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Abstract: Mycoplasma bovis is associated with several clinical syndromes of cattle. Currently, limited
information is available on the sensitivity (Se) and specificity (Sp) of serological assays used for
the detection of M. bovis-specific antibodies. Consequently, it is difficult to critically evaluate the
outcomes of studies that use these assays. Therefore, the current study used bovine sera sourced from
M. bovis exposure studies from three countries to estimate the Se and Sp of two commercial M. bovis
enzyme-linked immunosorbent assays (ELISA), BIO K302 and BIO K260, and Western blotting.
Western blotting had the highest Se estimate of 74% (95% confidence interval (CI): 16–98%), compared
to the BIO K302: 47% (95% CI: 10–87%) and BIO K260: 28% (95% CI: 1–92%). However, for Sp, the BIO
K302: 96% (95% CI: 87–99%) and the BIO K260: 100% (95% CI: 93–100%) out-performed Western
blotting: 88% (95% CI: 56–98%). Western blotting was the best assay for detecting seroconversion,
correctly identifying 61% (95% CI: 29–86%) of exposed animals compared to 35% for BIO K302
(95% CI: 21–54%) and 8% for BIO K260 (95% CI: 0–87%). While none of the methods assessed had
high Se and Sp, the availability of these estimates will aid in the interpretation of studies that use
these assays. The results of this study highlight the difficulties encountered when using serology to
detect exposure to M. bovis in cattle.
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1. Introduction

Mycoplasma bovis is an important pathogen of cattle which has been associated with a number
of clinical conditions in calves and has increasingly been recognised as a contributor to respiratory
disease in older cattle and bison, identifying it as an emerging bovine pathogen [1–5].

Serological methods such as enzyme linked immunosorbent assays (ELISA) and Western blotting
enable the retrospective detection of pathogen specific antibodies in a host serum sample following
exposure. A critical element in the development of these methods is the identification of an antigen(s)
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specific for the organism of interest to which the host generates specific and detectable immune
responses. The antigen must be highly conserved among different isolates and strains if the assay
is to have broad utility. The identification of suitable antigens for M. bovis serological studies has
proven problematic due to antigenic variation among different isolates. Western blotting studies
have identified the variable surface proteins (Vsps) as the immunodominant antigens recognised by
the host humoral response during M. bovis infections [6–8]. In addition, it has been demonstrated
that the antibody reactivity of three Vsps (VspA, VspB and VspC) was independent of the clinical
manifestation, the geographical origin of the M. bovis isolate, the mode of infection, and the animal
history [8]. The Vsps, or at least some members of the Vsp family, appear to be persistently expressed
by M. bovis during infection and the immunodominant domains are highly conserved among strains
and isolates [8]. However, the genes encoding the major immunological determinants have been shown
to be subject to high frequency phase and antigenic variation [9]. This variation has the potential
to adversely affect the reliability of diagnostic assays that utilise Vsp antigens [10]. Despite these
concerns, it is possible that selected motifs of the Vsps could be useful for the development of M. bovis
sero-diagnostic assays for epidemiological studies.

Approximately 80% of the VspA amino acid sequence is composed of two domains of repeated
sequence, separated from each other by 22 amino acid blocks. The first block, localised at the N-terminal
region, is composed of two distinct motifs, designated RA1 and RA2, while the second block, localised at
the C-terminal region, contains three repeated motifs, RA3, RA4.1, and RA4.2 [8]. Homologues of the vsp
gene were detected in 250 field isolates of M. bovis from France, Germany, Italy, Spain, and Switzerland,
and all isolates were reported to contain multiple copies of the sequence encoding the RA1 motif [11].
These findings supported the conclusions of a previous study [8] and provided further evidence that
the conserved domains within the Vsp family of proteins of isolates and/or strains could be used to
improve M. bovis serological assays. The 106-amino acid RA1 motif within VspA contains PGENKT
repeat elements and has been shown to be detected by antibodies induced following infection of cattle
with M. bovis [6,8,12,13], suggesting the motif may be a useful candidate for inclusion in immunological
assays. The immunodominant Vsp antigens of M. bovis can vary greatly both between and within
strains and isolates and also exhibit high frequency phase variable expression [11]. Despite this,
the RA1 motif of VspA has the potential to be a useful antigen for Western blot comparisons as it has
been shown to be highly conserved and to elicit antibody responses detectable in the sera of cattle
involved in outbreaks of M. bovis associated disease from geographically diverse regions [8,11].

Several studies have reported the use of non-commercial ELISAs to evaluate serological responses
of cattle and related species in exposure trials [14–20]. Many of these assays used whole cell M. bovis
antigen preparations, which can make comparisons of studies problematic. The potential variability in
antigen expression by M. bovis isolates could adversely affect assay reproducibility and repeatability
when antigens are prepared from whole cells [9].

Consequently, recent studies have attempted to identify antigens that could be over-expressed
using recombinant DNA technology [21–24]. Of these antigens, only the assay using the MilA
antigen [22] has been evaluated in a large number of field samples and had sensitivity (Se) and
specificity (Sp) estimates reported [25]. Commercially available ELISAs with standardised production
methods and standardised controls offer a potential solution to the variability between serological
assays as all laboratories can access the same technology platform. However, these assays are still
dependent on the test antigen(s) being universally expressed by the pathogen of interest. Typically,
the details on the antigen(s) used in commercial ELISA are held as proprietary information. Users of
these assays must accept the assumption that the population of interest was exposed to a M. bovis
strain(s) that expresses the antigen(s) used in the ELISA.

Currently, there are few commercially available serological assays for the detection of antibodies
against M. bovis. Several studies have reported serological data with respect to M. bovis using various
non-commercial assays, making it difficult to compare studies [21–24]. For this reason, the current study
has focused on commercially available assays, the BIO K302 and BIO K260, where standardisation of
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production and quality control processes, combined with general availability, could enable researchers
to generate more comparable datasets. Two previous studies have estimated the Se and Sp of the BIO
K302 assay, with one study also including the BIO K260 assay [25,26].

The aim of the current study was to estimate the Se and Sp of two commercially available M. bovis
ELISA kits in parallel with Western blotting using panels of bovine reference sera from M. bovis
experimental exposure studies from three countries. The capacity of the ELISA kits and Western
blotting to detect seroconversion to M. bovis was also evaluated.

2. Materials and Methods

2.1. Mycoplasma Culture and DNA Isolation

The M. bovis type strain PG45 in frozen modified Frey’s broth (MFB) was thawed on ice, streaked
onto a modified Frey’s agar plate, and incubated at 37 ◦C in a 5% CO2 atmosphere for three to five
days. A well isolated colony with typical Mycoplasma morphology was excised from the plate and
used to inoculate 3 mL of MFB and the broth incubated for 48 h at 37 ◦C. The cells were recovered by
centrifugation at 5500× g for 1 h at room temperature. The supernatant was aspirated, and the cell pellet
washed twice with phosphate buffered saline (PBS). Genomic DNA was extracted from the cell pellet
using the DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions, quantified using a Nanodrop® ND-1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and stored at −20 ◦C until required.

2.2. Amplification and Cloning of the VspA RA1 Motif

The vspA gene fragment encoding the RA1 motif [8] was amplified from M. bovis genomic DNA.
The PCR reaction contained 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTPs,
4 µg bovine serum albumin, 1 U Platinum® Taq DNA polymerase (ThermoFisher Scientific), 8 pmol of
each of the oligonucleotide primers vspA-F1 (5′-GTA GCA GCT AAA TGT GGT GAG ACC-3′) and
vspA-R2 (5′-GTC ATC ATG CGG AAT TCT TGG-3′), and 25 ng of genomic DNA. The PCR cycling
conditions utilised were: 94 ◦C for 3 min; 94 ◦C for 10 s, 54 ◦C for 15 s, and 72 ◦C for 30 s, 35 cycles;
72 ◦C for 2 min. The PCR amplicons were analysed by agarose gel electrophoresis through 1% (w/v)
agarose gel at 7 V cm−1 for 1 h in 1× TAE buffer (40 mM Tris-HCl pH 7.6, 20 mM acetic acid and 1 mM
EDTA) and visualised by GelRedTM staining and ultraviolet transillumination. The vspA amplicon was
cloned into the pET SUMO™ plasmid vector using the ChampionTM pET-SUMO Protein Expression
System (Thermo Fisher Scientific) as described by the manufacturer. The sequence and orientation
of the vspA_RA1 amplicon in the pET-SUMO vector was confirmed using Big Dye Terminator
v3.1 (Thermo Fisher Scientific, Waltham, MA, USA) sequencing according to the manufacturer’s
instructions. The sequencing data were analysed using the DNASTAR™ suite of programs (DNASTAR,
Madison, WI, USA).

2.3. Expression of Recombinant Polypeptides

The SUMO vspA_RA1 fusion polypeptide (S-vspA_RA1) and control polypeptide SUMO-CAT
were expressed using the plasmids pES_vspA_RA1-9 and pET SUMO/CAT (Thermo Fisher Scientific),
respectively. The plasmids were used to transform chemically competent Escherichia coli One Shot® BL21
(DE3) cells (Thermo Fisher Scientific) and express the polypeptide of interest following the manufacturer’s
instructions. The bacterial cells were harvested by centrifugation at 5500× g for 10 min at 4 ◦C.
The supernatant was carefully removed and discarded. The cell pellet was stored at−20 ◦C until required.

The frozen cell pellet was thawed on ice and suspended in 5 mL of cold E. coli Lysis Buffer® (50 mM
KH2PO4, pH 7.8, 400 mM NaCl, 100 mM KCl, 10% glycerol, 0.5% Triton X-100, 10 mM imidazole) with
gentle agitation. Lysozyme was added to a final concentration of 250 µg mL−1 and benzonase nuclease
to a final concentration of 5 U mL−1, and the mixture incubated at room temperature for 30 min with
vigorous shaking. Following three freeze/thaw cycles, extracts were clarified at 5500× g for 10 min at
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4 ◦C. The supernatant was carefully aspirated, and the polypeptide of interest purified using the Ni-NTA
Spin-Kit (QIAGEN) according to the manufacturer’s instructions and stored at−20 ◦C until required.

2.4. SDS-PAGE and Western Blotting

Protein samples of interest were prepared for SDS-PAGE analysis by mixing with an equal volume
of sample reducing buffer (62.5 mM Tris-HCl pH 6.8, 10% glycerol, 2% (w/v) SDS, 6 mM dithiothreitol,
0.05% (w/v) bromophenol blue). The sample was gently vortexed, heated at 95 ◦C for 5 min,
and then briefly centrifuged before being loaded onto the SDS-polyacrylamide gel. Electrophoresis was
performed using a 0.75 mm thick 4% polyacrylamide stacking/10% polyacrylamide resolving gel in
a Mini-PROTEAN™ Tetra Cell Electrophoresis Module (Bio-Rad Laboratories, Hercules, CA, USA)
according to the manufacturer’s instructions. Following electrophoresis, the resolved polypeptides
were transferred onto a nitrocellulose membrane for Western blot analyses using a mini-blot transfer
apparatus (Bio-Rad Laboratories) according to the manufacturer’s instructions. The nitrocellulose
membranes were blocked for 1 h at room temperature whilst shaking in blocking TBST buffer (20 mM
Tris, 150 mM NaCl, 0.1% v/v Tween 20) containing 5% (w/v) skimmed milk powder (TBST-B).
Primary antibodies were diluted in TBST-B and incubated overnight, with gentle agitation, at 4 ◦C,
and the membranes washed three times in cold TBST for 5 min. Membranes were then incubated
for 1 h at room temperature with shaking in the secondary antibody in TBST-B. The membranes
were subsequently washed three times with cold TBST for 5 min. Antibody binding was detected
using chemiluminescence (Pierce ECL Plus Western Blotting Substrate, Thermo Fisher Scientific) and
radiographic film using a 10 min exposure time.

2.5. Antibodies and Bovine Sera Used in This Study

2.5.1. Monoclonal Antibodies:

The reactivity of the expressed S-vspA_RA1 was assessed with monoclonal antibodies that were
known to bind to various M. bovis Vsp proteins (Supplemental file Table S1).

2.5.2. Canadian Cattle Sera

Bovine sera from Canada were included in the study. These sera were sourced from six to eight
month old beef calves (n = 10) from a farm in southern Saskatchewan as part of a M. bovis experimental
exposure study [17]. The immunoreactivity of the Canadian serum samples has previously been
reported as negative or positive (further classified as having low or high reactivity) for the M. bovis
antibody using a whole cell ELISA (Table 1) [17]. Samples were collected immediately prior to M. bovis
exposure (Day 0) and 68 days after exposure (Day 68). Nine Day 68 samples were available for the Se
analyses and five Day 0 samples for the Sp analyses. Paired serum samples from four animals were
used to evaluate seroconversion with the two commercial ELISAs and the Western blot assay.

2.5.3. English Cattle Sera

Bovine serum samples from the Animal and Plant Health Agency (APHA) in England were also
included in this study. The sera were collected from calves (n = 5) sourced from a farm reported to be
free from pathogens commonly associated with bovine respiratory disease, including mycoplasmas.
The calves were a dairy-cross breed and were five to seven weeks of age. The calves were challenged
with a known pathogenic strain of M. bovis. Most of the samples included in the current study were
from two animals experimentally exposed to M. bovis and one animal that remained unexposed.
Blood samples were collected from the calves prior to exposure (Day 0) and on Day 7, Day 14, Day 21,
and Day 28 after exposure. Prior to the current study, the Day 0 and Day 28 samples had been tested
using an in-house whole cell ELISA (Table 2) [27]. In addition, serum samples from two other calves
were included in the current analyses: a ‘positive control’ and a ‘cut-off control’ used by the APHA
for the interpretation of the in-house whole cell M. bovis ELISA. The Day 28 samples from the two
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exposed calves, positive control, and cut-off control samples (used to define the minimum reactivity of
a positive sample) were included in the Se analyses of the two commercial ELISAs and the Western
blot assay (n = 4). The Day 0 samples from the exposed and unexposed calves and the Day 28 sample
from the unexposed calf were used for the Sp analyses (n = 4). The sequentially collected samples from
the exposed and unexposed animals were used to evaluate the timing of seroconversion to M. bovis
in the Western blot assay, while the Day 0 and Day 28 paired samples from the two exposed animals
were used in the seroconversion analysis of the three tests compared in this study.

2.5.4. Australian Cattle Sera

Paired serum samples from 35 Australian calves collected during an M. bovis exposure trial (five
unexposed and 30 exposed) [22], were used in the current study. The sera were obtained from male
Friesian-cross calves which were free of M. bovis prior to experimental infection, as determined by
culture and quantitative real-time PCR of nasal and conjunctival swabs [28]. The serum samples
were collected on the day of M. bovis exposure (Day 0) and 24 days after exposure (Day 24) [22].
After collection, the serum samples were analysed for M. bovis-specific antibodies using the MilA-based
ELISA and designated as either positive or negative (Table 3) [22]. The Day 24 sera from the 30 exposed
calves were used for the Se analyses of the two commercial ELISAs and the Western blot assay.
All 35 Day 0 sera and the Day 24 sera from the five unexposed calves were used for the Sp analyses
(n = 40). The paired sera from the 30 exposed calves were used in the seroconversion analyses of the
three tests compared in this study.

2.5.5. Control Sera from Commercial Serological ELISA Assays

A total of 18 bovine control sera from commercially available M. bovis serological ELISA kits
(BIO K302 and BIO K260) and the pentavalent bovine respiratory pathogen serological ELISA kit (BIO
K284) were used in this study (Bio-X Diagnostics, Jemelle, Belgium). Positive and negative control
sera were available from three batches of the BIO K302 assay (Batch numbers: MYC14C04, MYC13K26,
MYC13J16), and four batches of the BIO K260 assay (Batch numbers: SMYC14C04, SMYC13K26,
SMYC13J16, SMYC09I28). Positive control sera were available for four batches of the BIO K284 assay
(Batch numbers: IBRPM12F04, IBRPM12K08, IBRPM12F28, IBRPM09L01).

2.6. Commercial ELISA Assays

The bovine serum samples used in this study were tested using the BIO K302 and BIO
K260 ELISAs according to the manufacturer’s instructions (Bio-X Diagnostics). The ELISA validation
and interpretation were performed as recommended by the manufacturer. Briefly, the BIO K302 ELISA
was used to classify samples as either negative or positive for antibodies specific for an M. bovis
recombinant antigen, while the BIO K260 ELISA was used to categorise samples semi-quantitatively
(0, +, ++, +++, ++++, or +++++) with respect to the concentration of antibodies specific for an M. bovis
recombinant antigen. In the current study, the B260 ELISA results are reported as 0, 1, 2, 3, 4, and 5,
which correspond to the 0, +, ++, +++, ++++, and +++++ categories, respectively. In some analyses,
the results from the BIO K260 were dichotomised, with “0” deemed negative, and samples categorised
as “1” or higher deemed positive. The identity of the antigen(s) used in these indirect ELISAs is held as
propriety knowledge, but the manufacturer discloses that it is a recombinant antigen expressed in E. coli.

2.7. Western Blot Analyses with the S-vspA_RA1 Polypeptide

The S-vspA_RA1 polypeptide was transferred onto a nitrocellulose membrane and blocked as
described above. The membrane was cut into 3 mm strips. Each strip was probed, washed, and developed
with the bovine serum sample of interest diluted 1:100 and the secondary anti-bovine IgG-HRP antibody
diluted 1:20,000, as described above. Samples which had no observable reactivity on the Western blot were
deemed negative. Samples with detectable reactivity on the Western blot were deemed positive.
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2.8. Detection of Seroconversion to M. bovis

To assess the capacity of each assay to detect a change in serological status with respect to M. bovis,
the following criteria were applied. Only animals with a negative test result for their Day 0 sample
were included in the analyses for each assay. For the BIO K302 assay, if the post-exposure sample was
deemed to be positive according to the manufacturer’s instructions, the animal was considered to have
seroconverted. For the BIO K260 assay, if the post-exposure sample was categorised as “++” or higher
according to the manufacturer’s instructions, the animal was considered to have seroconverted. If the
post-exposure sample generated an observable reaction, it was deemed to be positive and the animal
was considered to have seroconverted.

2.9. Onset of Detectable Antibodies to M. bovis Post-Exposure

The S-vsp_RA1 Western blot assay was used to evaluate the onset of a detectable serum antibody
response using the sera from the English cattle. The samples collected from each animal on Day 0,
Day 7, Day 14, Day 21, and Day 28 after exposure to M. bovis were used in this analysis. The samples
were deemed negative or positive as described above.

2.10. Statistical Methods

All data were managed using the statistical package Stata/SE 12.1® (Statacorp, College Station,
TX, USA). Test Se and Sp and associated 95% confidence intervals (CI) were estimated, adjusting
for clustering by source (Canada, England and Australia). As the control samples were sourced
from the commercial ELISA kits, how they were generated is unknown, and it was hypothesised
that inclusion of these samples was likely to bias the Se and Sp estimates. Therefore, the Se and Sp
estimates were calculated following the removal of the Bio-X Diagnostics control samples from the
datasets. The proportions of animals that were initially seronegative, and that were exposed and then
seroconverted using the BIO K302 ELISA, BIO K260 ELISA, and the Western blot assay were estimated,
again adjusting for clustering by source (Canada, England, and Australia).

3. Results

3.1. Expression of the vspA-RA1 Motif

The PCR yielded an amplicon of approximately 300 bp in length and the amplicon was cloned
into the pET-SUMO vector. Sequencing of the plasmid, pES_vspA_RA1-9, revealed that the PCR
amplicon was 306 bp in length. The vspA-RA1 motif encoded by the reference sequence of the M. bovis
PG45 type strain encodes 10 PGENKT repeat units, while the amplicon generated in this study encoded
eight PGENKT repeat units [29]. Otherwise, the nucleotide sequence of the vspA-RA1 amplicon was
identical to that of the M. bovis PG45 type strain reference sequence (data not shown).

The nucleotide sequence analysis confirmed the in-frame cloning of the SUMO fusion
prolypeptide and the vspA_RA1 reading frames (data not shown). The fused SUMO-vspA_RA1 open
reading frame was 675 bp in length and was predicted to encode a 225 amino acid polypeptide with an
estimated molecular mass of 25 kDa. Following expression and metal affinity chromatography, a highly
pure polypeptide with a molecular mass of 35–37 kDa was evident on SDS-PAGE gels. This polypeptide
was considered to be the SUMO polypeptide fused to the vspA_RA1 motif (S-vspA_RA1).

3.2. Immunoreactivity of the S-vspA_RA1 Recombinant Polypeptide

To compare the immunoreactivity of the S-vspA_RA1 recombinant polypeptide to the RA1 motif
of native VspA, Western blot analyses were conducted using three VspA-reactive MAbs and two
MAbs that bind to other M. bovis Vsps. Two of these antibodies, MAb_4D7 and MAb_6E5 [7], reacted
with the S-vspA_RA1 recombinant polypeptide (Figure 1). In contrast, MAb_1E5 [7] did not show any
reactivity with the recombinant protein (Figure 1). This result was expected as MAb_1E5 is reactive with
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an epitope in the C-terminal region of VspA, whereas the RA1 motif is located at the N-terminus of the
protein [8,13]. The reactivity with MAb_4D7 and MAb_6E5 confirmed that the expressed polypeptide
contained the VspA RA1 motif. The MAbs, MAb_2A8 [7] (data not shown) and MAb_9F1 [30], which do
not bind VspA epitopes, did not react with the S-vspA_RA1 recombinant protein (Figure 1).
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Lane 1, MAb_1E5; Lane 2, MAb_9F1; Lane 3, MAb_4D7; Lane 4, MAb_6E5. The 100 kDa, 50 kDa,
37 kDa, 25 kDa, and 20 kDa molecular markers (kDa) are shown.

To assess whether the MAbs cross-reacted with the SUMO component of the fusion polypeptide,
a second Western blot was performed with a SUMO-chloramphenicol acetyl transferase (SUMO-CAT)
fusion protein produced in the same manner as the S-vspA_RA1 fusion protein. No immunoreactivity
was detected between the SUMO-CAT fusion protein and these MAbs (data not shown).

3.3. Reactivity of Canadian Cattle Sera

• BIO K302 ELISA: All Day 0 samples (n = 5) from the Canadian cattle tested negative in the BIO
K302 ELISA (Table 1), while seven of the nine Day 68 samples from animals exposed to M. bovis
tested positive in this assay (Table 1).

• BIO K260 ELISA: All Day 0 samples (n = 5) from the Canadian cattle tested negative in the BIO
K260 ELISA (Table 1), while six of the nine Day 68 samples from animals exposed to M. bovis
tested positive in this assay (Table 1).

• Western blot: The Day 0 serum samples from Canadian cattle (n = 5) had varying reactivity
with the S-vspA_RA1 recombinant polypeptide (Table 1). Three of the five Day 0 samples
tested negative by Western blot, while the other two samples tested positive (Table 1).
The Day 68 samples (n = 9) were reactive with the S-vspA_RA1 recombinant polypeptide and
were deemed to be positive (Table 1).

Table 1. The reactivity of Canadian cattle sera in the BIO K302 (B302), BIO K260 (B260), and Western
blot (WB) Mycoplasma bovis serological assays. Serum was collected on Day 0 prior to and on Day 68
after experimental exposure to M. bovis. The results are shown as negative (Neg) or positive (Pos).

Serological Assay

B302 B260 1 WB wcE 2

Animal Day 0 Day 68 Day 0 Day 68 Day 0 Day 68 Day 0 Day 68

VIDO18 Pos Pos (5) Pos Pos (H)
VIDO19 Neg Neg Neg (0) Neg (0) Neg Pos Neg Pos (L)
VIDO20 Neg Pos Neg (0) Pos (2) Pos Pos Neg Pos (H)
VIDO21 Neg Neg Neg (0) Neg (0) Neg Pos Neg Pos (L)
VIDO25 Pos Pos (5) Pos Pos (H)
VIDO26 Pos Neg (0) Pos Pos (L)
VIDO29 Pos Pos (4) Pos Pos (H)
VIDO30 Neg Pos Neg (0) Pos (3) Pos Pos Neg Pos (H)
VIDO34 Pos Pos (3) Pos Pos (H)
VIDO38 Neg Neg (0) Neg Neg

1 The categorical values assigned to each sample are shown in parentheses. 2 The reactivity of serum samples tested
using a M. bovis whole cell ELISA (wcE) as previously reported [17]. Positive samples were designated as either
high (H) or low (L) reactors.
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3.4. Reactivity of English Cattle Sera

• BIO K302 ELISA: The Day 0 and Day 28 samples from the unexposed animal and the Day 0 samples
from the two exposed animals tested negative in the BIO K302 ELISA (Table 2). Only one of the
Day 28 samples from the two exposed animals tested positive (Table 2). The “cut-off control” and
the “positive control” tested negative and positive, respectively (Table 2).

• BIO K260 ELISA: The Day 0 and Day 28 samples from the unexposed animal and the Day 0 samples
from the two exposed animals tested negative in the BIO K260 ELISA (Table 2). Only one of the
Day 28 samples from the two exposed animals tested positive (Table 2). The “cut-off control” and
the “positive control” tested negative and positive, respectively (Table 2).

• Western blot: The immunoreactivities of the English cattle sera with the S-vspA_RA1 polypeptide
from the two animals before and after exposure to M. bovis were consistent with the results of
an in-house ELISA, with the Day 0 samples testing negative and the Day 28 samples testing
positive (Table 2). The two control samples used in the in-house ELISA were both reactive in the
Western blot assay and were deemed positive. Neither the Day 0 nor the Day 28 sample from the
unexposed animal reacted with the S-vspA_RA1 polypeptide (Table 2).

Table 2. The reactivity of English cattle sera in the BIO K302 (B302), BIO K260 (B260), and Western blot (WB)
Mycoplasma bovis serological assays. Serum was collected from animals, prior to, Day 0, and after, Day 28,
experimental exposure to M. bovis. The results are shown as negative (Neg) or positive (Pos).

Serological Assay

B302 B260 1 WB wcE 2

Animal Day 0 Day 28 Day 0 Day 28 Day 0 Day 28 Day 0 Day 28

APHA370 3 Neg Neg Neg (0) Neg (0) Neg Neg Neg Neg
APHA304 4 Neg Neg Neg (0) Neg (0) Neg Pos Neg Pos
APHA339 4 Neg Pos Neg (0) Pos (1) Neg Pos Neg Pos

C_Cont 2 Neg Neg (0) Pos Pos
P_Cont 2 Pos Pos (4) Pos Pos

1 The categorical values assigned to each sample are shown in parentheses. 2 The reactivity of serum samples tested
using a M. bovis whole cell ELISA (wcE) as previously reported whole cell ELISA [27]. Cut-off Control (C_Cont) and
Positive Control (P_Cont) samples used in the wcE. 3 Animal not exposed to M. bovis. 4 Animal exposed to M. bovis.

3.5. Reactivity of Australian Cattle Sera

• BIO K302 ELISA: All samples (Day 0 and Day 24) from the group (n = 5) that were not exposed to
M. bovis tested negative in the BIO K302 ELISA (Table 3). Two Day 0 samples from the M. bovis
exposed group tested positive (APCAH32 and APCAH48) in this ELISA (Table 3). Eleven of the
Day 24 samples from the exposed group (n = 30) tested positive in the BIO K302 ELISA (Table 3).

• BIO K260 ELISA: The Day 0 samples from the unexposed and exposed animals tested negative in
the BIO K260 ELISA (Table 3). Four of the Day 24 samples from the exposed group (n = 30) tested
positive in the BIO K302 ELISA (Table 3).

• Western blot: The S-vspA_RA1 Western blotting results were compared to the results of the MilA
M. bovis ELISA (Table 3) [25]. None of the Day 0 or Day 24 serum samples from Australian calves
(n = 5) that were not exposed to the M. bovis reacted with the S-vspA_RA1 (Table 3). Three of the
Day 0 samples from the Australian calves that were subsequently exposed to M. bovis (n = 30)
reacted with the S-vspA_RA1 polypeptide, while the remaining Day 0 samples did not react.
The Day 24 samples from these animals also reacted in the Western blot. In total, 18 of the
Day 24 samples from this group reacted with S-vspA_RA1 (Table 3).

To evaluate if any of the serum samples reactive with the S-vspA_RA1 were cross reacting with
the SUMO fusion partner, sixteen of the paired sera (Day 0 and Day 24 from the same animal) were
assessed for reactivity with the SUMO-CAT polypeptide using Western blotting (Supplemental file
Figure S1; Table 3). Two and one of Day 0 and Day 24 sera from animals (n = 3) not exposed to M. bovis
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reacted with the SUMO-CAT polypeptide, respectively (Table 3). Four of the paired sera from animals
(n = 13) exposed to M. bovis did not react with the SUMO-CAT polypeptide (Table 3). Five of the paired
sera from animals exposed to M. bovis reacted with the SUMO-CAT polypeptide on both Day 0 and
Day 24 (Table 3). Four of the paired sera were non-reactive on Day 0 and reactive on Day 24 (Table 3).

Table 3. The reactivity of Australian cattle sera in the BIO K302 (B302), BIO K260 (B260),
and Western blot (WB) serological assays. Samples were deemed negative (N) or positive (P) according
to the criteria for each assay. Cattle were bled prior to exposure to Mycoplasma bovis on Day 0 (D0) and
on Day 24 (D24) after exposure. Cattle were either remained unexposed or experimentally exposed to
M. bovis.

Serological Assay

B302 B260 1 WB1 2 WB2 MilA 3

Animal D0 D24 D0 D24 D0 D24 D0 D24 D0 D24

Unexposed

APCAH13 N N N (0) N (0) N N P P N N
APCAH24 N N N (0) N (0) N N P N N N
APCAH30 N N N (0) N (0) N N N N N N
APCAH43 N N N (0) N (0) N N N N
APCAH71 N N N (0) N (0) N N N N

Exposed

APCAH3 N N N (0) N (0) N N N N N P
APCAH5 N P N (0) N (0) N P N P N P
APCAH7 N N N (0) N (0) N P N N N N
APCAH8 N P N (0) N (0) N P N N N N
APCAH9 N P N (0) P (1) N P P P N P
APCAH10 N N N (0) N (0) N P P P N P
APCAH18 N N N (0) N (0) N P P P N N
APCAH20 N P N (0) N (0) N P N P N P
APCAH21 N N N (0) N (0) N P N P N P
APCAH22 N P N (0) P (2) N P N N N P
APCAH23 N N N (0) N (0) P P P P N P
APCAH26 N P N (0) N (0) N P P P N P
APCAH31 N N N (0) N (0) N N N P N P
APCAH32 P P N (0) P (1) P P N P
APCAH34 N N N (0) N (0) N N N P
APCAH35 N P N (0) P (1) N P N P
APCAH36 N P N (0) N (0) N N N P
APCAH45 N P N (0) N (0) N N N P
APCAH46 N N N (0) N (0) N N N P
APCAH48 P P N (0) N (0) P P N P
APCAH49 N N N (0) N (0) N N N P
APCAH51 N N N (0) N (0) N N N P
APCAH52 N N N (0) N (0) N N N P
APCAH53 N N N (0) N (0) N N N P
APCAH54 N N N (0) N (0) N P N P
APCAH57 N N N (0) N (0) N P N P
APCAH60 N N N (0) N (0) N N N P
APCAH62 N N N (0) N (0) N P N P
APCAH63 N N N (0) N (0) N N N P
APCAH64 N N N (0) N (0) N P N P

1 The categorical values assigned to each sample are shown in parentheses. 2 Result in Western blot assay (WB1)
with S-vspA_RA1 polypeptide; Western blot assay (WB2) with SUMO-CAT polypeptide (selected samples only).
3 Results from the MilA ELISA as previously reported [25].
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3.6. Reactivity of Bio-X Diagnostics Control Sera

• BIO K302 ELISA: All the negative and positive controls provided in the BIO K302 and BIO
K260 assays tested negative and positive, respectively, in the BIO K302 ELISA (Table 4). The M. bovis
positive control samples from the BIO K284 assays all tested negative in this assay (Table 4).

• BIO K260 ELISA: All the negative and positive controls provided in the BIO K302 and BIO
K260 assays tested negative and positive, respectively, in the BIO K260 ELISA (Table 4). The M. bovis
positive control samples from the BIO K284 assays all tested negative in this assay (Table 4).

• Western blot: The reactivities of the ELISA control sera obtained from the three batches of the
BIO K302 kit, the four batches of the BIO K260 kit, and the four batches of the pentavalent BIO
K284 ELISA kit with the S-vspA_RA1 polypeptide are summarised in Table 4 (representative
examples supplemental file Figure S1). The reactivity of all Bio-X Diagnostics sera with the
SUMO-CAT polypeptide was also assessed. All positive control sera showed reactivity with
S-vspA_RA1 and no reactivity was evident with any of the negative control sera tested (Table 4,
representative examples supplemental file Figure S1). None of positive or negative sera from
the BIO K302 or BIO K260 kits reacted with the SUMO-CAT polypeptide (Table 4). The positive
control sera from the pentavalent BIO K284 reacted with the S-vspA_RA1 polypeptide and with
the SUMO-CAT polypeptide (Table 4).

Table 4. Reactivity of the negative control (NegC) and positive control (PosC) control samples from
various Bio-X Diagnostics kits in BIO K302 (B302), BIO K260 (B260), and Western blot (WB) serological
assays. Samples were deemed positive (P) or negative (N) according to the criteria for each assay.
The batch numbers (Batch) for the kits from which the sera were sourced are also shown.

Serological Assay

B302 B260 1 WB1 2 WB2 2

Assay Batch NegC PosC NegC PosC NegC PosC NegC PosC

B302 MYC14C04 N P P (3) N P N N
MYC13K26 N P N (0) P (3) N P N N
MYC13J16 N P N (0) P (3) N P N N

B260 SMYC14C04 N P N (0) P (3) N P N N
SMYC13K26 N P N (0) P (4) N P N N
SMYC13J16 N P N (0) P (3) N P N N
SMYC09I28 N P N (0) P (3) N P N N

B284 IBRPM12F04 N N (0) P P
IBRPM12K08 N N (0) P P
IBRPM12F28 N N (0) P P
IBRPM09L01 N N (0) P P

1 The categorical values assigned to each sample are shown in parentheses. 2 Result in Western blot assay (WB1)
with S-vspA_RA1 polypeptide; Western blot assay (WB2) with SUMO-CAT polypeptide.

3.7. Immunoassay Se and Sp Estimates

The results for each of the immunoassays by animal exposure status and source are summarised
in Table 5. These data were used to estimate the Se and Sp of each assay under evaluation in this
study. The final datasets for each test contained 92 serum samples, from 43 exposed and 49 unexposed
animals (Table 5). Using the final dataset, the BIO K302 test Se and Sp, adjusted for clustering by
source, were estimated to be 47% (95% CI: 10–87%) and 96% (95% CI: 87–99%), respectively (Table 5).
The BIO K260 test Se and Sp were estimated to be 28% (95% CI: 1–92%) and 100% (95% CI: 93–100%),
respectively (Table 5).
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Table 5. Summary of the results of Mycoplasma bovis serological assays used to estimate test
sensitivity (Se) and specificity (Sp). The bovine sera testing using the BIO K302, dichotomised BIO
K260, and Western blot are shown by source. The number (n) of samples in the Se and Sp analyses are
shown as positive and negative, respectively, by source with the percentages (%) in parentheses. The Se
and Sp estimates along with the 95% confidence intervals (CI) for all assays in parentheses.

BIO K302 BIO K260 Western Blot

Source n No. Positive (%) No. Positive (%) No. Positive (%)

Sensitivity
Canada 9 7 (78) 6 (67) 9 (100)
England 4 2 (50) 2 (50) 4 (100)
Australia 30 11 (37) 4 (13) 18 (60)

Total 43 20 (47%; 10–87%) 12 (28%; 1–92%) 31 (72%; 16–98%)

Specificity N Negative (%) N Negative (%) N Negative (%)
Canada 5 5 (100) 5 (100) 3 (60.0)
England 4 4 (100) 4 (100) 4 (100)
Australia 40 38 (95.0) 40 (100) 37 (92.5)

Total 49 47 (96%; 87–99%) 49 (100%; 93–100%) 44 (90%; 56–98%)

Of the 43 sera from animals experimentally exposed to M. bovis that were tested in the Western blot
assay, 31 showed reactivity with the S-vspA_RA1 fusion protein and were designated as seropositive
for M. bovis (Table 5). The sera from 12 animals exposed to M. bovis had no detectable reactivity with
the S-vspA_RA1 polypeptide. All were sourced from Australia (Table 5). In contrast, all the sera
from animals exposed to M. bovis from Canada (n = 9) and England (n = 4) reacted in the Western
blot (Table 5). The Se estimate for the Western blot assay, adjusted for clustering by source, was 72%
(95% CI: 16–98%) (Table 5).

The Western blot assay was used to assess the sera of 49 animals that had not been exposed
to M. bovis, and 44 had no reactivity with the S-vspA_RA1 polypeptide (Table 5). Five samples
collected from animals prior to experimental exposure to M. bovis (Day 0) were reactive with the
S-vspA_RA1 polypeptide. Two of these samples were from Canada (VIDO21 and VIDO30, Table 1),
with the remaining three sourced from Australia (APCAH23, APCAH32, and APCAH48, Table 3).
The Sp of the Western blot assay was estimated to be 90% (95% CI: 56–98%) (Table 5).

3.8. Detection of Seroconversion

In this study, 36 animals exposed to M. bovis had paired sera available for evaluating
seroconversion (Tables 1–3).

3.8.1. Detection of a Seroconversion Using the BIO K302 ELISA

Two Australian animals, APCAH32 and APCAH48, tested seropositive in the BIO K302 ELISA
at Day 0 and were excluded from the analyses (Table 3). Of 34 remaining animals, 12 of the animals
changed from seronegative to seropositive following experimental exposure to M. bovis, resulting in a
seroconversion estimate of 35% (95% CI: 21–54%; Table 6).
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Table 6. Detection of serconversion to Mycoplasma bovis using the BIO K302 ELISA, the BIO K260 ELISA,
and the Western blot assay in experimentally exposed animals. The number of samples from
seronegative (SNeg) animals exposed to M. bovis are shown. The number of these animals that
seroconverted (SConv) after exposure is shown. The percentage that seroconverted and the 95%
confidence intervals (CI) are shown in parentheses for each assay.

BIO K302 BIO K260 Western Blot

Source SNeg SConv SNeg SConv SNeg SConv

Canada 4 2 (50) 4 2 (50) 2 2 (100)
England 2 1 (50) 2 0 (0) 2 2 (100)
Australia 28 9 (32) 30 1 (13) 27 15 (56)

Total 34 12 36 3 31 19
35% (CI: 21–54%) 8% (CI: 0–87%) 61% (CI: 29–86%)

3.8.2. Detection of Seroconversion Using the BIO K260 ELISA

The initial serum samples from all 36 animals experimentally exposed to M. bovis from which
pre- and post-exposure serum samples were available were negative in the BIO K260 assay. Of these
animals, three had a post-exposure BIO K260 assay result that was categorised as ‘++’ or higher and
were deemed to have seroconverted, resulting a seroconversion estimate of 8% (95% CI: 0–87%; Table 6).

3.8.3. Detection of Seroconversion Using Western Blotting

The capacity of the Western blot assay to detect seroconversion of animals exposed to M. bovis
was also assessed using paired sera from the 36 experimentally exposed animals. As the Day 0 samples
from two Canadian animals (Table 1) and three Australian animals (Table 3) reacted in the Western blot
assay, these animals were excluded from the analysis. Of the remaining 31 animals, sera from 19 were
positive after exposure to M. bovis in the Western blot assay and were deemed to have seroconverted,
yielding a seroconversion estimate of 61% (95% CI: 29–86%; Table 6).

3.8.4. Time to Serodetection

The sera from the English exposure trial were used to estimate when M. bovis-specific antibodies
could first be detected in exposed animals using the Western blot assay (Figure 2). For the two exposed
animals, AHVLA304 and AHVLA339, Western blot reactivity was first detected on Day 14 for both
animals (Figure 2). None of the serum samples collected from the animal (AHVLA370) that remained
unexposed to M. bovis showed detectable reactivity in the Western blot assay (Figure 2).
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Figure 2. Western blot analysis of the reactivity of sera from English cattle with the
S-vspA_RA1 recombinant polypeptide. The results for two exposed animals, AHVLA304 and
AHVLA339, that were exposed to Mycoplasma bovis are shown. The serum samples were
collected prior to M. bovis exposure, Day 0 (D0) and after exposure, Day 7 (D7), Day 14 (D14)
Day 21 (D21), and Day 28 (D28). Lane 1, AHVLA370_D0; Lane 2, AHVLA370_D7; Lane 3,
AHVLA370_D14; Lane 4, AHVLA370_D21; Lane 5, AHVLA370_D28; Lane 6, AHVLA304_D0; Lane 7,
AHVLA304_D7; Lane 8, AHVLA304_D14; Lane 9, AHVLA304_D21; Lane 10, AHVLA304_D28; Lane 11,
AHVLA339_D0; Lane 12, AHVLA339_D7; Lane 13, AHVLA339_D14; Lane 14, AHVLA339_D21;
Lane 15, AHVLA339_D28; Lane 16, AHVLA ELISA positive control; Lane 17, AHVLA ELISA cut-off
control. The 100 kDa, 50 kDa, 37 kDa, 25 kDa, and 20 kDa molecular markers (kDa) are shown.
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4. Discussion

The S-vspA_RA1 polypeptide expressed in this study migrated with an estimated molecular
mass of 35 kDa in SDS-PAGE, even though it had a predicted molecular mass of 25 kDa. It has been
reported that the Vsp antigens exhibit abnormal migration in SDS-PAGE gels [9]. The presence of a
hexahistidine tag and repetitive amino acid motifs are likely to have resulted in the aberrant migration
of the S-vspA_RA1 polypeptide using SDS-PAGE [31]. Importantly, the S-vspA_RA1 polypeptide was
reactive with monoclonal antibodies specific for VspA, confirming that the presence of the SUMO
fusion partner did not affect the antigenicity of the motif (Figure 1).

One potential source of non-specific reactivity in the Western blot assay described in this study
was retention of the SUMO fusion partner in the S-vspA_RA1 polypeptide. To address this issue,
the removal of the SUMO fusion partner was evaluated; however, this resulted in unworkable yields
of the vspA_RA1 polypeptide (data not shown). Consequently, selected samples were analysed by
Western blotting using the SUMO-CAT (Figure S1, Tables 3 and 4). The observed reactivity of the
samples was considered to be against the vspA_RA1 and CAT polypeptides and not the SUMO
fusion partner for two reasons. Firstly, the sample reactivities (positive/negative) were not identical
as would be expected if the antibodies were binding to the SUMO fusion partner, which was the
common element in each assay. Secondly, analysis of the purified SUMO-CAT by Western blotting
with an anti-hexa-histidine monoclonal antibody (Figure S1j, Lane 1), suggested that the polypeptide
preparation contained a second smaller polypeptide considered to be unfused SUMO. While the
proportion of the free SUMO was low, none of the reactive cattle serum or control samples had any
detectable reactivity to this polypeptide (Figure S1). These results suggest that the observed reactivities
of the cattle sera were not with the SUMO fusion partner and supported the use of S-vspA_RA1 as the
antigen in the Western blot assay to evaluate M. bovis exposure status.

Of the sera collected from animals after exposure to M. bovis, all the Canadian and English sera
were reactive with S-vspA_RA1 in Western blot assays (Tables 1 and 2). In contrast, the post-exposure
sera from the Australian cattle were less frequently reactive in the Western blot assay, with 60% (n = 18)
testing positive (Table 3). There are several possible reasons why the post-infection sera sourced from
Australia showed reduced reactivity with the S-vspA_RA1 compared to those sourced from England
and Canada.

The choice of M. bovis strains used in the three exposure studies may underlie the observed
differences in these results. The panels of sera were generated in three geographically separate
countries with different strains of M. bovis. There is currently limited information available about the
immunogenicity of the M. bovis strain 3683 used in the Australian study [22], although a previous
study has demonstrated it has the capacity to infect and cause disease in exposed calves [28]. Recently,
the genomes of 82 Australian strains of M. bovis were analysed [32]. The genomic diversity between
M. bovis strains was reported to be low and the strains examined had fewer vsp genes, including vspA,
compared to the PG45 M. bovis reference strain [32]. However, as M. bovis strain 3683 was not included
in the study, the frequency of the vsp genes in this strain remains to be determined. The Western
blot results of the current study strongly suggest the 3683 strain encodes and expresses VspA or a
related polypeptide which includes the RA1 motif. If the M. bovis strain 3683 strain expresses the
RA1 motif at low levels or lacks VspG, VspH, and VspO, all of which can contain multiple repeats of
the PGENKT amino acid domain [9], or expresses these antigens at reduced levels, then antibodies that
react with the RA1 motif could be less abundant in the sera of exposed cattle or take longer to develop,
thus explaining why fewer of the Australian animals were seropositive after exposure (Table 3).

The complexity of M. bovis serology is exemplified by the Australian animals APCAH7, APCAH8,
and APCAH18, as the Day 0 samples for these animals tested negative in all three assays (Table 3).
In the MilA and the BIO K260 ELISAs, the Day 24 samples were also negative (Table 3). However,
the Day 24 samples for these animals were all positive by Western blotting and APCAH8 was also
positive using the BIO K302 ELISA (Table 3). These results suggest that the likelihood of an animal
testing positive after M. bovis exposure may be influenced by the timing of the immune response to
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some antigens. Of the three groups of animals analysed in this study, the 24 day interval between
exposure and the final sample collection for the Australian group was the shortest, compared to
28 days and 68 days for the English and Canadian samples, respectively.

However, in the current study, specific antibodies to the RA1 motif were detected as early as
Day 14 post exposure using the Western blot assay probed with the samples from the English cattle
(Figure 2). Importantly, in both animals exposed to M. bovis, the level of antibody increased over time,
suggesting that the reaction detected by the Western blot was specific to the RA1 motif. The detection
of M. bovis-specific IgG at Day 14 is consistent with a previous study which detected IgG 10 to 14 days
after experimental exposure [33]. Other reports have suggested that specific antibody responses can be
detected 14 to 28 days after an invasive infection [21,34]. Animal factors, such as genetic background
and age, may also have influenced when the calves used in these exposure studies developed detectable
antibodies to the antigens used in each assay.

In the current study, the Se estimates for the two commercial serological assays were poor
(Table 5). A previous report also estimated the Se and Sp of the BIO K302 (32%, 95% CI: 22–54%
and 95%, 95% CI: 83–99%) and BIO K260 (13%, 95% CI: 51–30% and 100% CI: 77–96%) assays [25].
These estimates generally agree with the crude Se and Sp estimates for the Australian samples in
the current study, a finding that was not unexpected as there is some overlap between the samples
used (Table 5). The combined Se estimates for the three populations in the current study were very
imprecise, when adjusted for clustering, as evidenced by the wide 95% CI (Table 5), and the different
performances in each population (Table 5). However, the small number of samples from Canada and
England prevented further investigation of this observation. Evaluation of the assays with a larger
number of samples from these and other geographic regions will be required to fully understand this
aspect of the performance of these tests.

Another study estimated the median Se and Sp of the BIO K302 ELISA to be 60% (38–96 95%
Posterior Credibility Interval) and 97% (94–100 95% PCI), respectively, using the manufacturer’s
recommended cut-off point [26]. These results suggest the commercial ELISA kits have good Sp and
are unlikely to yield false positives. The authors of the study suggested increasing the manufacturer’s
recommended cut-off point for the BIO K302 ELISA to reduce the likelihood of false positives [26].
The influence of this suggestion on the Se and Sp estimates in the current study was not investigated
because of the smaller sample size.

Test Se was low for all three methods assessed in this study. Several post-exposure sera from
Australia yielded negative results across all three methods, with 63% (n = 19), 87% (n = 26), and 40%
(n = 12) of samples yielding ‘false negative’ results in the BIO K302 ELISA, the BIO K260 ELISA, and the
Western blot assay, respectively (Table 3). In addition, two of the four English post-exposure sera and
the cut-off control yielded ‘false negative’ results in the BIO K302 and BIO K260 ELISAs (Table 2),
while ‘false negative’ results were also seen with the Canadian post-exposure samples using the BIO
K302 (n = 2) and BIO K260 (n = 3) ELISAs (Table 1). The Canadian post-exposure sera that yielded
negative ELISA results were classified as low sero-converters to M. bovis using an in-house ELISA [17].

The usefulness of the BIO K302, BIO K260, and Western blot assays for the detection of
seroconversion using paired sera samples from animals was also assessed (Table 6). In the current
study, sero-conversion was detected in 35% and 8% of paired animal sera using the BIO K302 and
BIO K260 ELISAs, respectively (Table 6). These low levels of seroconversion were unexpected, as the
BIO K260 ELISA is specifically marketed to detect seroconversion. Similarly, although the BIO K302 is
not marketed to detect seroconversion, it would be expected that a sample collected from an animal
following experimental exposure to M. bovis would yield a positive result in this assay. The low
level of seroconversion detected in the current study was largely a result of a high proportion of
Australian post-exposure samples failing to exceed the cut-offs assigned by the manufacturer of the
BIO K302 and BIO K260 ELISAs (Table 3). However, only 50% of the samples from the Canadian
(n = 4) and English (n = 2) animals from which paired sera were available were considered to have
seroconverted post-exposure, so the source of samples and strain used for infection would not appear
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to be the sole explanation for these results. The Western blot assay performed considerably better
for the detection of seroconversion, with 61% of exposed animals deemed to have seroconverted.
As with the other assays, this result was strongly influenced by the Australian samples. The Western
blot would not be suitable for testing large numbers of samples, but could be useful for testing a low
number of samples such as in experimental trials or testing high value animals such as breeding bulls
to establish or maintain M. bovis-free herds.

The results of this study highlight the difficulty of developing a serological assay that can be
generally applied in all geographic regions for M. bovis serology. It has been proposed that a novel
ELISA assay using the recently identified M. bovis antigen, MilA, could address this issue [22]. In the
context of a recent study [32], which reported a reduction in the number of vsp genes in some Australian
isolates examined, the next stage in the development of the MilA ELISA will be testing sera from
cattle exposed to M. bovis strains sourced from different geographical regions. Similarly, the pyruvate
dehydrogenase E1 component beta subunit has been identified as a promising M. bovis ELISA antigen,
that when used in an ELISA, detected a higher number of positive serum samples compared to
a commercial ELISA (Mycoplasma bovis Antibody Test Kit, BioVet, Saint-Hyacinthe, Canada) [24].
The panel of bovine sera used to compare the assays was from field samples and while some animals
were reported to be clinically affected by M. bovis, the lack of knowledge of the true exposure status to
the pathogen makes it difficult to assess the true performance of this assay [24]. The development of
a competitive ELISA for M. bovis serology, based on the P48 lipoprotein, has also been reported [23].
The P48 ELISA detected higher numbers of serologically positive cattle compared to two commercially
available ELISAs, the BioVet assay and an undisclosed Bio-X Diagnostics assay. As the relative
performance of the assays was evaluated using the number of positives detected in field samples
rather than Se and Sp estimations, true assay performance is difficult to assess. In light of these studies,
the application of any serological test for M. bovis is likely to require some knowledge of antigen
genomics to support the use of a specific antigen in any assay. Information on the M. bovis antigenic
repertoire for the region of interest could also be used to modify assay components, including multiple
recombinant antigens, to match the circulating M. bovis strains and improve assay performance.

As the manufacturer of the commercial ELISAs evaluated in this study holds the identity of the
recombinant antigen as proprietary knowledge, it is not possible to specifically evaluate the utility of
this antigen in a geographically diverse range of M. bovis strains. The reactivity of the Canadian and
English samples suggests some utility in their application, but this is less evident when the Australian
samples are also included. If the manufacturers of M. bovis serological assays wish to hold the assay
components as proprietary knowledge, then they should also consider providing some additional
support to potential users of these assays. This could include providing reagents or services to examine
the levels of expression of the target antigen in M. bovis isolates from the region of interest to ensure
some degree of confidence in the applicability of the assay and the validity of results. In the absence of
this type of supporting information, potential users should carefully consider how the assay is used.

A recognised limitation of the current study is that samples collected from experimentally exposed
animals are unsuitable for estimating Se and Sp of diagnostic assays due to a lack of independence
of observations and variation in the immunological responses of experimentally infected animals
compared to naturally infected animals [35]. The higher doses of M. bovis that calves may be exposed
to in experimental infection may inflate the Se estimate over what might be seen in the field, and the
absence of infection with related commensal mycoplasma species in experimental animals may inflate
the Sp estimate. While the current study technically violates these ideal conditions, it has utilised
samples from experimentally exposed animals from independent exposure experiments with several
differing parameters (M. bovis strain, cattle age, and interval of sample collection), albeit in low numbers
in two experiments. Consequently, the panel of sera may provide a more representative assessment of
assay performance compared to sera sourced from a single exposure study. Despite this, the next stage
in the assessment of these serological assays would be to estimate the Se and Sp using a panel of serum
samples from validated field cases of M. bovis infection, when such a panel becomes available.
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5. Conclusions

None of the serological assays evaluated in this study had 100% Se and 100% Sp for the detection
of the M. bovis antibody in bovine serum. Although the Western blot assay had the highest combined
estimates for Se and Sp, it is not useful as a screening test for large numbers of samples. The BIO
K260 ELISA had the highest Sp estimates of the three methods assessed. While the point Sp estimate
was 100%, the wide 95% confidence intervals suggest that the true Sp could be lower. The BIO
K302 ELISA had the highest Se of the two ELISA kits, but was still quite low. The overall usefulness
of the two commercial ELISAs evaluated in this manuscript will be dependent on the specific aims
of the study. If the aim is to identify M. bovis-free herds, then a test that has a high Se and produces
few false negatives is required. Based on the results of this study, neither the BIO K302 nor the BIO
K260 ELISA would be useful for this purpose. If the aim is to identify the presence of M. bovis within a
herd, then high Sp is required and either the BIO K302 or BIO K260 would be suitable, although the
results would need to be interpreted in the knowledge that neither test would detect high numbers of
positive animals in the study population, so the true prevalence of M. bovis is likely be underestimated.
Knowledge of these limitations will enable the application of these assays, particularly within discrete
populations, to better understand the biology of this important bovine pathogen.

Supplementary Materials: The following are available online at www.mdpi.com/2306-7381/5/1/27/s1, Figure
S1: Western blot analyses of selected Australian paired sera (n = 16) and ELISA control samples using the
S-vspA-RA1 and SUMO-CAT polypeptides. Animal numbers are shown with postscripts indicated the day of
serum collection, Day 0 (D0) and Day 24 (D24). The 100 kDa, 50 kDa, 37 kDa, 25 kDa, and 20 kDa molecular
markers (kDa) are shown. Table S1: Monoclonal antibodies used in this study and the Mycoplasma bovis variable
surface proteins (Vsp) recognised. The reported molecular sizes of each Vsp are shown in parentheses.
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