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Simple Summary: Mastitis refers to the inflammation of the mammary parenchyma, caused by
more than 136 microorganisms. It poses several challenges for farmers, veterinary clinicians, and
researchers to understand and determine the most effective diagnostic tools and treatment protocols.
This article discusses the clinical relevance, the causative pathogens, the economic factors involved,
basic and advanced diagnostic techniques, and alternative therapeutic protocols required to control
mastitis economically. There is a need to apply novel therapeutic technologies to overcome the
challenges of traditional antibiotic-based therapies. These alternative therapeutic options could be
supportive or additional options alongside conventional antibiotics-based therapies.

Abstract: Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively
affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk
quality, increases milk losses because of milk being discarded, and increases overall production
costs due to higher treatment and labour costs and premature culling. This review article discusses
mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic
and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively.
There is an increasing focus on the application of novel therapeutic approaches as an alternative to
conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of
antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and
environmental impacts. This article also discussed nanoparticles’/chitosan’s roles in antibiotic-
resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.

Keywords: mastitis; advanced diagnosis; management; ethnoveterinary

1. Introduction

Mastitis refers to the inflammation of the mammary glands, involving changes in the
gland tissue and glandular secretions causing physical and chemical alterations, respec-
tively. The invasion of pathogenic organisms via the teat canal could be associated with
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contamination from the environment, unhygienic conditions, and, rarely, from systemic
infections [1–5].

Mastitis can be classified into different categories viz, duration, symptoms, and
pathogenic agent. In the context of the symptoms observed, the classification is broadly
divided into clinical and sub-clinical forms. The clinical form of mastitis is characterized by
rapid onset with swelling and redness of the affected quarter. The affected quarter may
present physical and chemical alterations in the milk, containing flakes or clots, or having a
watery consistency. In severe clinical mastitis, cows may present systemic signs ranging
from visible lethargy to complete anorexia and high fever. In contrast, sub-clinical mastitis
(SCM) largely goes undiagnosed due to difficulties in its diagnosis owing to the lack of
visible changes in the milk, but the level of somatic cells exceeds 200,000 cells/mL [6]. This
results in a marked loss in overall milk production [6].

The most prevalent causes of SCM are non-aureus Staphylococci, Staphylococcus aureus
(S. aureus) and Streptococcus spp. The improper management of dairy cows has also
contributed to the prevalence of SCM, such as high stocking density; stall feeding, poor
hygiene and sanitation, such as cracked floors, poor drainage systems and dung piling
up; flies; earth floors; and peri-parturient diseases [1]. As reported by Seegers et al. [7],
SCM mastitis is 15 to 40 times more prevalent as compared with the clinical form, with
a longer duration. Subclinical mastitis, therefore, serves as a carrier of pathogens that
spread to healthy udders within the herd and is more challenging to prevent. As reported
by Batavani et al. [8] and Bruckmaier et al. [9], an increase in the positive response in the
California mastitis test (CMT) is accompanied by increases in sodium, chloride, IGF-1,
and immunoglobulin, and decreases in calcium and inorganic phosphorus, showing the
presence of tissue damage due to sub-clinical mastitis. Elevated levels of plasminogen, the
activity of n-acetyl-β-D- glucosaminidase (NAGase), whey proteins, and γ-casein in the
total protein has been reported in subclinical mastitis by Urech et al. [10].

Most mastitis cases are of bacterial origin worldwide, being caused by species such
as S. aureus, Streptococcus dysgalactiae (Strep. dysgalactiae), Streptococcus agalactiae (Strep.
agalactiae), Streptococcus uberis (Strep. uberis), and E. coli [11]. The microorganisms causing
mastitis, such as S. aureus, Strep. Agalactiae, and Mycoplasma spp., spread from mastitis ud-
ders to non-mastitis (healthy) cows mostly through milkers’ hands and milking equipment.
Machine milking acts as a reservoir and is a source of fomites carrying pathogenic bacteria.
Algae of the genus Prototheca are usually among the causative agents of environmental
mastitis, but, as per the report documented by Jánosi et al. [12] and Osumi et al. [13], it
is not clear whether they are contagious or environmental pathogens. The major concern
of environmental mastitis is faecal contamination and constant exposure of the teat canal,
which remains open for 1–2 h post-milking. Meanwhile, contagious pathogens invade
mammary glands during the milking process or by the colonization of teat skin [14].

The daily losses caused by mastitis in the first 2 weeks of lactation range from 1–2.5 Kg
of milk, resulting in an estimated loss of 110–552 Kg. It has an ever-lasting effect on the
milk yield as it is not possible to achieve peak milk production throughout their lactation
period [15]. Despite several improved management practices in dairying, it is still a
daunting disease condition causing huge economic losses to farmers across the globe. India
ranked first among the milk-producing countries; hence, mastitis causes huge economic
losses of about INR 575 million (estimated US$6.94 million) annually and a reduction in milk
production by 21% [5]. Apart from farmer’s losses, the human health risks due to increased
antimicrobial resistance and antibiotic residues in milk and milk products have decreased
the demand for milk from the dairy sector. The consumer preference for natural/organic
products has increased, as they believe that food produced from conventional farming
systems is safer and healthier for consumption [16].

The association of mastitis and its causative pathogens was proven in the 1880s, with
predominant pathogens identified during the 1950s. The multifactorial aetiology of bovine
mastitis was found in the late 1960s, which paved the way for further research interest in
this field [17], including common Gram-positive and Gram-negative microorganisms, such
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as Strep. agalactiae, S. aureus, E. coli, and Klebsiella pneumoniae (K. pneumoniae). The epidemi-
ology and molecular characterization of pathogens at the subspecies level, virulence gene
assays, whole-genome sequencing, and the in vitro susceptibility pattern of antibiotics were
determined in the 20th century [18]. With the advancement of time, penicillin was made
available for treatment by 1945, but it did not effectively work against all the pathogenic
bacteria responsible for bovine mastitis.

Strategic managemental practices should be targeted during the dry period in order
to minimize the incidence of mastitis after calving, particularly during the peak lactation
period [18]. In heifers, subclinical mastitis is predominantly caused by minor pathogens
during the peri-partum period, viz. coagulase-negative Staphylococci leading to mastitis.
During early lactation, intra-mammary infections are influenced by many factors, viz.
the onset time of calving, systemic disease, virulence gene array of the pathogen, cure,
host immunity mechanism, management routines, herd location, season, parity, and peak
milk production.

Definitive diagnosis of mastitis is very crucial for the dairy industry to ensure clean
milk production, economic returns, public health concerns, and animal welfare compliance.
Diagnoses should ideally be early, instantaneous, and rapid. They should specifically be
used for management practices and early therapeutic interventions for mastitis. Over the
last decade, the conventional method, viz. CMT, somatic cell count, the white side test, etc.,
have been in routine application for diagnoses of mastitis at the farm and individual cow
levels. The conventional methods (e.g., CMT) are rapid, relatively cheap, and have field
applicability, but have the disadvantage of non-specific detection. Advanced diagnostic
tools, viz. polymerase chain reactions, protein-based ELISA techniques, acute phase protein
detection, quantitative PCR, MALDI-TOF, etc., are costly, requiring skilled technicians, a
laboratory, and sophisticated infrastructure. The great advantages of these tools are the
highly accurate and specific nature of the detection of mastitis-causing pathogens, even at
the subspecies level, providing an efficient method of treatment [19,20].

Along with management practices, numerous traditional and advanced novel ther-
apeutic protocols are available for managing intramammary infection (IMI), including
antibiotics, herbal therapy, bacteriocins, vaccination, and nanoparticle-based therapy [21].
Several compounds contribute to the prevention of mammary gland infections and also
aid in increasing the lactation yield [22]. The most common treatment protocol used is
antibiotic therapy. However, the uncontrolled and extensive use of antibiotic therapy and
the persistence of biofilm-associated antibiotic resistance are responsible for poor antibiotic
responses [23,24]. Vaccination programmes are one of the best methods for the prevention
of specific mastitis at the herd level. The successful rate of vaccination against bovine
mastitis is low because of the involvement of multi-etiological agents causing mastitis;
nevertheless, S. aureus, Streptococcus uberis (Strep. uberis), and E. coli were considered as
major targets for the development of vaccines [25–27]. There are a number of commercial
vaccines on the market, but satisfactory results are still debatable [28]. As these therapies’
shortcomings have emerged, several advanced technologies have been introduced to fill the
lacunae. Bacteriocins and nanoparticle-derived therapy are promising in providing protec-
tion [29,30]. This review manuscript critically analyses various aspects of intra-mammary
infection/mastitis, focusing on its etiological agents, clinical importance, economic impor-
tance, advances in diagnosis, role of immunization, and therapeutic interventions.

2. Pathogen Causing Mastitis

Nocard and Mollereau, in 1887, appear to have been the first to undertake a study of
the microorganisms causing mastitis [31]. They examined the udder secretions of ten cows
suffering from severe contagious mastitis and successfully isolated streptococci (Strepto-
coccus mastitidis contagiosae) in all cases. Pathogens causing bovine mastitis belong mostly
to the environment and are ubiquitous in nature, whereas SCM is predominantly caused
by contagious agents [32,33]. Some pathogens cause acute, per-acute, sub-acute, and
chronic mastitis, categorized into either contagious or environmental forms of transmis-
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sion. The most prevalent bacteria are S. aureus, S. pyogenes, Strep. agalactiae, Enterobacter
aerogenes, K. pneumoniae, Trueperella pyogenes (T. pyogenes), K. oxytoca, E. coli, and Pasteurella
spp. [34–37]. The major environmental pathogenic bacteria belong to the Enterobacteri-
aceae family, particularly E. coli [38], while contagious pathogens include S. aureus, Strep.
dysgalactiae, and S. agalactiae. In clinical mastitis, Strep. agalactiae is the most frequent
Gram-positive bacterium, followed by S. aureus, whereas Klebsiella spp. and E. coli are
the most prevalent isolated Gram-negative bacteria in Brazil [39]. The main pathogens
spread through direct contact are S. agalactiae and S. aureus; therefore, herd biosecurity
is regarded as an important safety measure for the reduction and/or purging of their
reservoirs [40]. The bacteria T. pyogenes is considered to be the sole cause of the clinical
form of mastitis [41]. The highest level of loss caused to primiparous cows is caused by
S. aureus, Klebsiella spp., and E. coli, whereas, in pluriparous cows, significant losses in
milk production are caused by Streptococcus spp., S. aureus, Klebsiella spp., T. pyogenes,
and E. coli [42]. In summary, the common pathogens causing mastitis are S. aureus, Strep.
agalactiae, and Strep. uberis, whereas Mycoplasmal and Corynebacterium infections are less
frequently diagnosed [43,44]. The heaviest forms of infection in intramammary tissues are
associated with CAMP-negative Streptococcus spp., coliforms, Strep. agalactiae, fungi (yeast),
T. pyogenes, and Prototheca spp. [41,45]. In a study of sub-clinical mastitis by Steele and
McDougall [46], Corynebacterium spp. (40%) and S. aureus (32%) were the most prevalent
bacteria in New Zealand. Opportunistic pathogens, such as the algae Prototheca spp., cause
mastitis in lactating cows and also possess zoonotic capability [47,48]. Flies are of great
importance in relation to animal and public health concerns because they act as mechanical
vectors of many kinds of pathogens, such as bacteria, protozoa, viruses, and helminth eggs.
Biting flies, including stable flies and horn flies, cause direct damage to dairy animals from
direct blood loss, tissue damage, and allergic reactions [49]. A high level of activity of
these flies reduces milk production in dairy animals [50–52]. In addition to their painful
bites, horn flies transmit the pathogenic bacteria Staphylococcus aureus [53]. The possible
interrelationships of genotypes of Staphylococcus aureus found in mammary glands and
horn flies were documented by Anderson et al. [54], depicting the role of flies as an im-
portant source of bacteria. Staphylococcus epidermidis has also been isolated from fly traps
by Woudstra et al. [55], but they did not detect the same strain in the milk and in the flies.
Species of pathogens that have been detected in houseflies from dairies include Enterococcus
faecalis, hirae, and faecium; E. coli [56]; and Klebsiella pneumoniae [57]. The identification of
pathogen-causing mastitis has been considered as one of the steps forward for prevention
and treatment purposes. With identified pathogens, specific antibiotic treatments can be
used to avoid resistance due to their misuse. Many documented research articles from past
decades to recent times have provided information about the potential causative agents of
mastitis in livestock.

Common etiological agents causing mastitis in dairy cattle are documented in Table 1.

Table 1. Common etiological agents causing mastitis in dairy cattle documented from past decades
to recent times.

S No. Causative Agent of Mastitis References

1. Staphylococcus spp.

Staphylococcus spp. [45,58–62]

S. aureus [63–82]

S.mastitidis [58,83,84]

Coagulase-negative Staphylococcus (CNS) [65,85–93]

2. Streptococcus spp.

Streptococcus spp. [6,59,94–96]
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Table 1. Cont.

S No. Causative Agent of Mastitis References

Strep. agalacticae [11,97–106]

Strep. viridians [107]

Strep. lactis [108]

Strep. mastitidis, Strep. acidominimus [109–111]

Strep.uberis [97,100,112–119]

3. E. coli [6,63,66,67,74,96,118,120–127]

4. Bacillus spp. [67,69,126,128–131]

5. Tuberculous type bacilli [58,119,132]

6. Mycoplasma spp. [69,119]

7. Aerobacter aerogens [84]

8. Pseudomonas aeruginosa [69,97,119,133,134]

9. Corynebacterium spp. [135–141]

3. Clinical Relevance of Bovine Mastitis

Epidemiologically, mastitis is categorized as environmental and contagious forms,
which are caused by a wide etiological pathogen [32]. Environmental factors, such as
increased humidity with organic matter in the barn/shed area, significantly increase the
bacterial load in the herd population. In one study, at the herd level, 74.7% prevalence,
and at the individual level, 62.6% prevalence of mastitis was reported. In relation to the
form of mastitis viz. sub-clinical and clinical, the former type has the highest prevalence
of 59.2%, and the latter has a prevalence of 3.4% [32]. The clinical signs associated with
evident symptoms include udder redness, increased size, pain to the touch, milk clots, dis-
colouration, and abnormal milk consistency, along with systemic signs (pyrexia (>39.5 ◦C)
and loss of appetite). In the Netherlands, among 20,000 clinical mastitis cases, S. uberis and
S. dysagalacticae cause 40% of infections, and S. aureus and E. coli each cause 30% [142].

The economic aspects and incidence of clinical mastitis were studied by Kumar
et al. [143]. In contrast to the clinical form of mastitis, no abnormal milk was observed
in sub-clinical mastitis, although the change in the chemical composition of milk was
an indicator for its diagnosis. It is diagnosed by laboratory tests of milk (composition)
and animal-side tests, such as the California mastitis test (CMT), followed by the use of
microbiological cultures for the identification of the causal pathogenic agent. Apart from
CMT and microbiological culture isolation, somatic cells are considered a more reliable test
for detecting sub-clinical mastitis, mostly white blood cells viz, infiltrated neutrophils, and
macrophages in affected mammary gland tissues during inflammation in mastitis [144].
A study reported persistently higher levels of SCC in S. agalactiae infection, which was
localized mainly in the udder [40].

Disturbance to the host immune response to infectious agents affecting intra-mammary
glands is a major factor of mastitis [145]. Interferon-gamma and TNF-alpha are crucial
components of innate and adaptive immunity against infectious pathogens and are impor-
tant macrophage activators [146]. Additionally, the enhanced expression of these cytokines
can induce a pro-inflammatory environment and facilitate oxidative damage, including
increased free radical production. The relative number of T-cells, natural killer cells, and
monocytes in peripheral blood increases during the post-calving period.

In a healthy udder, a balance of microbiota is important for maintaining the integrity of
mammary gland homeostasis. The microbiota of the intra-mammary tissue is composed of
a diverse community [147,148]. However, disrupting the diverse udder microbiota impacts
the host’s immune response towards infection. Additionally, the normal microbiome of the
udder is important to consider in making diagnoses of mastitis, as a healthy quarter also
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contains some bacteria. The possible bacterial genera present in udder microbiota include
Oscillospira, Ruminococcus, Roseburia, Dorea, Preotella, Baterioides, Bifidobacterium, etc. Even
any congenital or acquired anomalies viz. teat spiders, fistulas, and udder wounds that
cause milk retention and bring forth the udder tissue to the external source of bacteria
tend to cause mastitis [149]. In a histopathological study of mastitis-affected mammary
tissue, an increase in the stromal connective tissue along with neutrophilia and a significant
decrease in the alveolar epithelium was observed [60]. In clinical mastitis, the microbiota is
mainly composed of Staphylococcus spp. and Enterobactericaeae family spp., disrupting the
normal microbiota. Many researchers proposed that either the prolonged use of antibiotic
therapy or alteration of the normal microbiome by the pathogenic agent are responsible for
the establishment of mastitis [150]. In a study conducted in the USA, a total of ten negative
coagulase Staphylococcus species (CNS) were isolated at different stages and seasons of the
lactation period of dairy cattle [151].

Intra-mammary infection is a complex, yet detrimental, condition resulting from vari-
ous host and environmental factors at the individual cow level. These involve pathogenic
growth in mammary tissue, the host immune response (local and systemic), signalling
pathways of various pro and anti-inflammatory cytokines establishing clinical outcomes,
and various pathogen-associated molecular pathways. A possible approach to this is the
recognition of toll-like receptors (TLRs), pattern-recognition patterns (PRPs), RIG-like re-
ceptors (RIGs), and NOD-like receptors (NLRs) in the evaluation of udder inflammation,
either because of microbial or environmental causes. Hence, collaborative approaches for
advanced diagnoses and for prophylactic measures of this disease are important [152].

4. Economic Significance

Mastitis leads to huge economic losses for dairy farmers, especially by affecting the
overall milk quality and quantity. It also causes economic losses because of discarded milk,
culling of affected animals, additional treatment costs, and extra labour costs. The projected
annual economic loss caused by mastitis (subclinical and clinical mastitis) in India was
reported to be US$ 98,228 million (INR 71,655.1 million) [6]. Significant overlooking of 60
to 70% of the total losses incurred due to SCM, which causes three times more production
loss as compared with clinical mastitis, was reported [4,153]. Sinha et al. [4] reported
higher losses in cross-bred cattle due to higher production levels, about 49% due to the
value of milk and 37% due to veterinary expenses, followed by the cost of treatment (31%)
and services (5.5%). Jingar et al. [154] reported a greater loss in indigenous Sahiwal and
Tharparker cows (INR 1695.00), followed by crossbred (INR 1597.64) and Murrah buffaloes
(INR 1498.44). In a meta-analysis, the prevalence of subclinical and clinical mastitis at the
cow level was 41% and 27%, respectively, in India, indicating the importance of SCM [155].
In 2017, Rathod et al. [156] estimated that the costs for the loss of subclinical mastitis in
India were about INR 21,677 to INR 88,340 per animal for a lactation period.

Many reports have suggested that India’s north and south zones show greater preva-
lence of SCM and CM with Staphylococcus spp. (45%) when compared with Streptococcus
spp. (13%) and E. coli (14%), as the cattle population is greater in these zones. The overall
prevalence of SCM in an updated meta-analysis by Krishnamoorthy et al. [157] was found
to be 45%. Considering the zonal prevalence, Madhya Pradesh and Chhattisgarh (central
zone) showed higher prevalence of subclinical mastitis (63% and 48%, respectively). Eco-
nomic analysis of mastitis was conducted for 59 dairy farmers and an average drop in the
milk yield during mastitis from 9–10 Kg to 6–7 Kg was found [158]. This caused an average
loss in income from INR 413–458 to INR 306–335 per cow per day.

An economic evaluation of mastitis control under different intervention scenarios,
quantifying the total cost of mastitis caused by S. aureus in Holstein cows in Argentina,
was performed by Richardet et al. [159]. A total of 97.5 cases of S. aureus-caused mastitis
in every 100 cows per year was estimated, and losses due to CM and SM were US$221.0
and US$151.7 kg/case, respectively. The higher probability of transmission increased the
total cost of mastitis, caused by the large number of culled cows. This led to a drop in
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the economic efficiency of control and prevention programmes. Conversely, a decreased
transmission rate apparently decreases milk losses due to mastitis.

Several studies on the prevalence and economic impact of mastitis indicate a need for
comprehensive economic assessment as being of the utmost importance for formulating
the various livestock health intervention efforts at present. A retrospective study using
available animal health and dairy herd improvement records was conducted by Puerto
et al. [160]. The authors used data from the first lactation of Holstein cows from 120 herds
between 2003 and 2014 and assessed the production performance (in terms of overall milk,
fat, and protein yield) and economic performance (in terms of milk economic value, margin
over feed cost, and gross profit). The authors noted a significant decrease in the total milk
yield (−382 to −989 kg) in mastitic cows.

5. Advances in Diagnostic Approaches

The diagnosis of clinical mastitis on a field basis is usually based on the detection of
abnormal milk secretions, on the appearance of teats and udder symmetry, and palpation
of the udder, indicating normal/abnormal consistency of the gland and signifying either
an acute or chronic condition.

The early identification of subclinical mastitis is of paramount importance to prevent
udder and milk loss; the present detection procedures, including Somatic cell count, electri-
cal conductivity, and CMT, are less reliable as they depend on various stress-related path-
ways other than the causes of infection. An increased somatic cell count, positive California
mastitis test, increased levels of enzymes (viz. N-acetyl beta-D-flucosaminidase; NAGase),
lactate dehydrogenase; LDH) [46], along with the electrical conductivity of milk indicate
a sub-clinical mastitis condition. The California mastitis test (CMT) provides a rapid and
sensitive cow-side screening test to predict subclinical mastitis (SCC >200,000 cells/mL).
The sensitivity and specificity of the CMT with the major mastitis pathogens (Staphylococcus
aureus, Streptococcus spp., and Gram-negative organisms) during early lactation were 82.4%
and 80.6% on day 4 of lactation, respectively [161].

Bacterial culture techniques are the gold-standard method to identify mastitis-causing
pathogens, but need standardized, repeatable methods for their widespread application.
Most of the pathogens readily grow on agar medium under aerobic conditions, but some
microorganisms, such as Mycoplasma spp., need specific growth media. Culture techniques
have limited sensitivity, which is further restricted as they require the isolation of one
colony-forming unit (CFU) of the pathogen from 0.01 mL of milk (100 CFU/mL). The
prevailing recommendation for considering a single quarter sample positive for an IMI is to
use 100 CFU/mL, whereas that for non-aureus Staphylococcus is 200 CFU/mL [162]. Cultural
isolation was considered as the gold standard for intramammary infection diagnosis.
However, the increased specificity and sensitivity of PCR-based techniques have made it
the new gold standard for the diagnosis of mastitis [163]. There are various tests used for
the early detection of mastitis under field conditions and in the laboratory, as mentioned
below (Figure 1).

5.1. Milk Somatic Cell Count (SCC)

The somatic cell count (SCC) provides an in-depth view of the quality of milk. The
measurement of milk somatic cells by direct microscopy or using an automatic electronic
cell counter still remains the most prevalent and easy method for the diagnosis of SCM.
Conventional direct microscopy is labour-intensive, slow, and needs a high-quality micro-
scope and trained personnel for improving efficiency. An automatic electron cell counter
measures cell counts based on the principle of flow cytometry. It proves a rapid, sensitive,
and accurate method for measuring the SCC [6,164]. Further, to reduce the labour and cost
of diagnosis, composite samples for SCC at the cow-level are recommended for isolation
from healthy cows. The sensitivity and specificity of the composite milk SCC as an indicator
of mastitis in at least one-quarter range from 30 to 89% and 60 to 90%, respectively [165].
The most accurate correlation between IMI and SCC is found when analysing it at the quar-
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ter level. Further, data suggest that healthy quarters have a mean SCC of approximately
70,000 cells/mL, and an SCC of > 200,000 cells/mL indicates infected quarters [166,167].
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Molecular markers are used to identify infectious pathogens that are difficult to iso-
late, i.e., Mycoplasma spp. [168]. Various DNA/RNA extraction methods for subsequent
amplification with specifically designed primers are used for the molecular characteriza-
tion of mastitis-causing pathogens [169]. Shome et al. [170] developed and evaluated a
multiplex PCR for bacterial species (n = 10) causing mastitis in cattle, namely S. aureus,
Staph. chromogenes, S. epidermidis, S. sciuri, S. haemolyticus, S. simulans, Strept. agalactiae,
Strept. dysgalactiae, Strept. uberis, and E. coli. However, real-time PCR can provide results at
a faster rate with greater sensitivity and specificity. A study by Ding et al. [171] developed
a multiplex RT-PCR assay to detect Staph. aureus, Listeria monocytogenes, and Salmonella spp.
in raw milk. The detection limit for the pure culture was 102 CFU/mL. Multiplex RT-PCR
assay kits are commercially available on the market to detect Strept. agalactiae, Strept. uberis,
and S. aureus with an accuracy of 98% [172]. Pathoproof, Thermo Fischer Scientific, Ltd.
Waltham, MA USA commercialized the PCR kit for mastitis. Other kits, including DNA
Diagnostic (Risskov, Denmark) and Mastitis 4, have also been made available. These kits
work on the principle of RT-PCR with the quantification of the DNA of bacteria. The assay
is highly accurate (95%), with sensitivity and specificity of 100% and 99–100%, respectively,
at the udder quarter and cow levels [173,174].
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Nevertheless, there is the potential to obtain false-positive results when utilizing PCR
methods to identify pathogens in samples of mastitic milk. This could be because milk from
healthy and mastitic cows is mixed. Furthermore, PCR cannot distinguish between viable
and non-viable bacteria. Owing to all of these factors, it is advised that dairy advisors
should use all related information at their disposal, including the history of the mastitis,
udder inspection (clinically), previous treatment protocol, and SCC, together with the PCR
results, to make the correct decision [173].

5.3. Nanotechnology and Biosensor-Based Diagnosis

Recently, nanotechnology and biosensor-based diagnosis methods have increasingly
been used in the diagnosis of mastitis. They could be potential methods for the rapid
and accurate diagnosis of various pathogens causing mastitis. Nanotechnology-based
biosensors introduced the idea of having a laboratory “on a chip” [175]. Mujawar et al. [176]
developed an advanced nanoparticle-based assay using three-dimensional nitrocellulose
with microarray diagnostics. This assay uses black carbon nanoparticles and protein to
prepare a conjugate for the secondary signal when tagging specific antibodies immobilized
on the membrane. Flatbed scanning is used to detect mastitis pathogens in less than three
hours (S. aureus, Corynebacterium bovis, M. bovis, Strept. agalactiae, Strept. dysgalactiae, and
Strept. uberis). The assessment of protease activity by the colourimetric assay was utilized in
identifying mastitic milk by Chinnapan et al. [177]. Magnetic nanoparticles along with the
attached plasmin substrate form a black self-assembled monolayer on a gold sensor surface,
and, on the cleavage of the substrate, peptide fragments attached to magnetic beads are
released. The peptide fragments are attracted to the magnet in the sensor strips, leading
them to the golden surface in the presence of an increased plasmin level. The sensitivity of
this method is assessed at 1 ng/mL of plasmin in vitro. Similarly, aptamer–oligonucleotide
or short peptides have been used to detect catalase in mastitic milk [178] with a sensitivity
as low as 20.5nM [179]. Ribosomal protein (RP)-L7/L12 belongs to the 50S ribosome,
expressed in microbes containing specific sequences for individual species. Their level
increases in proportion to bacterial growth. It is highly specific for bacteria and can be used
for rapid diagnoses as a target agent. In an experiment by Nagasawa et al. [180], these
targets were used to develop anti-RP-L7/L12-coated immuno-chromatographic tests (ICS;
colloidal gold nanoparticle-based immunochromatographic strips). The ICS reacted to S.
aureus in a bacteria load-dependent procedure with 104 CFU/mL. Positive correlations
have been observed between S. aureus (nuc gene) copy and test scores of ICS in mastitis
milk.

5.4. Enzyme-Linked ImmunoSorbent Assay (ELISA)

The ELISA was first developed as a modification of RIA, and two research teams in-
vented a direct form of ELISA simultaneously, named Eva Engvall and Peter Perlman, and
Van Weemen and Schuurs. They devised it by tagging antigen and antibody radioisotopes
in RIA with the help of enzymes, rather than radioactive iodine [125]. This method was
employed to determine the level of IgG in the serum of rabbits [181]. The application of
indirect ELISA to detect Mycoplasma infection in milk samples collected from herds has been
performed previously [182,183]. Several studies evaluated this domain to develop an ad-
vanced tool for the earliest diagnosis, viz. a biomarker-based Liquid Phase-Blocking ELISA
for subclinical mastitis [184], an indirect ELISA for detecting the antibody against Streptococ-
cus agalactiae rAP1-BP-AP2 proteins and rSip-PGK-FbsA fusion protein [185,186]. Markers
indicating the inflammatory response during udder infection have been assayed with the
ELISA for the last decade. The detection of cytokines, such as tumour necrosis factors and
interleukins [89,187–193], and acute-phase proteins, such as haptoglobin [72,194–196], with
the ELISA has been considered as an important marker for the identification of mastitis
in bovines. Recent advances in the field of ELISA have been made for specific and more
sensitive assay detection, i.e., digital ELISA [197], ELISpot (Cecil Czerkinsky’s group in
Gothenburg, Sweden (1983), Plasmonic ELISA (Nano-ELISA), providing ultra-sensitive and
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efficient detection methods [198], and sphere coated/bead ELISA [199]. Aptamer-based
ELISA, with numerous target proteins, has more than one binding site, which enables them
to form complexes with more than one recognition molecule, producing sandwich-like
complexes. Similarly, aptamers are utilized in these ALISA assays, analogous to con-
ventional ELISA [200,201]. Aptamer-coated magnetic beads and antibiotic-capped gold
nanoclusters have also been applied for mastitis detection by Cheng et al. [202]. A SO-
MAmer (slow rate-modified aptamer) made from ssDNA containing pyrimidine residues
and long dissociation rates was identified by Baumstummler et al. [203] to detect S. aureus.
The SpA and ClfASOMAmers can selectively identify S. aureus. The ELONA (enzyme-
linked oligo-nucleotide assay) was used to detect the proteinA-binding aptamer PA#2/8in
S. aureus [204]. Pseudomonas aeruginosa was detected by using a glassy carbon electrode
developed by Roushani et al. [205]. An aptamer-based electrochemical probe can be used
for the detection of P. aeruginosa with a lower detection limit of 33 CFU/mL in samples. The
sandwich ELISA assay was designed to generate two different aptamers against one target
entity. These molecules can be used several times without a decrease in sensitivity and
minimal non-specific absorption onto the platform’s surfaces [206]. Wide diversification of
aptamers has been developed to detect S. aureus cells/their toxins (SEA, SEC1, SEB, and α

toxin), along with various proteins (e.g., teichoic acid, peptidoglycan, etc.).
FRET (fluorescence resonance energy transfer) biosensors have high sensitivity for

toxins and can spot SEA protein at a concentration of 8.7 ng/mL in milk, whereas graphene
oxide (GO)-based optical biosensors have the ability to detect S. aureus at a minimum
level of 8 CFU/mL [207]. Multiple and portable ELISA is a novel technique used for
identifying pathogens/toxins and oncological markers. It consists of a multi-catcher device
with 8–12 immunosorbents protruding pins onto a central stick that can be immersed into
the sample. These ready-to-use lab kits are cost-effective, sensitive, allow the screening of
large numbers of samples, and have no requirement for trained personnel or sophisticated
equipment [208].

5.5. Proteomic-Based Diagnosis

By applying proteomic-based methods, pathogens could be diagnosed rapidly, sen-
sitively, and accurately. Mass spectrometry is widely applied for identifying molecules
based on their mass: charge ratio. The ion source in MALDI-TOF mass spectrometry is
matrix-assisted laser desorption/ionization and the time-of-flight (MALDI-TOF) is the
mass analyser (Figure 2). The MALDI-TOF technique is a proteomic-based approach that
is gaining ground for the identification of bacteria in various disease samples, including
mastitic milk [209]. Barreiro et al. [210] used MALDI-TOF MS for the identification of
33 bacterial isolates from bovine mastitis milk samples, and the results were compared
with those obtained by classical biochemical methods. Barreiro et al. [211] identified S.
aureus, E. coli, Strep. agalactiae, Strep. dysgalactiae, and Strep. uberis from experimentally
contaminated milk samples (n = 15) with the use of MALDI-TOF MS coupled with Bio-
typer 3.0 software. Nonnemann et al. [212] identified isolates from (n = 473) samples of
sub-clinical/clinical mastitis by the application of a thin smear from pure cultures onto
a target plate covered withα-cyano-4-hydroxy cinnamic acid (HCCA) and submitted for
MALDI-TOF MS identification. The isolates (CM or SCM, n = 413) displayed a variety of
different bacteria: 19.1% S. aureus, 23.7% Streptococci, 15.6% E. coli, 15.6% non-aureus Staphy-
lococci, 3.4% Klebsiella spp.; 2.9% Corynebacterium spp.; and 2.4% Bacillus spp. Additionally,
the remaining isolates constituted about 17%.
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Fidelis et al. [213] evaluated MALDI-TOF MS for the identification of Prototheca;
yeast-like microalgae causing mastitis in dairy cattle, which are also nonresponsive to
intramammary or systemic treatment with conventional antimicrobial agents, forcing the
segregation and early culling of animals. MALDI-TOF identified 22 of 27 P. bovis and 3
of 4 P. blaschkeae isolates with scores of >2.0. With an extended algae database, MALDI-
TOF MS can contribute to the speciation of Prototheca from mastitis cases quickly and
easily. Many studies [214–219] evaluated the use of MALDI-TOF MS as an alternative
method for the large-scale identification of conventional/non-conventional/antimicrobial-
resistant bacteria isolates from milk samples of dairy animals compared with classical
microbiological routine protocols with greater specificity and sensitivity.

6. Alternative Therapeutic Approaches for Bovine Mastitis
6.1. Nanoparticle-Based Therapeutic Interventions for Bovine Mastitis

Bacteria, such as Staphylococcus aureus and Pseudomonas sp., have the ability to form
biofilms, which makes them more resistant to anti-microbials as they are packed in an
extracellular polysaccharide matrix, giving them good protection from immune responses
and anti-microbials. This decreases the efficacy of anti-microbials, providing a smaller
therapeutic window [220]. The complications of an infected udder include the types of
bacteria present producing various kinds of toxins and enzymes, which lead to tissue
damage and increase the access of microorganisms to udder parenchymal tissue, thereby
facilitating the survival of microorganisms in the keratin layer of the teat canal. Some
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strains of bacteria have protein A, which binds with the Fc portion of antibodies; this
makes them unrecognizable by the neutrophil. Approximately 50% of Staphylococcus aureus
produce beta-lactamase and cause micro-abscess formation. Some major virulence factors
are responsible for therapeutic failure in Staphylococcus causing mastitis in dairy livestock.
These factors make the penetration of antibiotics into the fibrous membrane difficult and
complicated [221]. With all these factors included, major therapeutic failures in bovine
mastitis are related to methicillin-resistant Staphylococcus aureus (MRSA). The probable
cause of the resistance is the penicillin-binding protein coded by a genetic element termed
the methicillin-resistant gene (mecA), which encodes a penicillin-binding protein 2a that is
responsible for resistance against β-lactam antibiotics by blocking the β -lactam binding
site [222]. Currently, the antibiotics used against MRSA include Daptomycin [223], Clin-
damycin [224], Quinupristin-dalfopristin [225], Tigecycline, a new analogue of tetracyclines
that has in vitro activity against MRSA isolates [226], and Linezolid [227]. Despite the
many anti-microbials available on the market, MRSA is a potential cause of economic losses
because of mastitis in the dairy sector in terms of treatment cost and short-term effects. The
deprived effectiveness of commonly used antimicrobials calls for immediate improvements
in drug design, discovery, and delivery systems.

Chitosan (Qo) is a molecule of natural polysaccharide origin derived from chitin
and is essentially composed of (β)-1,4 D-glucosamine linked to N-Acetyl-D-glucosamine
residues [228]. It displays unique properties of biocompatibility and biodegradability,
demonstrating it to be cost-effective, and provides alternative applications in food safety
and biomedicine [229]. It has antibacterial properties, particularly against biofilm-producing
Gram-positive bacteria, e.g., S. aureus [230], and Gram-negative bacteria, such as E. coli and
S. typhimurium [231]. Many authors have conducted studies on the effect of chitosan in
terms of the minimum inhibitory concentration (MIC), minimum bactericidal concentration
(MBC), and disk diffusion assays against potential pathogenic agents, particularly the
bacteria Pseudomonas spp. [232] and Staphylococcus spp. [221,233].

Nano-based drug-delivery systems introduce alternative therapeutics by effectively
binding the drug to its larger surface area and carrying it to the target site with a con-
trolled delivery rate (Figure 3). Different types of nanoparticles are used in the therapy of
mastitis-causing pathogens, namely nanogels, solid lipid nanoparticles, liposomes, poly-
meric nanoparticles, and metal nanoparticles. Liposomes are spherical vesicles with one
amphiphilic lipid bilayer with an aqueous internal core resembling the cell membrane.
This bilayer with additional components, such as cholesterol or polyethene glycol (PEG),
can be amplified with the objective of progress stability and biological compatibility [234].
Authors have documented many antibiotics loaded in liposomes, including encapsulated
ciprofloxacin in liposomes [235], vancomycin-loaded liposomes [236], ceftazidime lipo-
somes [237], levofloxacin liposomes [238], chloramphenicol-loaded deoxycholic acid lipo-
somes [239], piperacillin, and β-lactam into liposomes [240]. Liposomes potentiate a drug’s
pharmacological action, decrease drug toxicity, and are safer for parenteral administration.
However, their stability is diminished due to the shorter shelf-lives of lipid vesicles and
they are complicated to manufacture [241].

Polymeric nanoparticles have been frequently utilized in therapeutics and research
work with promising antibiotic-delivery platforms. They are prepared to include hy-
drophilic or hydrophobic drugs, and macromolecules, such as nucleic acids, proteins, and
peptides [242]. A report on the inhibition of the intracellular infection of S. aureus by
tetracycline-loaded chitosan nanoparticles was documented by Maya et al. [243]. Similarly,
the development of chitosan-coated iron oxide compound nanoparticles and levofloxacin-
loaded calcium phosphate PLGA nanoparticles against the development of biofilm biomass
was reported by Shi et al. [244] and Bastari et al. [245] respectively.
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Nanogels are novel, three-dimensional, cross-linked nanocarriers used to release drugs
with various mechanisms, such as thermo-sensitive, pH-responsive, and photoisomeriza-
tion at the target sites. The size of nanogels ranges from 20 to 200nm. Nanogels are
apposite and can be administered either with hydrophilic or hydrophobic drugs; owing
to their smaller size, the invasion capability is increased and they also have a prolonged
serum half-life [246]. Several types of nanogels are used for treatment against masti-
tis; vancomycin-loaded mannose hydrogel, which has an anti-MRSA effect [247]; silver
nanoparticles-loaded dextran lysozyme nanogel [248]; gentamycin sulfate-loaded chitosan
nanogel [249]; PLGA nanoparticles-loaded RBCs hydrogel, which neutralizes the toxin of S.
aureus [250]; and rosemary essential oils-loaded chitosan benzoic acid nanogel [251].

Metal nanoparticles, such as silver nanoparticles, are considered as antibiofilm and
antibacterial, and are even used against sub-clinical mastitis [252,253]. Gaseous nitric
oxide (NO) has been found to be effective as an antimicrobial agent against Gram-negative
and -positive bacteria, including MRSA. Friedman et al. [254] synthesized NO-releasing
nanoparticles using chitosan. Similarly, Cardozo et al. [255] evaluated the S-nitroso-MSA-
alginate/chitosan particles against MBSA and reported that NO-releasing polymeric parti-
cles are an interesting approach to overcome bacterial resistance in bovine mastitis treat-
ment. In recent times, with the advancement of research in the field of nanoparticles, those
with unique physiochemical properties and functionalization have remarkably aided in
overcoming the restrictions posed by antibiotics. The evaluation of ciprofloxacin-loaded
cerium oxide/chitosan nanocomposite synthesized using the seed extract of Amomum
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subulatum (black cardamom/BC) by Zafar et al. [256] against MRSA showed enhanced
antibacterial activity compared with that of the free drug alone.

Ciprofloxacin from a nanocarrier is better sustained under physiological conditions, which
could be considered as an effective and safe therapeutic protocol for MRSA-induced masti-
tis. Similarly, Aguayo et al. [232] manufactured chitosan nanoparticles with tripolyphosphate
using ionotropic gelation and confronted Pseudomonas spp. isolated from clinically af-
fected bovine mastitis. They showed a great antibacterial effect in the minimum inhibitory
concentration (MIC), minimum bactericidal concentration (MBC), disk-diffusion assays,
and biofilm inhibition. Additionally, Yadav et al. [257] demonstrated that the potential of
ciprofloxacin-encapsulated nanocarriers against clinical strains of E. coli and S. aureus is
dose-dependent (zone inhibition ranges from 11.6 to 14.5 mm and 15 to 18 mm when loaded
with doses of 0.5 mg to 2 mg/mL nanoparticle solution). For the treatment of E.coli-affected
mammary glands, various loaded nanoparticles have been found to be effective, includ-
ing ciprofloxacin-loaded nanoparticles, which showed an antibacterial effect in heifers,
screened from organized and unorganized farms in the Jammu region, India [258]; silver
nanoparticle-decorated quercetin [259]; non-agglomerated ZnONPs (zinc-oxide nanoparti-
cles) [260], gentamicin-and chloramphenicol-coated zinc oxide nanoparticles [261]; gold
nanoparticles (AuNPs) using plant extracts (Artemisia herba-alba and Morus alba), which
showed an antibacterial effect against multiple-drug-resistant E. coli [37]; and a nanohybrid
of ciprofloxacin (CIP)–Ag (silver)–TiO2 (titanium oxide)–chitosan with biocompatibility
with more than 93.08% of bovine mammary gland epithelial cells [256]. With the en-
lightenment of various important reports regarding the use of nanoparticles/ chitosan/
nanocarriers for the therapeutic management of bovine mastitis, there is a lot of documen-
tation from many authors with respect to the processing, effectiveness, and applications of
chitosan/nanoparticles, including Asli et al. [262], Breser et al. [263], Felipe et al. [264], and
Zhang et al. [265]. There is still a need to discover new, safe, and cost-effective nanoformu-
lations that can be available from the laboratory to clinical/field use, and this requires lots
of research, guidelines, and production at a larger scale.

6.2. Herbal Therapeutic Interventions for Bovine Mastitis

Conventional and alternative therapies, including homoeopathy, have a significant
role in veterinary medicine. In large animals, indications for homoeopathic treatment
include Downer cow syndrome and mastitis, and colic in equines [266]. Treatment of
clinical mastitis is, perhaps, the most common therapy in field conditions, and its response
can be complicated with multi-etiological causal agents, antibiotic residues and resistance,
and unavailability of broad-spectrum antibiotics in field conditions.

The clinical trials in Indian field conditions by various researchers on the effect of
galactagogue comprising Asparagus racemosus and a mixture of Leptadenia reticulate, As-
paragus racemosus, Foeniculum vulgarae, Glycerhiza spp., Cyperus rotundus, Lepidium sativum,
Cuminum cyminum, etc. have shown appreciable galactagogue efficacy [267,268]. A similar
study was conducted in the United Kingdom by Wheeler and Wait [269] with the collective
use of galactagogue and antibiotics in SCM cases, and it restored milk loss due to mastitis.
It was shown to increase milk production and restore pre-treatment lactation. Cure rates of
68.5, 78.2, and 91.1% (including 41.1, 71.0, and 71.4% bacteriological cure) were reported for
the intramammary infusion of the herbal preparations Injecta CI, An-Ru, and Shuang-Ding,
respectively, which were better than the cure rates obtained for penicillin and gentamicin
treatments [270].

Non-antibiotic approaches eliminate residue problems and antibiotic resistance, and
have become a topic of interest for public health and for research. Herbal preparations and
acupuncture have been attempted in several institutes in China [270]. Better results were
observed when administered intramammary along with chlorhexidine once daily. During
this period, initial work focused on the non-invasive and non-irritant properties of herbal
preparation. Another study with Injecta CI administered via intramammary infusion was
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compared with a penicillin–streptomycin-treated group. The injected CI had a cure rate of
74.1%, which covered bacteriologically diseased quarter in 43.5% (37/85) [270].

Hu et al. [271] studied the influence of herbal preparations on blood and milk phago-
cytes. Twenty-six herbal preparations considered as antipyretics in Chinese materia medica
were assessed in vitro to evaluate their impact on the phagocytic potential of neutrophils
labelled with 3ZP-labelled Staphylococcus isolated from bovine blood and milk. The active
preparation from Radix bupleuri, Folium hibisci, Herba houttuyniae, Flos chtysanthemi, Caulis
lonicerae, Radix stellariue, Herbasenecionisscandentis, and Floslonicerae increased phagocytosis
by over 35.0%, simulating milk neutrophil functions. Intramammary preparations derived
from herbal ingredients, such as An-ru prepared from Oleum Eucalyptz and Sbuang-ding
from Herbataraxuci and Herbaviolae, are effective in mastitis treatment [272], but cause irrita-
tion to the udder. Therefore, we suggest further cytotoxicity studies and optimizing the
dose before developing commercial intramammary products.

During the late 20th century, emphasis was placed on the immune potent properties of
herbal plants against bovine mastitis and a clinical trial by Chishti et al. [273] on 327 cows
and 493 buffaloes for the effect of immune potent herbal agents (Lasoni herbal powder;
Almuslim Herbal Research Corporation, Faisalabad, Pakistan) against sub-clinical mastitis
was performed. The herbal powder was not effective in the treatment of sub-clinical
mastitis.

Nisin has been used for its preservative properties in the food industry for decades.
It is an antimicrobial protein produced by the Lactococcus subspecies lactis, with lower
molecular weight. Recent advances in the production of pure nisin have re-evaluated its
use for pharmaceutical and veterinary purposes [274]. A wide range of anti-microbial
activity against Gram-positive bacteria has been shown by nisin, with little or no activity
against Gram-negative ones [275]. Nisin exhibits good potential as a therapeutic agent in
treating bovine mastitis and is strongly bactericidal towards mastitis pathogens. In one
of the studies conducted on intramammary infection, challenge infection of the teat was
performed with the pathogen and followed by three intra-mammary treatments at 12 h
intervals. High curative rates were achieved, with 66% for S. aureus, 95% for S. agalactiae,
and 100% for S. uberis [274]. However, no significant correlation was found between the
cure rate and the number of days of infection. Additionally, a significant reduction in
the somatic cell count was observed. Nisin is a peptide, rather than an antibiotic, having
a non-toxic effect with no residues, which makes it safe for consumption by consumers.
Oral care applications have actively been explored in the beagle dog model as a mouth
rinse [276]. The extensive sensitivity of Streptococcus and Staphylococcus species to nisin
offers great opportunities for topical infection and multiple drug-resistant systemic diseases
(MRSA).

Ethno-veterinary medicine in livestock management and rearing has been in dispute
for a long time. A substantial proportion of professionals in various fields have docu-
mented, valued, and studied the potential effectiveness of ethno-centrally derived plants
for traditional animal health care and practices in native communities. These medicines
have been used to treat livestock health disorders, primarily mastitis. In Bangladesh, a
study attempted to identify farmers’ use of ethnoveterinary medicines in the management
and rearing of livestock by Islam and Kashem [277]. Out of 32 EVMs (ethno-veterinary
medicine), the galactogogue effect was observed in dairy cattle by feeding Katanate (Ama-
ranthus spinosus) and Shiru (Leersia hexandra), and feeding Mashur (Lens esculenta) bran,
oil of Tishi (Linum usitatissimum), gum of tamarind, and Malbogh banana together with
straw. Another preparation named Mastilep (Glycyrrhiza glabra, 5 g; Curcuma longa, 2 g;
Cedrus deodara, 10 g; Paederia foetida, 5 g; and sulfur, 10 g, in gel base) was studied for its
efficacy as a supportive therapy in clinical mastitis [278]. Mastilep was applied topically
to the udder and teats along with parenteral antibiotics in 10 cows. Eight of the ten cows
(80%) recovered after the parenteral administration of antibiotics combined with intramam-
mary infusion. The recovery rates for intramammary antibiotics and the application of
Mastilep alone were 40% and 30%, respectively. A similar trial was conducted by Sharma



Vet. Sci. 2023, 10, 449 16 of 33

and co-workers [279] with Mastilep (Glycyrrhiza glabra, Curcuma longa, Eucalyptus globulus,
Cedrus deodara, Paederia foetida, and sulphur), and reported great results with controlled
infection irrespective of aetiological agent, increased milk production, and no re-occurrence
of clinical mastitis within 2 months. The efficacy of topical Mastilep in the case of subclinical
mastitis in crossbred cows was determined by Deepa et al. [280], and a significant (p < 0.05)
decrease in the somatic cell count during mid- and late lactation was observed. The effect
of Mastilep topical gel was assessed in small dairy units of the Khanapara region of Assam
and Meghalaya, and recovery rates of 88.3% and 88% in two other farms were found by
Nath and Dutta [281].

A possible remedial effect of Persicaria senegalense on sub-clinical bovine mastitis was
studied by Abaineh and Sintayehu [282]. A significant cure rate was observed in the
experimental group (0.77 kg leaf powder of Persicaria senegalense) against bacterial isolates
of S. aureus, C. bovis, C. albicans, and P. aeruginosa, and a negative control group. Similarly,
a survey was performed in the southern Rajasthan region for ethnoveterinary herbal
medicine during 1999–2001 by Takhar and Chaudhary [283]. Vernonia anthelmentica (Family;
Astaeraceae) seeds and their decotion with jaggery were found to be effective against all
udder disorders. Cistanche tubulosa (Orobanchaceae) whole-plant paste and Tachyspermum
ammi (Apiaceae; seed) were used for treatment against bovine viral mammillitis (BVM).

An aqueous extract of Ocimum sanctum L. showed immunotherapeutic potential
against SCM [284]. It showed a decreased total bacterial count with increased levels
of neutrophils and lymphocytes and enhanced phagocytic activity. Additionally, the
lysosomal contents of polymorphonuclear cells of milk in animals treated with the extract
were enhanced significantly. This result substantiated the medicinal herb’s therapeutic
effect and emphasized the potential of non-toxic substances for udder immunity. The leaves
of Hedera Helix containing alkaloids, flavonoids, glucoside, and organic acids have been
documented amongst 41 remedial plants to playa role in treating post-partum disorders in
cattle in Sardinia, Italy [285]. However, a single case remedy of Hedera Helix was published
in the same document. Additionally, the fluid extract of Spirea ulmaria and Astragalus
membranaceus against bovine sub-clinical mastitis was evaluated by Gianciti et al. [286].
The evaluation was performed on the basis of the presence of bacteria, SCC, and milk
production. The results were particularly effective against coagulase-negative Staphylococci
and significantly reduced quarter infection (16.7% vs. 30.2% and 37.5%, respectively, in
control and placebo groups). In the same year, an observation was made regarding the
activity of the selection component of Chinese herbal plants on blood flow stasis for dairy
cow mastitis [287]. Decoctions of red sage root (RSR, Radix salvia miltiorrhizae), giant
knotweed rhizome (GKR, Rhizoma polygoni cuspidati), chuanxiong rhizome (CXR, Rhizoma
chuanxiong), and safflower (SF, Flos carthami) were developed.

A study of the herbal plant Azadirachta indica’s response to mastitis at the cellular level
(expression of cytokine and respiratory burst activity of milk neutrophil) was performed
by De and Mukherjee [288]. The results showed a significant (p < 0.05) decrease in the total
bacteria count (TBC), somatic cell count (SCC), and milk neutrophil, and increased levels of
lymphocytes, hydrogen peroxidase, and superoxide ion. However, cytokines (IL-2 and IFN-
γ) were expressed normally in treated and normal healthy cows. This suggests the potential
of herbs in terms of anti-inflammation, anti-bacterial, and immuno-modulation. In the con-
secutive year, a study was performed on the therapeutic activity and immunomodulation
of Tinospora cordifolia against bovine sub-clinical mastitis by Mukherjee and co-workers, and
found similar results for the TBC, SCC, and level of IL-18 in udders to those obtained for
Azadirachta indica. Azadirachta indica has more than 135 bioactive compounds: isoprenoids
containing limonoids, protomeliacins, gedunin, azadirone, vilasinin, and C- secomeliacins,
such assalanin, nimbin and azadirachtin. These isoprenoids tend to have anti-bacterial
and anti-fungal activity [289]. Anti-proliferative xylooligosaccharides (4-O-methyl glu-
curonic acid substitution) from the extraction of xylans in Azadirachta indica were reported
by Sharma et al. [290]. They activate the intrinsic path way of apoptosis, indicating that
xylooigosaccharides could potentially be used as anti-proliferative compounds.
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The medicinal herb Houttuynia cordata Thunb, used to derive houttuynin sodium
bisulphate (HSB), α-hydroxyl-capryl-ethyl-sodium-sulphonate, is a product manufactured
by reacting sodium bisulphate with houttuynin for treating bovine clinical mastitis. It
was found to be effective against acute and sub-acute mastitis clinically and microbio-
logically. It has a mild inhibitory effect on streptococci and the withdrawal time is 12 h
post-treatment [291].

6.3. Role of Bioactive Compounds Presents in Herbal Remedies against Mastitis

There are potential herb extracts with antibacterial activity and protective ability
to inhibit LPS-induced cell death and inflammatory responses. The identification of the
bioactive compounds and their role in therapeutic measures against mastitis will provide an
alternative approach. With the help of advanced diagnostic aids and alternative therapeutic
approaches, one can control mastitis and associated antibiotic resistance.

Panya et al. [292] demonstrated the bioactive compounds in Clinacanthus nutans (Lin-
dau) using solvent fractionation, HPLC, and LC-MS/MS analysis. They revealed that
glyceryl 1,3-disterate (C39H76O5), kaempferol 3-O-feruloyl-sophoroside 7-O-glucoside
(C43H48O24), and hydroxypthioceranic acid (C46H92O3) had great potential against mastitis.
Yu et al. [293] demonstrated the anti-inflammatory effect of glyceryl 1,3-disterate (C39H76O5)
in LPS-stimulated macrophages by downregulating the expression of cyclooxygenase-2
(COX-2), inducible nitric oxide synthase (iNOS), and the inflammatory cytokinesinterleukin-
6 (IL6) and tumour necrosis factor alpha (TNF alpha). The potential increase in TNF-alpha
ultimately activates caspase, a reactive oxygen species (ROS) product that ultimately causes
cell apoptosis. Lopez-Lazaro et al. [294] demonstrated the effect of kaempferol on modu-
lating the anti-inflammation response via inhibiting NF-kB activity, strongly diminishing
ROS production in response to H2O2, and significantly increasing cell viability, suggesting
the role of kaempferol in apoptosis inhibition.

Morale-Ubaldo et al. [295] isolated and characterized the antibacterial compounds
from Larrea tridentate through HPLC techniques against multidrug-resistant bacteria associ-
ated with bovine mastitis. The results indicated that nor-3 demethoxy isoguaiacin can be
used as an alternative treatment for mastitis. It showed activity against the cell membrane
by repressing proteins of the ATP-binding cassette transport system, which causes bacterial
death [296].

The medicinal herb Houttuynia cordata was found to be effective against bovine acute
and sub-acute mastitis. Yang and Wang [297] new sodium houttuyfonate (Houttuynia
cordata) could inhibit the proliferation and promote the apoptosis of human ovarian cancer
A2780 cells. The mRNA expression of the apoptosis-related molecules Bcl2, Bax, VEGF, and
NF-κBp65 was detected by real-time PCR. The expressions of VEGF, Bcl-2, and NF-κBp65
in the group treated with neo houttuynia sodium decreased, and the expression of Bax
increased.

The anti-microbial effects of Aloe vera on bacteria associated with mastitis in dairy
cattle have been assessed by many authors in recent times, viz. Forno bell et al. [298,299].
Their study showed that Aloe vera extract disrupted the cell membranes, causing the
lysis of Staphylococcus aureus, E. coli, Streptococcus uberis, and MRSA due to the presence of
anthraquinones, such as aloin and aloe emodin.

Ocimum tenuiflorum L. has an essential volatile oil comprising phenols, terpenes, and
aldehydes that are mainly concentrated in the leaf. The compounds, including rosmarinic
acid, luteolin, and apigenin, were assessed for their phytochemical constituents by liquid
chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS),
and showed a significant reduction in the immune response in macrophages by inhibiting
the expression of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) induced by LPS.
They also decreased the LPS-stimulated expression of iNOS and COX-2 in a concentration-
dependent manner. They can be used as synergistic antibacterial compounds with standard
drugs in mastitis treatment [300]. Ocimum sanctum has a variety of constituents, such
as saponins, triterpenoids, flavonoids, and tannins. The methanol extract and aqueous
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solution of holy basil leaves cause a significant increase in the levels of IFN-γ andIL-4,
and percentages of T-helper cells and NK-cells; therefore, they have immunotherapeutic
potential in bovine sub-clinical mastitis. Reduced total bacterial counts and increased
neutrophil and lymphocyte counts with enhanced phagocytic activity were observed in
mastitic cattle administered an extract of Ocimum sanctum [301]. Mukherjee et al. [284]
demonstrated the in vivo efficacy of Ocimum sanctum, which revealed an increase in the
neutrophil, lymphocyte, and lysosomal enzyme contents of the milk polymorphonuclear
cells, thus enhancing mammary immunity.

7. Role of Immunization and Its Constraints

Immunization and improved managemental practices have traditionally been used as
the main preventive approaches against mastitis [16,302]. Commercially, mono (against
one pathogen) and polyvalent (against more than one pathogen) vaccines are available
against the pathogens causing mastitis, viz. ENVIRACORTM J-5 Vaccine (E. coli J5 mu-
tant bacterin) produced by Zoetis, Parsippany, New Jersey, USA, J-VAC®; Escherichia coli
Bacterin-Toxoid (E.coli mutant strain is the J-VAC) produced by Merial, Ingelheim am
Rhein, Germany, ENDOVAC; and the dairy coliform vaccine (bacterin-toxoid formulated
from a Re-17 mutant of Salmonella typhimurium) produced by Immvac Inc. Columbia, MO,
USA Vaccines against S. aureus are also available, such as Lysigin, produced by Boehringer
Ingelheim Animal Health, St Joseph, MO, USA and Mycoplasma bovis, e.g., Mycomune
bacterin, produced by AgriLabs, Inc. St. Bronson, MI, USA. On the other hand, polyvalent
vaccines include STARTVAC® (inactivated vaccine contains a mixture of E. coli J5 and
S. aureus (CP8) strains SP 140); Hipramastivac, which contains S. aureus (TC5 and TC8
strains) and E. coli (J5 strain), in addition to S. agalactiae, S. uberis, S. dsygalactiae, S. pyogenes,
P. aeruginosa, and A. pyogenes bacterins; and MastaVac (Staphylococcal enterotoxin Type C
mutant vaccine) [303]. Zhylkaidar et al. [304] determined the effectiveness of polyvalent
vaccines against Staphylococci, Streptococci, Escherichia, Klebsiella, Diplococci, and Protea. Out
of 600 immunized cows, 9 (1.5%) and 13 (2.3%) animals developed subclinical and clinical
mastitis, respectively. The antibodies in the blood serum exceeded the initial indicator by
30 to 40 times. The milk yield in vaccinated cows was at the same level as their previous
lactation. However, the efficacy of two commercial vaccines (Startvac®, developed by
HIPRA Spain, and Mastivac®, Laboratorios Ovejero, Spain) was analysed by Tashakkori
et al. [305] and they did not find any significant changes in the incidence of clinical mastitis,
somatic cell count, and anti-oxidants. The insufficient response to the vaccine could be
attributed to many factors viz. age, health status, the invading pathogen and its strain, and
variations in immune responses among individuals because of environmental and genetic
variations [28].

Nanotechnology has been used and investigated by Nagasawa et al. [180] in the form
of a nasal mastitis vaccine based on a conjugated cCHP nanogel and inactivated Staph.
aureus antigens, which could release protective levels of anti-Staph. aureus IgA. The DNA
vaccine encapsulated in chitosan NPs (pPCFN-CpG-CS-NPs) Trueperella pyogenes (Arcanobac-
terium pyogenes) was investigated in a mouse model. The data showed that it could provide
protection against challenge with mastitis-causing pathogens. However, no data are avail-
able on its use and protection against intramammary invasions [306]. Quiroga et al. [307]
assessed the efficacy of a novel vaccine against mastitis using proteoliposomes obtained
from E. coli in a murine model of coliform mastitis. They demonstrated that the proteoli-
posome vaccine was safe, immunogenic, and effective against an experimental model of
E. coli mastitis, decreasing the bacterial count and tissue damage. This proteoliposome
vaccine could be used as a potential new tool for the prevention of mastitis.

Zeng et al. [308] evaluated the immunogenicity of KLH-Ent conjugate vaccine (Keyhole
Limpet Hemocyanin-Enterobactin) in Holstein dairy cows at drying off (0 days) and 21
and 42 days after drying off. It significantly induced serum and milk Ent-specific IgG
and IgG2 antibodies post-vaccination at calving and during early lactation at 14 and 30 d
in milk. Based on its safety by monitoring rectal body temperature and injection site
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reactions, the KLH-Ent conjugate vaccine is safe for dairy cows. Similar results were
obtained in the study by Wang et al. [309], with significantly increased (up to 4096-fold)
anti-Ent IgG antibody titres in experimental rabbit serum. Additionally, Enterobactin is
utilized by the Enterobacteriaceae family; it is crucial to monitor the effect of Ent-specific
antibodies on the microbiota community composition in vaccinated and unvaccinated
cattle. As reported by Zeng et al. [308], no significant difference (p> 0.05) in the faecal E.
coli counts in CFUs/gram of faeces and in microbial community structures and diversity
was foundbythe16S rRNA gene sequencing of faecal microbiota between vaccinated and
control groups. These observations encourage the prevention of clinical mastitis, especially
during the first 30 days of lactation, caused by Coliform bacteria.

A brief summary of key features of vaccines against mastitis are presented in Table 2.

Table 2. Brief summary of key features of vaccines against mastitis.

Key Features of Coliform Vaccine Trails
Vaccine Antigen Efficacy Knowledge Gap References

Escherichia coliJ5 bacterins Decreased coliform mastitis
severity in field experiments

Variable effect on incidence of
cases, unknown mechanism [310]

Salmonella Re-17 bacterin toxoid Decreased severity in field
experiment Unknown mechanism [311]

E. coli J5 bacterin with killed
Staphylococcus aureus (StartVac,

Hipra)
Less severity in field cases Unknown mechanism [27]

Whole E. coli (P4), intramammary
booster with bacterial extract

Reduction in severity, likely
independent of antibodies, related

to Th17 response

Test for heterologous protection
not performed [191]

Klebsiella recombinant YidR Reduced incidence of Kleibsiella
mastitis

Unknown mechanism and little
antibody response to whole

bacteria
[312]

Key Features of Staphylococcus Aureus Vaccine Trials
Vaccine Antigen Efficacy Knowledge Gap References

Protein A (SpA)
Spontaneous cure of Staph. Aureus

infection with experimental
challenge

Mechanism not identified, no
field trial [313]

Killed vaccine, “in vivo” antigen
and dextran sulfate Severity of infection low Mechanism not identified [314]

Bacterial lysate (5 strains) Lysigin
(Boehringer Ingelheim Vetmedica,

Lyon, France)

Reduction in intramammary
infection Variable results [315]

Recombinant IsdB and IsdH
IgG2 antibodies and

antigen-specific
lymphoproliferation

Protection study in cows not
documented [316]

Slime on killed bacteria, StartVac
(Hipra)

Reduction in bacterial shedding
in milk Mechanism not identified [317]

Some of the effective constraints in the defence mechanism of mammary glands have
been identified, such as the inhibitory effects of fat and casein on phagocyte functions,
and the excellent growth medium provided by milk for many bacterial pathogens [318].
Phagocytosis by neutrophils in mammary glands is arguably the major defence mechanism
against pathogens, and vaccination can improve opsonophagocytosis [319]. There are
arguments that mastitis does not induce the production of immune memory cells. Addi-
tionally, subclinical mastitis may not be able to induce an immune response in some cases
because the intensity of the stimulus by antigen is too low [320]. It has been proposed
that the antigenic effect of chronic S. aureus infection on the memory type of the immune
response in bovine mammary glands is minimal. The persistence of S. aureus infection may
result, in part, from the suboptimal stimulation or immunosuppression of the mammary
immune system. Live vaccines tend to elicit a different immune response, mainly an
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IgG2 antibody response and an amplified influx of neutrophils into the mammary gland,
whereas killed S. aureus administered with oily adjuvants stimulates the production of
predominantly IgG1 antibodies and results in no change in neutrophil recruitment at the
onset of an experimental infectious challenge [321]. It is clear that natural IMI itself does
not elicit complete protection against reinfection, so for effective immunization, vaccines
need to improve the natural immune response. Vaccination with recombinant proteins
elicits neutralizing antibodies, whereas natural infection does not. This can be beneficial
for definitive diagnosis between vaccinated and naturally infected dairy cattle [322].

8. Conclusions

There is an urgent need to implement effective control and managemental strategies
for mastitis in dairy cattle to improve dairy economics by ensuring proper quality and
increasing the quantity of milk. A multipronged and holistic approach involving all stake-
holders, including the dairy farm workforce, pharmaceutical industry, veterinary services,
rapid and sensitive diagnostic tests at an affordable price, and government incentives is
required to control it. Various ethnoveterinary and advanced natural therapies, such as
using plant extracts, herbs, chitosan, nanogels, etc., could be a panacea for conventional
antibiotic therapy, which poses public health and food security risks, such as the emergence
of antibiotic-resistant bacteria, antibiotic residues in the food chain, and environmental
issues. With the concept of the One Health approach, alternative therapeutic protocols
should be promoted and popularized to reduce or replace the use of antibiotics.
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Concentrations in Cows with Subclinical Mastitis Caused by Coagulase-Negative Staphylococci. J. Dairy Sci. 2017, 100, 9674–9680.
[CrossRef]

91. Khazandi, M.; Al-Farha, A.A.B.; Coombs, G.W.; O’Dea, M.; Pang, S.; Trott, D.J.; Aviles, R.R.; Hemmatzadeh, F.; Venter, H.; Ogun-
niyi, A.D.; et al. Genomic Characterization of Coagulase-Negative Staphylococci Including Methicillin-Resistant Staphylococcus
Sciuri Causing Bovine Mastitis. Vet. Microbiol. 2018, 219, 17–22. [CrossRef]

92. Momtaz, H.; Tajbakhsh, E.; Rahimi, E.; Momeni, M. Coagulase Gene Polymorphism of Staphylococcus Aureus Isolated from
Clinical and Sub-Clinical Bovine Mastitis in Isfahan and Chaharmahalva Bakhtiari Provinces of Iran. Comp. Clin. Path 2011, 20,
519–522. [CrossRef]
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