marconato et al.
(2020), Foskett et al. (2017) [72–74].

VEGFR Sorafenib and Toceranib/TKI, in vitro
and in vivo (humans and dogs).

Cawley et al. (2022), Marconato et al.
(2020), Foskett et al. (2017) [72–74].

BETi: bromodomain and extraterminal domain inhibitor; ICI: immune checkpoint inhibitor; TKI: tyrosine-
kinase inhibitor.

3.1. NRAS

RAS (rat sarcoma) includes a group of small proteins activated by GTP ligation to
signal the transduction of diverse signaling pathways related to cell proliferation and
survival. The dysregulation of RAS activity can lead to abnormal cell proliferation, with
more than 30% of human cancers being driven by activating RAS mutations [79]. The RAS
gene group includes HRAS, KRAS and NRAS, that when mutated lead to the carcinogenesis
of different neoplasms in humans and domestic animals [80–82]. Mutations in NRAS are
associated with canine leukemia and HSA [43,80], while changes in KRAS may induce
pancreatic and pulmonary carcinomas in dogs [83,84]. HRAS still does not seem to be
as important as the other genes in canine cancer pathogenic mechanisms [80]. In canine
HSA, mutations in NRAS have been found in 24% (12/50) of HSA cases, independently of
anatomical location [43].

The Ras p21 protein activator 1 gene (RASA1) is responsible for the RAS pathway
regulation by controlling its ligation with GDP and GTP, and thus is considered a tumor-
suppressor gene of the RAS/GAP group. The inhibition of RAS GAPs leads to the upregu-
lation of the Ras pathway, possibly increasing cell proliferation and growth, and ultimately
inducing tumorigenesis [85]. RASA1 is crucial for physiological mechanisms such as angio-
genesis; however, its mutations are associated with common cancers in humans, including
lung, breast, liver and colorectal neoplasms [86,87]. The downregulation of RASA1 may
promote tumoral angiogenesis and metastasis [87]. These mutations were identified in 8.5%
(4/47) of canine visceral HSA cases [44,64].

Cancers driven by such mutations are difficult to treat because there are no available
drugs that can bind to RAS. Nevertheless, the RAF protein, later activated by RAS, can
be inhibited by a group of tyrosine kinase inhibitors, including sorafenib, vemurafenib,
dabrafenib and regorafenib [88,89].

In people, target treatment with the BRAF inhibitor sorafenib has shown some effi-
cacy [48]. Despite that, there are no published results of clinical trials involving these drugs
for canine HSA. Sorafenib has been generally considered quite safe in dogs [72–74]. In a
small study, sorafenib proved to be safe and effective for dogs with unresectable hepato-
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cellular carcinoma treated with a twice-daily dosage of 5 mg/kg. Dogs receiving target
therapy had a median time to progression of 363 days, while dogs treated with metronomic
chemotherapy had only 27 days (p = 0.079) [73]. Sorafenib could be a promising targeted
therapy for canine HSA [72,73,90]; however, its cost may be a barrier for many pet owners.

The RAS-RAF-MEK-ERK pathway, also known as MAPK, consists of a signaling cas-
cade for cell proliferation and differentiation [80,82,90]. RAS and RAF oncogenes have
attracted the most attention within this group due to their well-described carcinogenic po-
tential [79,81–83,85,86]. Nonetheless, there are many other genes and proteins of potential
importance, including the mitogen-activated protein/extracellular signal-regulated kinase
(MEK). Although not tested in canine HSA, MEK can be inhibited by trametinib or cobime-
tinib [90–92]. RAF functions by phosphorylating and activating MEK, which, subsequently,
phosphorylates and activates ERK, ultimately resulting in gene transcription [85] (Figure 3).
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activation, which can be inhibited by sorafenib, vemurafenib, dabrafenib and regorafenib. MEK
protein, activated by RAF, can be inhibited by trametinib and cobimetinib.

The in vitro inhibition of MAPK has been demonstrated to downregulate tumoral
growth in canine HSA cell cultures of primary splenic, cardiac and cutaneous presen-
tations [90]. Three MEK inhibitors, CI-1040, Sorafenib and LY294002, were tested and
provided evidence that, even in vivo, the inhibition of this pathway is able to suppress both
human angiosarcoma and canine HSA proliferation [90].

3.2. PIK3CA

The phosphatidylinositol 3-kinase (PI3K) is an oncogene product, featured by a cat-
alytic unit and considered a potential anticancer target. The phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) plays a fundamental role, acting
in the AKT-mTOR pathway, encoding the P110α oncoprotein and regulating this cellular
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metabolic pathway in several human cancers [51,93–95]. The PI3K-AKT-mTOR is consid-
ered one of the most important pathways in many cancers including vascular tumors. The
independent phosphorylation of AKT (Ser473) was associated with cell cultures of canine
HSA in the absence of PTEN deletion and unaltered by fetal bovine serum, suggesting a
constitutive activation of the PI3K/Akt/mTOR pathway in these cell lines [95]. Dysreg-
ulation of the PI3K-AKT-mTOR pathway leads to increased proliferation signaling and
dysregulation of cellular metabolism—a hallmark of cancer [94,96,97].

Mutations in PIK3CA are mostly identified in coding domains of P110α, a major
hotspot, although different domains might be mutated according to the origin of the
cancer [94]. The modification of amino acid 1047, responsible for P110α protein loop
conformation, seems to be frequently mutated in canine HSA cases, representing 71%
(10/14) of all mutations in PIK3CA and characterized as H1047R or H1047L [40,44,61].

In both human and veterinary medicine, the mutation of PI3K in general has a negative
impact on survival time independently of the cancer type [42]. Targeting PIK3 appears
to be an interesting anticancer treatment strategy, and in human medicine, Alpelisib and
Copanlisib, two PIK3 inhibitors, have been approved for the treatment of various can-
cers [78]. A recent study assessed the impact of Alpelisib on PIK3CA-mutated canine
HSA cell lines [61]. This PI3K inhibitor exhibits potential as a targeted therapy for dogs
with PIK3CA mutations: in vitro effects demonstrated its capacity to inhibit cancer cell
migration, suppress AKT phosphorylation, thereby inhibiting cell proliferation, and induce
apoptosis through caspase-3/7 activation [61]. Clinical trials could provide further evi-
dence regarding the effectiveness of Alpelisib for canine HSA and the potential of PIK3CA
mutations as predictive markers for this therapy.

Gedatolisib is a drug under development used in cancer patients with mutations in
PIK3CA. It inhibits the P110α catalytic subunit of the PI3K gene, inhibiting the PI3K/mTOR
pathway [75–77,98]. Recent evidence shows that it declines the viability of canine tumor
cells of specific cell lines, such as osteosarcoma and histiocytic sarcoma [75]. However, trials
with PI3K in HSA and angiosarcoma in canine and human patients are lacking. Considering
the high percentage of PI3K mutation in canine HSA and the preliminary in vitro results,
the inhibition of PI3K could be a viable therapeutic strategy for this type of tumor [99].

The occurrence of a specific mutation in an oncogene does not exclude the possibility
of mutations in other oncogenes; a synergism effect may occur in tumors with additional
mutations, such as in different segments of the PIK3CA-AKT-mTOR pathway and PIK3CA
mutations coexisting with different PI3K mutations in endometrial, breast and colorectal
human cancer [100]. Coexisting mutations in PIK3CA and TP53 have been occasionally
identified in splenic and cardiac canine HSA [44].

3.3. PTEN

The PTEN is a tumor-suppressor gene, located in chromosome 10, responsible for the
regulation of the PI3K-AKT-mTOR pathway through the inhibition of PI3K/Akt signal-
ing [51,101–104]. Like TP53, PTEN is frequently mutated in animal neoplasms, and a loss
of PTEN upregulates the PI3K-AKT-mTOR pathway, facilitating cell cycle progression and
increasing proliferation and anabolic metabolism throughout enhancing protein synthesis
in cancer cells [104]. PTEN mutations are frequently found in breast and prostate cancer
in humans, where there is a positive correlation between the loss of PTEN and adverse
outcomes and poor prognosis [51,103]. Mammary gland tumors might also be associated
with dysregulations of PTEN expression [101,105]. In addition, there is evidence that PTEN
may regulate more aspects of the cancer’s behavior independently of the PI3K-AKT-mTOR
pathway, affecting the tumoral microenvironment and immunomodulation that may affect
the clinical response to immunotherapy [50,51,104].

Reported almost two decades ago [64], PTEN mutations in canine HSA can occur in 4%
(2/47) to 10% (2/20) of cases [40,41,43,44] and appear to play an important role in regulating
PIK3CA, a more frequently mutated gene in this tumor [41,44]. PTEN is also downregulated
in human angiosarcomas of the scalp and face, documented by reduced expression in
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immunohistochemistry for malignant and higher-grade tumors [49]. Inactivation of PTEN
leads to upregulation of the mTOR pathway and targeting the mTOR pathway could be an
effective anticancer strategy [102].

Specific mTOR inhibitors, Temsirolimus and Everolimus, have been successfully used
and approved for the treatment of renal cell carcinoma in people [106,107]. Despite the
potential efficacy in vascular tumors, mTOR inhibitors have not been investigated in clinical
trials in angiosarcoma in people. However, Everolimus showed some modest efficacy in
people with bone and soft tissue sarcomas [108].

For canine mammary neoplasms, both Temsirolimus and Everolmius have exhib-
ited evidence to inhibit the mTOR pathway in vitro, leading to suppressed growth of
tumor-adherent cells and spheres [109]. Additionally, Everolimus presents an anti-growth
potential in sphere-formation assays related to cancer stem cells with self-renewal ability.
However, the precise antitumor effect of these inhibitors in this model remains uncertain, as
no discernible differences were observed between the control group and the groups treated
with mTOR inhibitors regarding mitotic figures count and angiogenesis [109]. Sirolimus
(rapamycin), the first discovered mTOR inhibitor, has not been investigated in dogs with
HSA. However, adding Sirolimus to the standard of treatment for canine appendicular
osteosarcoma has not shown significant benefit in overall survival, compared to the stan-
dard of treatment alone [110]. The efficacy of Sirolimus in combination with the standard
treatment of care for hemangiosarcoma is under investigation, but it is unlikely to be
effective alone in a disease with a rapid course and aggressive behavior. A combination of
various treatments, including standard chemotherapy, mTOR inhibitors and repurposed
drugs such as β-blockers, could be more effective [111].

3.4. TP53

This tumor-suppressor gene is commonly affected in neoplasms from different origins
in humans and domestic animals [41]. It is the gene most frequently mutated in canine
HSA, thus playing a meaningful role in its growth mechanism, most importantly avoiding
tumoral suppression when mutated [43,64,65]. TP53 is also able to promote the fusion of
genes through genomic instability [44]. In immunohistochemistry, cutaneous HSA with
actinic damage expressed a higher p53 index when compared to visceral manifestations
and cutaneous forms without actinic changes [26]. In a recent study, mutations of TP53
were shown to be a negative prognostic factor, independently of cancer type. Furthermore,
the most common cancer with this mutated tumor-suppressor gene was canine HSA [42].
Alsaihati et al. (2021) identified a similar pattern, in which HSA was the tumor with the
highest frequency of TP53 mutations (59%) among the analyzed neoplasms, especially in
Golden Retrievers, although a prognostic analysis was not elaborated [41].

Therapies targeting p53 could be very useful in preserving genomic stability and
regulating the cell cycle in cancers [112–114]. Gene therapy works by targeting specific
mutations and restoring the functionality of the affected gene [67,113]. Gene therapy
restoring the functionality of p53 can be theoretically used in a wide variety of cancer
types; however, the efficacy of this treatment is largely unknown for many tumors with
a mutation of p53 [113]. The recombinant human p53 adenovirus (Gendicine) was the
first gene therapy to be approved for the treatment of head and neck carcinomas with
p53 loss in humans. Gendicine increases response rate and overall survival time when
associated with chemotherapy and/or radiotherapy in head and neck carcinoma [66,67].
Unfortunately, p53 genetic therapy is not yet available in small animal oncology and no
studies have evaluated the efficacy of this treatment in dogs with cancer.

3.5. CDKN2A

The cyclin-dependent kinase inhibitor 2A (CDKN2A) is a tumor-suppressor gene
that controls the cell cycle, mostly in the G1 to S phase, by encoding proteins p16 and
p14 [115,116]. Aberrations in this gene lead to tumorigenesis and metastasis as a result of a
lack of cell cycle regulation [116]. In humans, it has been associated with various tumors,
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including pancreatic cancer, melanoma and angiosarcoma [117–119]. An experimental
study tested the inoculation of oncogenic HRAS with the knockdown of CDKN2A or
TP53 in mice and detected that these associations were able to induce the development of
angiosarcomas and other soft tissue sarcomas [119]. In canine HSA, few studies analyzed
CDKN2A; nonetheless, recently it was detected that 11% of dogs with HSA expressed
mutations in this gene [40].

3.6. VEGF, Angiogenesis and Hypoxia

Vascular endothelial growth factor (VEGF) is a signal protein that induces the de-
velopment of blood vessels, both in physiological and pathological conditions [120]. Its
dysregulation enhances cancer growth by overstimulating angiogenesis, already supported
by tumoral chemokines. As a result, the angiogenesis leads cancer cells to proliferate despite
hypoxia [120,121]. Different types of VEGF play distinct functions in blood and lymphatic
vasculature development, even in tumoral conditions, most notably VEGF-A and VEGF-D,
usually overexpressed in breast cancer and angiosarcoma in humans [122–124]. Hypoxia
is a dichotomous factor in some neoplasms [120,124,125]. Despite the need for nutrients
and blood supply for a tumor cell to survive, some cancers, such as angiosarcoma, may
have better development in a hypoxic microenvironment, evading immune antitumoral
response and facilitating proliferation and migration [121,125–127]. The lack of tumoral
oxygenation and the overexpression of VEGF may be poor prognostic factors that alter the
cancer microenvironment in order to promote growth [123,125,128].

Vascular neoplasms commonly express VEGF and its receptors, and its overexpression
appears to accelerate tumor proliferation [124,129,130]. The low expression of circulating
VEGF-A in people with vascular sarcomas treated with sorafenib, including angiosarcoma,
is correlated with a more favorable outcome [48]. A similar pattern occurs with low
serum rates of VEGF-C, which are associated with poor prognosis and shorter disease-free
time in humans with angiosarcoma treated with paclitaxel and bevacizumab [131]. No
studies reported correlations between tyrosine kinase inhibitors or commercial monoclonal
antibodies and VEGF expression or its blood rate in dogs with any type of cancer.

In canine cutaneous HSA, no correlation has been identified between VEGF expression
and overall survival time [26]. Splenic HSA in dogs expressed a higher number of VEGF+
cells in comparison to splenic hemangiomas (p = 0.004) [132] and an average staining
expression of VEGFR-2 that was four times higher than in normal spleens [130]. Evidence
suggests that VEGF and VEGFR-2 may be useful diagnostic markers, although neither
VEGF nor its receptors are well established as predictive or prognostic factors for canine
HSA yet [26,130,132]. Antibodies that bind VEGF, VEGFR blockers and modified receptors
are therapeutic options potentially able to reduce VEGF action in angiogenesis in canine
cancer patients. Sorafenib is a tyrosine kinase that inhibits VEGFR-2 and PDGFR, suitable
for human angiosarcoma treatment [48,133] and well tolerated by dogs [72,74]. Thus, it
could be effective in disease control as a canine-HSA-targeted therapy, considering the
high expression of VEGFR-2 in splenic HSA cells [130]. However, the use of toceranib, a
TKI that blocks VEGFR, has not proven to be beneficial in splenic HSA after the standard
treatment [29]. Immunotherapy is not frequently used for vascular tumors. Bevacizumab
(Avastin®; Genentech, Inc., South San Francisco, CA, USA) is a monoclonal antibody anti-
VEGF, potentially inhibiting tumoral angiogenesis, considered as a promising therapy, but
in recent studies was found to not be beneficial for human angiosarcoma treatment [134].

3.7. PD-1/PD-L1 Complex

Immune checkpoint inhibitors (ICI) and vaccines are promising treatment modalities
for several tumors in humans and domestic animals. Studies in the last decade have shown
some evidence of efficacy for treating invasive urothelial carcinoma and melanoma in
dogs, namely Oncotherad nano-immunotherapy and the Oncept vaccine [135–139]. Few
studies have focused on evaluating the PD-1/PD-L1 complex as a potential target for canine
HSA [70,140,141]. Programmed cell death protein 1 (PD-1) is a lymphocyte surface protein
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that, when bound to its ligand, programmed death-ligand 1 (PD-L1), can downregulate
T cells. This interaction acts as a tumor immune system evasion mechanism [70]. The
pathways of this mechanism include the inhibition and apoptosis of tumor-infiltrating T
lymphocytes, reduced secretion of pro-inflammatory cytokines and cell cycle arrest in the
G0/G1 phase [70,141,142].

The ISOS-1 (RRID:CVCL_C517) angiosarcoma cell line shares molecular similarities
with canine hemangiosarcoma (HSA) [140]. Notably, a study revealed that these tumor
cells exert control over macrophages, polarizing them into the M2 phase, associated with
pro-tumor effects, and upregulating the expression of PD-L1. This ligand expression is
observed in most canine HSA cases [140], and also in tumor-infiltrating macrophages,
indicating a pro-tumor role of the PD-1/PD-L1 complex in canine HSA [140].

The in vivo effectiveness of an anti-PD-1 immune checkpoint inhibitor (ca-4F12-E6)
was documented in two dogs diagnosed with melanoma [68]. These patients exhibited a
complete response that lasted over a year, surpassing the expected outcomes of conven-
tional therapy [68,71]. Additional studies are warranted to evaluate the therapy’s efficacy
and safety, involving a larger cohort of dogs and comprehensive safety assessments. Cur-
rently, some effective antibodies targeting PD-1 and PD-L1, such as Pembrolizumab and
Atezolizumab, have been approved for the treatment of human tumors [69,70]. However, in
veterinary medicine, there are no commercially available immune checkpoint inhibitors yet.

4. Conclusions and Future Directions

The prognosis for visceral canine HSA remains poor. Recent studies have improved
our knowledge of the most common molecular profile of HSA in dogs, clarifying different
patterns according to each presentation of the neoplasm.

In our study, the most frequently analyzed mutated genes in canine HSA identified
in recent articles are TP53, PIK3CA and NRAS. Nonetheless, few investigations in recent
decades have searched for mutations in other genes, such as CDKN2A, PTEN and AKT1,
which could provide more knowledge regarding this tumor’s resistance and etiopatho-
genesis. Targeting one, or more likely several dysregulated molecular pathways, such as
RAS-RAF-MEK and AKT-mTOR, could be beneficial in treating this fatal disease. Thus,
new studies should test different strategies focused on specific pathways.

As demonstrated previously, canine HSA’s molecular profile differs from other neo-
plasms. A different molecular background could even be present in different portions of
the same neoplasm. In the near future, the treatment of HSA should focus on a more per-
sonalized treatment, based on the specific molecular profile of individual dogs with HSA.
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