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Abstract: The genomes of influenza A viruses (IAVs) comprise eight negative-sense single-stranded
RNA segments. In addition to the protein-coding region, each segment possesses 5′ and 3′ non-coding
regions (NCR) that are important for transcription, replication and packaging. The NCRs contain
both conserved and segment-specific sequences, and the impacts of variability in the NCRs are not
completely understood. Full NCRs have been determined from some viruses, but a detailed analysis
of potential variability in these regions among viruses from different host groups and locations
has not been performed. To evaluate the degree of conservation in NCRs among different viruses,
we sequenced the NCRs of IAVs isolated from different wild bird host groups (ducks, gulls and
seabirds). We then extended our study to include NCRs available from the National Center for
Biotechnology Information (NCBI) Influenza Virus Database, which allowed us to analyze a wider
variety of host species and more HA and NA subtypes. We found that the amount of variability
within the NCRs varies among segments, with the greatest variation found in the HA and NA and the
least in the M and NS segments. Overall, variability in NCR sequences was correlated with the coding
region phylogeny, suggesting vertical coevolution of the (coding sequence) CDS and NCR regions.

Keywords: viral evolution; phylogeny; avian influenza

1. Introduction

Influenza A viruses (IAVs) are most well known for their circulation in humans, causing yearly
seasonal epidemics and occasional pandemics, and for outbreaks in poultry. However, the viral strains
responsible for these infections represent only a small portion of the total known IAV diversity, most
of which is maintained in the natural wild bird reservoir.

IAVs are members of the family Orthomyxoviridae and have segmented negative-sense
single-stranded RNA genomes. The viral genome is composed of eight segments that encode at
least 11 proteins, depending on the strain. Each segment has non-coding regions (NCRs) at both ends.
The 3′ NCR contains 12 conserved nucleotides followed by a segment-specific region of variable length.
The 5′ NCR contains 13 conserved nucleotides and a segment-specific region of variable length. The
two conserved regions are partially complementary [1–3] and form a panhandle-like structure [4–6]
involved in the transcription and replication steps of the viral life cycle [7–9]. Mutagenesis studies
identified residues within the NCRs that are required for the viral polymerase complex to bind and
initiate transcription [10,11]. However, a binding preference for the 5′ NCR was demonstrated [12].
There is also a stretch of uridines at the 5′ end that is involved in the polyadenylation of viral
mRNAs [13–16]. Further studies have revealed the presence of some variability within the two
NCRs at different positions. There is variability in the fourth nucleotide (C or U) in the 3′ end of
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all RNA segments [1], which affects the promoter and could play a role in differential regulation of
transcription and replication [17]. Non-conserved nucleotides located in the segment-specific regions
have also been shown to play an important role in viral replication [18]. Mutagenesis studies have
revealed the importance of NCRs for the incorporation of the eight different gene segments during viral
assembly [19–22]. These packaging signals can influence the reassortment of genes during co-infections
of different strains by preventing their incorporation during the virus genome packaging [20,23].

Amplification of complete IAV genomes with universal primers was initially designed based
on the conserved nature of NCRs [24], but amplification biases have been reported [25,26]. To date,
a thorough analysis of IAV NCRs from different hosts and across segments has not been performed.
We hypothesized that the NCRs within both the conserved and the segment-specific regions may vary
according to the original host species. To test our hypothesis, we characterized the true NCRs of IAV
genomes from different wild bird species by the rapid amplification of cDNA ends (RACE) method
and then expanded our analyses to include additional viral subtypes, hosts and geographic origins.

2. Materials and Methods

2.1. NCR Sequence Determination

NCR sequences from previously identified and sequenced viruses originating from three
different wild bird host groups (ducks, gulls and seabirds) were determined: A/domestic
duck/Newfoundland/MW668/2010(H1N1), A/American black duck/Newfoundland/GR679/
2011(H3N2), A/herring gull/Newfoundland/GR578/2011(H13N6), A/herring gull/Newfoundland/
GR848/2011(H13N6), A/common murre/Newfoundland/AB318/2011(H1N2), and A/common
murre/Newfoundland/AB324/2011(H1N2). From these six viruses, we determined 92 NCR sequences,
comprising 46 3′ and 46 5′ NCRs.

Viral genomic RNA was extracted from allantoic fluids of specific pathogen free eggs inoculated
with the different viruses using the Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA).
Primers were designed to efficiently amplify the 3′ and 5′ NCRs of the targeted viruses based on the
full genomic sequences of viruses that were available from previous studies (Supplementary Table S1).

For the 3′ NCRs, genomic RNAs were polyadenylated with poly(A) polymerase (2 U µL−1)
(Thermo Fisher Scientific) in the presence of MnCl2 (2.5 mM) and ATP (1 mM) in 1X reaction buffer
and a final volume of 50 µL. Reactions were incubated at 37 ◦C for 30 min and the resulting RNA used
as the input for the 3′ RACE System for Rapid Amplification of cDNA Ends (Thermo Fisher Scientific).
For the 5′ NCRs, the 5′ RACE System for Rapid Amplification of cDNA Ends (Thermo Fisher Scientific)
was used according to the manufacturer’s recommendations. The resulting amplicons were purified
and sequenced using Sanger chemistry at The Center for Applied Genomics (Toronto, ON, Canada).

2.2. Sequence Analyses

The 92 NCRs determined from our samples were compared with NCRs retrieved from
the influenza resource database (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html), chosen
to represent different viral subtypes, host species, geographic origins, and collection dates.
Where possible, all available or a high number of nucleotide sequences of complete gene segments
were downloaded from the database. The number of NCRs analyzed are indicated in Figure 3.
Sequence alignments were performed using MUSCLE, implemented in MEGA version 6 [27]. Multiple
alignments were then edited in Geneious version 8 [28]. The CDS regions of segments that had
complete NCRs were removed from the sequence, with only the NCRs kept for further analysis.
Complete segments without NCRs were removed from the analysis.

Pairwise genetic distance matrices determined with the Maximum Composite Likelihood
method, generated by MEGA, were used for classical multi-dimensional analysis (MDS) in R [29].
The viral segments were assigned geographic origins based on nucleotide BLAST searches [30] and
neighbor-joining phylogenetic analyses in MEGA. A small number of sequences was added in each
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multiple alignment figures due to space limitation, but the exact number of NCRs originally aligned
with MUSCLE are indicated in Figure 3.

3. Results

3.1. Characterization of NCRs from Different Wild Bird Viruses

Comparison of the 3′ and 5′ NCRs we determined by the RACE method showed that the 12- and
13-nt conserved regions, respectively, contained no novel substitutions in any of the different wild
bird viruses (Figures 1 and 2), which agrees with previous studies [1–3]. Comparison of the 3′ NCRs
(Figure 1) showed that the 4th position in the 12-nucleotide conserved region displays the expected
variability, with the polymerase gene segments, PB2, PB1 and PA, containing a cytosine residue while
the other segments contain a uridine residue, as previously observed [1,17].
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Figure 1. 3′ NCRs of wild bird virus segments determined in this study. The multiple alignment of
3′ NCRs was generated with MUSCLE, implemented in Geneious version 8. The RNA sequences are
displayed in the 3′ to 5′ orientation corresponding to the packaged RNAs.
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Figure 2. 5′ NCRs of wild bird virus segments determined in this study. The multiple alignment of
5′ NCRs was generated with MUSCLE implemented in Geneious version 8. The RNA sequences are
displayed in the 3′ to 5′ orientation corresponding to the packaged RNAs.

For the 3′ segment-specific regions (Figure 1), some of the segments (PB1, M and NS) had identical
sequences across all six viruses, but the others showed some differences. The murre and gull PB2
and NP segments were identical whereas the gull viruses differed from the others for these segments.
The PA segment was identical in the gull and duck viruses but differed from those in the murre viruses.
The HA sequences were identical within subtypes, even for the H1 viruses that came from murres and
a duck. Similarly, the NA sequences were identical within the same subtype.

Comparison of the 5′ NCRs showed the conservation of a stretch of five or six uridine residues
upstream of the 13-nt conserved region among the different wild bird viruses (Figure 2). Similar to the
3′ NCRs, the segment-specific regions varied among segments, with some of the individual segments’
NCRs conserved among the six viruses and others varying among the viruses (Figure 2). All PB2, PA,
M, and NS segments’ NCRs were identical among the viruses. There was a single variation in the PB1
segment, with the murre and one gull virus differing from the other gull virus and the duck viruses.
As observed for the 3′ NCRs, the HA and NA segments were the same within subtypes, and the H1
and H2 segments were also identical.

3.2. The Variability in Segment-Specific NCR Sequences Differs among Segments

To further investigate the differences observed in the NCRs of our limited set of six viruses,
we expanded our analysis of NCR genetic diversity to include viral sequences from a variety of host
species and geographic origins retrieved from the National Center for Biotechnology Information
(NCBI) Influenza Virus Database (Supplementary Tables S2 and S3). There is no apparent relationship
between the number of sequences analyzed and the NCR sequence diversity (Figure 3). The greatest
amount of variability in NCRs was observed in the HA segments (Figure 3A), but there is variability
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among the segments and between 3′ and 5′ NCRs for some subtypes. The H4, H6, H7, H8, H10, H12,
and H14 NCRs showed very little variability overall. The H5, H9 and H13 subtypes show greater
variability within their 3 ’NCRs relative to their 5′ NCRs, whereas the H1, H2, H3, H11 and H16 were
equally variable at the two ends.
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Figure 3. Genetic diversity of 3′ and 5′ NCRs for different segments. (A) HA segments of the
different subtypes. (B) NA segments of the different subtypes. (C) “Internal” protein-coding segments.
The genetic diversity for each of the NCR regions for the different segments was calculated as mean
genetic distance for the NCRs included in our analyses. The number above each bar represents the
number of sequences used to calculate the amount of genetic diversity for each segment.

The genetic diversity of different NA subtypes’ NCRs (Figure 3B), which originated from a large
number of host species and geographic locations, showed that the N3 and N6 subtypes have more
diversity at their 3′ ends while the N5, N8, and N9 are more diverse at the 5′ ends. The N1 and
N2 viruses showed very little diversity, despite the large assortment of hosts from which viruses
were included.

Matching the general pattern observed for IAV segment coding regions, the NCRs of the remaining
segments were overall less variable than found for HA and NA (Figure 3C). The M and NS segments
showed the lowest diversity, in agreement with the slower evolution rates for these segments’ CDS
(e.g., References [31,32]). These differences have been observed across many viruses which is not
surprising given that a previous analysis of NCRs, from a limited dataset of human H3N2 viruses
circulating worldwide since 1968, found that NCR variability differed among the segments [33].

3.3. Patterns of Variability within NCRs Can Be Explained by Viral Host Species and Geographic Origins

To better understand the origin of the segment-specific NCR diversity, we assessed whether the
NCRs of viruses from different hosts and geographic origins showed similar patterns of relationships
of the respective coding regions (CDS). We used a multi-dimensional scaling (MDS) analysis based
on pairwise genetic distance matrices for the NCR sequences, which allowed us to visualize the
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relationships among NCRs relative to the viral hosts and geographic origins. The results of these
analyses were then compared to MDS analyses performed on the respective coding regions. We focused
this analysis on segments that showed greater NCR diversity, as described above.

The relationships among the 3′ NCRs and CDS regions of a set of H9 segments were compared
(Figure 4). The 3′ NCRs and CDS regions showed similar grouping in the MDS analyses (Figure 4A),
corresponding to their CDS phylogenetic clades (Figure 4B). The two North American clade sequences
grouped more closely and were more distant from the Eurasian and North African sequences
(Figure 4A). This matches the patterns for the CDS phylogeny and 3′ NCR alignments (Figure 4B).
The same patterns were observed with the H13 subtype 3′ NCRs in the MDS analyses (Figure 5A),
and there was again a clear correspondence between the CDS phylogeny and the NCR sequence
relationships (Figure 5B). For the H1 subtype, the CDS phylogeny contained larger host-specific (swine,
human and avian) clades that separated into geographic-specific (Eurasian and North American)
clades (Figure 6). The correspondence between CDS phylogeny and 3′ NCR similarities was again
found for these H1 sequences (Figure 6). A similar pattern was also found for the N6 NA (Figure 7)
and NP sequences (Figure 8), where the CDS phylogenies also determined the 3′ NCR relationships.
This was true even when the viruses falling within specific clades originated from different hosts (e.g.,
gulls and ducks) or different continental origins (Eurasia and North America). Overall, these patterns
suggest vertical coevolution of the CDS and NCRs.
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Figure 4. Relationships among H9 3′ NCR and CDS regions for viruses from different host species and
geographic locations. The multi-dimensional analysis (MDS) scatter plots (A) are based on the pairwise
genetic distance matrices from the multiple alignments of complete CDS regions and 3′NCRs. Each dot
represents a virus, colored according to their origins as indicated on the CDS-based phylogenetic tree
(B). Alignments of the 3′ NCRs, shown corresponding to the genomic RNAs, from the viruses used in
the analyses are next to the CDS-based neighbor-joining tree for these viruses.
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Figure 5. Relationships among H13 3′ NCR and CDS regions for viruses from different host species and
geographic locations. The MDS scatter plots (A) are based on the pairwise genetic distance matrices
from the multiple alignments of complete CDS regions and 3′ NCRs. Each dot represents a virus,
colored according to their origins as indicated on the CDS-based phylogenetic tree (B). Alignments of
the 3′ NCRs, shown corresponding to the genomic RNAs, from the viruses used in the analyses are
next to the CDS-based neighbor-joining tree for these viruses.
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Figure 7. Relationships among N6 3′ NCR and CDS regions for viruses from different host species
and geographic locations. Alignments of the 3′ NCRs, shown corresponding to the genomic RNAs,
from the viruses used in the analyses are next to the CDS-based neighbor-joining tree for these viruses.
To facilitate the distinction of viruses from different hosts, gull viruses are in green, duck viruses are in
orange, shorebird viruses are in purple, and chicken viruses are in brown.
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Figure 8. Relationships among NP 3′ NCR and CDS regions for viruses from different host species
and geographic locations. Alignments of the 3′ NCRs, shown corresponding to the genomic RNAs,
from the viruses used in the analyses are next to the CDS-based neighbor-joining tree for these viruses.

Lastly, we looked at the M and NS segments which overall, showed very low NCR diversity
(Figure 3C). These two segments share very similar 3′ NCRs amongst different viruses, regardless of
the host species or geographic origins (Figure 9, Supplementary Figure S1). Some variations were
found for the M segment, for a total of three different M 3′ NCR sequences (Figure 9), but they did
not show the same correspondence to the phylogeny of their CDS as observed for the other segments.
Comparison of a subset of NS NCRs from various hosts and geographic locations found these all to be
identical (Supplementary Figure S1). The conservation of the M and NS NCRs, as mentioned earlier,
may be linked to the slower evolutionary rate of the coding regions of these segments.
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the viruses used in the analyses are next to the CDS-based neighbor-joining tree for these viruses.

4. Conclusions

We first hypothesized that NCRs may vary according to the host species. Our initial evaluation of
the 3′ and 5′ NCRs from viruses isolated from different wild bird hosts showed that the conserved
regions are identical among different hosts, but the segment-specific regions showed some variability
among the viruses for some segments. This prompted a larger analysis including more sequences,
which showed that the amount of variability in the NCRs varies among the different segments and
can also vary between the 3′ and 5′ ends, depending on the segment. The overall variability is
highest for the HA and NA segments. Examination of 3′ NCRs from HA and NA subtypes with
higher variability indicates that the relationships among NCR sequences matches the coding region
phylogenies, which generally follow patterns based on the viral host species and geographic origins,
and possibly reflects a lack of recombination in these segments. The most conserved NCRs are found
on the M and NS segments, which also show the slowest coding sequence evolutionary rates. The exact
evolutionary pressures acting on the NCRs and the consequences of sequence changes in these regions,
remain to be fully defined.
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analyzed by geographic location.
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