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Abstract: Ticks and tick-borne pathogens (TBPs) continuously causing substantial losses to the public
and veterinary health sectors. The identification of putative drug targets and vaccine candidates
is crucial to control TBPs. No information has been recorded on designing novel drug targets
and vaccine candidates based on proteins. Subtractive proteomics is an in silico approach that
utilizes extensive screening for the identification of novel drug targets or vaccine candidates based
on the determination of potential target proteins available in a pathogen proteome that may be
used effectively to control diseases caused by these infectious agents. The present study aimed to
investigate novel drug targets and vaccine candidates by utilizing subtractive proteomics to scan the
available proteomes of TBPs and predict essential and non-host homologous proteins required for
the survival of these diseases causing agents. Subtractive proteome analysis revealed a list of fifteen
essential, non-host homologous, and unique metabolic proteins in the complete proteome of selected
pathogens. Among these therapeutic target proteins, three were excluded due to the presence in host
gut metagenome, eleven were found to be highly potential drug targets, while only one was found as
a potential vaccine candidate against TBPs. The present study may provide a foundation to design
potential drug targets and vaccine candidates for the effective control of infections caused by TBPs.

Keywords: tick; tick-borne pathogens; subtractive proteome analysis; homology modeling;
MD simulation

1. Introduction

Ticks are ectoparasites and notorious vectors for disease-causing pathogens that transmit various
arboviruses, bacteria, and protozoans to vertebrate hosts adversely affecting the livestock industry
and public health [1–4]. Some of the tick-borne pathogens (TBPs), such as bacteria (Rickettsia
rickettsii, Francisella tularensis, Ehrlichia chaffeensis, Anaplasma phagocytophilum, Borrelia burgdorferi),
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protozoans (Babesia spp., Theileria spp.), and viruses (Crimean–Congo hemorrhagic fever virus,
tick-borne encephalitis virus), cause a variety of diseases in infected hosts [5–11]. Human and animal
movements associated with environmental changes have favored the dispersal of ticks and TBPs [12,13].
Therefore, the emergence and re-emergence of several TBPs pose public and veterinary health risks.
For instance, tick-borne diseases, such as borreliosis, ehrlichiosis, anaplasmosis, and rickettsiosis,
are some of the diseases emerging in regions where they have not been reported previously [14–17].

Recent progress in the field of bioinformatics has generated various in silico strategies and drug
designing approaches that reduce the time and cost associated with the trial and error experimentations
for drug development [18,19]. These methods serve to shortlist the potential drug targets that may
be used for experimental validation. Subtractive proteomics is an in silico method used for the
identification of essential and non-host homologous proteins within a pathogen proteome [18,20,21].
By selecting essential proteins unique to pathogen survival and propagation, the subtractive proteomics
approach allows the identification of novel drug targets within a pathogen. The Database of Essential
Gene (DEG) server can be used for the identification of those proteins involved in central metabolic
pathways required for the survival of a pathogen.

The identification of proteins homologous to the proteins in the host gut can be screened out during
the prediction of computer-based drug targets or vaccine candidates to avoid potential adverse effects
of a drug. Target proteins selected through this approach may be used as a promising tool to control the
diseases caused by infectious agents [22]. Subtractive proteome analysis has already been utilized for the
identification of novel drug targets and vaccine candidates against several life-threatening pathogens
such as Pseudomonas aeruginosa [23], Streptococcus pneumonia [24], and Mycobacterium tuberculosis [25,26].

Vaccination is a promising and sustainable approach to controlling ticks and TBPs [27,28]. Various in
silico and drug design approaches have generated a plethora of data by eliminating the time and
cost involved in trial and error experimentations during a drug or vaccine development [18,29–34].
Inceptive steps in the discovery of a novel drug target or vaccine candidates include the identification of
target proteins [35]. To the best of our knowledge, limited studies have been reported using subtractive
proteome analysis for the identification of drug targets or vaccine candidates against TBPs such as
B. burgdorferi ZS7 [36] and Rickettsia rickettsii [37]. The purpose of this study is an in silico approach using
subtractive proteomics for the prediction of potential drug targets and vaccine candidates against TBPs.

2. Methodology

2.1. Retrieval of Pathogens Proteome

In this study, TBPs were selected which had not been previously reported in similar in silico studies,
had available complete proteome in the National Center for Biotechnology Information (NCBI), their
name availability in the KEGG (Kyoto Encyclopedia of Genes and Genomes pathway database), their KO
(KEGG Orthology) list provided by KAAS (KEGG Automatic Annotation Server), and their KO list of
proteins available in KEGG pathways. The analysis of other TBPs was excluded in this study due to the
fact of their available published reports and unavailability of their complete proteome and KO number
in the KEGG database. The complete proteomes of selected pathogens, including Borrelia burgdorferi
B31, Ehrlichia chaffeensis str. Arkansas, Rickettsia rickettsii str. “Sheila Smith”, Francisella tularensis SCHU
S4, and Anaplasma phagocytophilum HZ, were retrieved in Fast Adaptive Shrinkage Threshold Algorithm
(FASTA) format from NCBI.

2.2. Identification of Essential and Non-Host Homologous Proteins in Pathogens

To identify paralogous, duplicate or redundant sequences (when one or more homologous
sequences are present in the same set of data) [38,39], the proteome of each pathogen was subjected
to CD-HIT (cluster database at high identity with tolerance) with a sequence identity cut-off value
of 0.4 (40%) [40,41]. Those proteins having more than a 40% identity were considered as paralogs
in this analysis. The paralog protein sequences were excluded, and the non-paralog protein sets
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were subjected to the Basic Local Alignment Search Tool (BLASTp) at NCBI [42] against the host
(Homo sapiens and Bos taurus) with threshold expected value (E-value) 10−5 to identify the non-host
homologous proteins in pathogens. To screen the essential proteins, the retrieved non-homologous
protein sequences, which were not present in the host (H. sapiens and B. taurus), were subjected to
BLASTp against DEG to obtain essential genes [43,44]. The cut-off for E-value, bit score, and percentage
of identity were considered <E 10−10, ≥100, and >35%, respectively [43,45,46]. A minimum bit score of
100 was used to screen out proteins that represented essential genes. The resultant data set revealed
the non-homologous essential proteins of pathogens.

2.3. Metabolic Pathways and Subcellular Localization Analysis

The pathogen-specific metabolic pathways were predicted by subjecting the non-homologous
proteins to KAAS and KEGG [47–50]. The proteins were separated based on their role in pathogen-
specific unique metabolic pathways. The online server subCELlular Localization (CELLO) V.2.5 [51]
was used for the prediction of subcellular localization of these proteins.

2.4. Druggability, Virulency Antigenicity, and Allergenicity Analysis

The vital non-host homologous proteins of pathogens were BLASTp against the DrugBank
database which contains the Food and Drug Administration (FDA) approved drugs. As previously
reported [52], target proteins with a bit score > 100, E-value 10−5, and having more than 50% identity
with the drug targets present in the DrugBank database were selected as druggable. Virulence factors
(VFs) of selected pathogen proteins were identified by performing BLASTp searches against the
Virulence Factors Database (VFDB) core data set (R1) with a cut-off bit score > 100, and the E-value was
10−5 [53]. Vaxijen, an antigen alignment independent prediction tool was used for antigenicity analysis,
and the AllerTOP v.2.0 server was used to predict allergenicity. The predicted antigenic score for each
protein was categorized into a high antigenic and non-antigenic score. Proteins having antigenic scores
more than 0.4 (default threshold value 40%) were considered highly antigenic, whereas those having
less than 0.4 scores were considered as non-antigenic. Proteins with a high antigenic score were selected,
and the NetCTL 1.2 server [54] was used for the prediction of potential T-cell epitopes. The Immune
Epitopes Database was used to find the interaction between the T-cell epitope and MHC-I molecule
(IEDB). To predict B-cell epitopes, a set of bioinformatics tools was used including the Kolaskar and
Tongaonkar antigenicity scale [55], Emini surface accessibility prediction [56], Karplus and Schulz
flexibility prediction [57], Bepipred linear epitope prediction analysis [54], and Chou and Fasman
β-turn prediction analysis [58,59]. ProtParam [60] predicted the molecular weight, instability index,
approximate half-life, isoelectric pH, GRAVY values, hydropathicity, and aliphatic index of the
vaccine candidates.

2.5. Human Gut-Metagenomes Screening and Secondary Structure Prediction

To knock out pathogen proteins found in human gut flora, essential, non-homologous, and virulent
proteins of B. burgdorferi B31, E. chaffeensis str. Arkansas, F. tularensis SCHU S4, and A. phagocytophilum
HZ were scanned by BLASTp with an E-value cut-off score of 1 against proteins of the human gut flora
using Human Microbiome Project database server [61].

The self-optimized prediction method by SOPMA alignment software [62] and Position-Specific
Iterative Basic Local Alignment Search Tool (PSI-BLAST) based secondary structure prediction
(PSIPRED) program were used to predict the secondary structure of the target proteins.

2.6. Phylogenetic Analysis

The amino acid sequence of the vaccine candidate (B. burgdorferi B31 FLiS protein) identified in this
study was scanned for homologous sequences by BLASTp at NCBI. The homologous sequences were
downloaded in FASTA format and were aligned using ClustalW in BioEdit Sequence Alignment Editor
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v.7.0.5 [63]. The evolutionary relationship of sequences was constructed using the neighbor-joining
method in MEGA v. X [64] with bootstrapping at 1000 replications [65].

2.7. Homology Modeling and Molecular Dynamics Simulation

A swiss-model online database was used for the homology modeling of each target protein.
Subsequently, the predicted models were validated using the Ramachandran plot [66]. The COFACTOR [67]
server was employed for the prediction of the binding site in the generated models. Moreover, the model
was checked for stability by molecular dynamics (MD) simulation methodology using AMBER v2014
software package [68]. The LEaP module was used to add the missing polar/non-polar hydrogen atoms
and counterions (Na+ and Cl−) were added to neutralize the overall system. Next, a solvated octahedral
box of transferable intermolecular potential with 3 points (TIP3P) water model (10.0 Å buffer) was used
to sandwich the system in a water environment. Bonds involving hydrogen atoms were constrained
with the SHAKE algorithm [69]. All MD simulations were done by the CUDA version of PMEMD in
GPU cores of NVIDIA® Tesla K80 [68]. The NPT ensemble at 298 K, 1 bar, and an integration time step
of 2 fs was used to integrate the equations of motion. An Anderson-like temperature coupling scheme
was used to control the temperature and imaginary “collisions” were randomized by the velocities at a
distribution corresponding to simulation temperature every 1000 steps. Pressure control was performed
using Berendsen barostat with the pressure relaxation time set to 1.0 ps. A cut-off 8.0 Å was used for
Lennard–Jones interactions and the short-range electrostatic interactions.

3. Results and Discussion

3.1. Identification of Essential and Non-Host Homologous Proteins in Pathogens

To our knowledge, the subtractive analysis performed in this study is the first computational report
to characterize and identify novel therapeutic targets for the control of TBPs. To predict unique proteins
as drug targets and vaccine candidates within the proteome of a pathogen, subtractive proteomics
has been reported among the most powerful approaches for unique yet uncharacterized sequences as
possible therapeutic targets [18,25,33,70–75]. The objective of the current study was to predict novel
drug targets and vaccine candidates based on subtractive proteomics approach against B. burgdorferi
B31, E. chaffeensis str. Arkansas, R. rickettsii str. “Sheila Smith”, A. phagocytophilum HZ, and F. tularensis
SCHU S4. The entire proteomes of selected TBPs were scanned to obtain a group of essential and
non-host homologous proteins. Among them, cytoplasmic proteins were predicted as putative drug
targets and a membrane-bound protein as a vaccine candidate. This membrane-bound protein may
be a capable vaccine candidate for controlling infections caused by TBPs. The entire model of this
subtractive analysis is given in the flow chart below (Figure 1).

Complete proteomes of selected pathogens, including B. burgdorferi B31 (1391 proteins), E. chaffeensis
str. Arkansas (889 proteins), R. rickettsii str. “Sheila Smith” (1246 proteins), A. phagocytophilum HZ
(1048 proteins), and F. tularensis SCHU S4 (1556 proteins), were retrieved and subjected to the CD-HIT
algorithm to remove paralogous sequences [61]. A 40% similarity was chosen as a cut-off to maintain a
very stringent selection criteria for the identification of the most effective targets. It has been widely
accepted to set a 40% sequence identity as a cut-off to maintain a rigid criterion to remove duplicate
proteins [31,45,71,76,77]. This is because protein sequence databases are incredibly redundant, and this
redundancy occurs when several similar data are deposited from different regions [78]. The inclusion
of similar sequences in individual-specific analyses mostly introduces undesirable biases [38,39].
Duplicate proteins and proteins with less than 100 amino acids were also excluded, and this has
been previously documented [18,79,80]. A set of non-paralogous proteins was generated for further
analysis based on the assumption that these proteins may be essential for pathogen survival [80,81].
The identified non-paralogous proteins were 1181 out of 1391 in B. burgdorferi B31, 846 out of 889
in E. chaffeensis str. Arkansas, 830 out of 1246 in R. rickettsii str. “Sheila Smith”, 712 out of 1048 in
A. phagocytophilum HZ, and 1295 out of 1556 in F. tularensis SCHU S4. The non-redundant data set
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was further filtered, and only those proteins which had a sequence similarity less than 30% or no
significant similarity with the host (H. sapiens and B. taurus) proteome were targeted. Further, an NCBI
BLASTp search with a threshold expectation value of (E-value) 10−5 with the host (H. sapiens and
B. taurus) was used, and sequences that showed no similarity with the host were selected. The resultant
data set revealed non-host homologous proteins of pathogens. Non-host homologous proteins were
765 in B. burgdorferi B31, 793 in E. chaffeensis str. Arkansas, 409 in R. rickettsii str. “Sheila Smith”, 105 in
A. phagocytophilum HZ, and 185 in F. tularensis SCHU S4.Vet. Sci. 2020, 7, x FOR PEER REVIEW 5 of 25 
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Essential proteins are regularly required to support the basic cellular functions of micro-organisms
and are essential for the survival of a pathogen [76,82]. A potent drug target must be an essential
protein possessing features required for the survival and existence of a pathogen [75]. A BLASTp
search for the non-homologous proteins of selected pathogens against the DEG database was done to
screen out the essential proteins [43,83]. The queried proteins having a homologous hit in DEG was
34 in B. burgdorferi B31, 113 in E. chaffeensis str. Arkansas, 76 in R. rickettsii str. “Sheila Smith”, 105 in
A. phagocytophilum HZ, and 185 in F. tularensis SCHU S4. All these predicted sets of essential proteins
were found to be involved in metabolic pathways (Table 1).
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Table 1. Subtractive proteome analysis and proteins involved in metabolic pathways of selected
tick-borne pathogens.

Step
Number

Steps

Borrelia
burgdorferi

B31

Ehrlichia
chaffeensis
Arkansas

Rickettsia
rickettsii Strain
“Sheila Smith”

Anaplasma
phagocytophilum

HZ

Francisella
tularensis
SCHU S4

Host

Homo
sapiens

Homo
sapiens Bos taurus Homo sapiens Homo

sapiens

1. Total proteome 1391 889 1246 1048 1556

2. Duplicates (>60% identical)
in CD-HIT a 1181 846 830 712 1295

3. Non-homologs 765 793 409 453 788
4. Essential proteins in DEG b 34 113 76 105 185

5. Unique metabolic pathway
KEGG c 13 8 14 6 25

6. Essential proteins involved
KEGG and KAAS d 12 12 5 8 24

7. Druggability with cut-off
E-value 10−5 4 3 1 3 4

8. * Gut metagenomics with
cut-off E-value 10−5 2 2 - 3 4

* Gut metagenomics were checked for the Homo sapiens host. a CD-HIT: Cluster Database at High Identity with
Tolerance against nr database. b DEG: database of essential gene contains essential gene required for survival.
c KEGG; Kyota Encyclopedia of genes and genomes contain organism pathways. d KAAS: KEGG Automatic
Annotation Server provides functional annotation of genes.

3.2. Pathogens Unique Metabolic Pathways and Subcellular Localization

The predicted novel metabolic pathways in all TBPs were 66, and among them, 14 were in R. rickettsii
str. “Sheila Smith”, 13 in B. burgdorferi B31, 8 in E. chaffeensis str. Arkansas, 6 in A. phagocytophilum HZ,
and 25 in F. tularensis SCHU S4. A total of 61 proteins were found to be involved in metabolic pathways
that are unique to TBPs and having no similarity with the host (H. sapiens and B. taurus) proteome.
The unique metabolic pathways included the quorum-sensing metabolic pathway, two-component
system, lysine biosynthesis, flagellar assembly, bacterial secretion system, monobactam biosynthesis,
and the peptidoglycan biosynthesis (Table 2). These unique metabolic pathways contain essential
proteins necessary for the survival, virulence, and pathogenicity of TBPs that can be used as drug
targets and vaccine candidates.

For the prediction of effective and suitable drug targets and vaccine candidates, it is vital to find the
protein’s subcellular localization [84]. Extracellular, membrane-bound, and cytoplasmic proteins can be
used as vaccine candidates and drug targets, respectively [18,51]. In B. burgdorferi B31, the CELLO server
analysis predicted 8/12 (66.66%) proteins were cytoplasmic, 3/12 (25%) inner membrane, and 1/12 (8.33%)
extracellular. In A. phagocytophilum HZ, 4/8 (50%) were cytoplasmic, 3/8 (37.5%) inner membrane, and
1/8 (12.55%) outer membranes. In E. chaffeensis str. Arkansas, 8/12 (66.6%) were cytoplasmic, 1/12 (8.33%)
outer membrane, and 3/12 (25%) inner membrane. In R. rickettsii str. “Sheila Smith”, 4/5 (80%) were
cytoplasmic, and 1/5 (20%) inner membrane. In F. tularensis SCHU S4, 14/24 (58.33%) were cytoplasmic,
5/24 (20.83%) outer membrane, 4/24 (16.66%) inner membrane, and 1/24 (4.16%) periplasmic (Figure 2).
Cytoplasmic proteins have been suggested as favorable drug targets compared to membrane-bound
proteins, because the latter often faces problems during purification [85].
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Table 2. List of biological and molecular functions, non-host homologous, essential pathways, subcellular localization, druggability, and antigenicity of identified targets.

Name of Protein NCBI Protein
ID Pathways KO Number KEGG ID Biological Process Molecular

Function
Drug Bank

ID Drug Name Chemical
Formulae Drug Group Virulent Localization Antigenicity

Score Antigenicity Allergenicity

Preprotein translocase
subunit SecY

A. phagocytophilum
WP_011450434.1 Quorum-sensing, A.

phagocytophilum HZ K03076 aph02024 Protein transport,
translocation

None predicted
evidence

DB06292
DB08907
DB09038

Dapagliflozin
Canagliflozin
Empagliflozin

C21H25ClO6
C24H25FO5S
C23H27ClO7

Approved
Approved
Approved

Yes Inner
membrane 0.4083 Antigen Non-allergen

Chromosomal replication
initiator protein DnaA.

A. phagocytophilum
WP_011450597.1

Two-component
system, A.

phagocytophilum HZ
K02313 aph02020 DNA replication DNA-binding DB00173 Adenine C5H5N5

Approved,
nutraceutical Yes Cytoplasmic 0.3982 Non-Antigen Non-allergen

Aspartate-semialdehyde
dehydrogenase

A. phagocytophilum
WP_011451356.1

Lysine biosynthesis,
A. phagocytophilum

HZ
K00133 aph00300

Cellular amino
acid biosynthetic

process

Oxidoreductase
activity

DB00181
DB00996
DB02530

Baclofen
Gabapentin

gamma-Aminobutyric
acid

C10H12ClNO2
C9H17NO2
C4H9NO2

Approved
Approved,

investigational
Approved,

investigational

Yes Outer
membrane 0.3987 Non-Antigen Non-allergen

1UDP-n-acetyl muramoyl-
tripeptide–D-alanyl-

D-alanine ligas B. burgdorferi
B31

NP_212438.1 Flagellar assembly,
B. burgdorferi B31 K01929 bbu02040

Peptidoglycan
biosynthetic

process
ATP binding DB04272 Citric acid C6H8O7

Approved,
nutraceutical,
Vet approved

Yes Cytoplasmic 0.2503 Non-Antigen Non-allergen

FliS B. burgdorferi B31 NP_212684.1 Flagellar assembly,
B. burgdorferi B31 K02422 bbu02040

Bacterial-type
flagellum
assembly

None predicted
evidence DB00120 l-phenylalanine C9H11NO2

Approved,
Investigational,
nutraceutical

Yes Extracellular 0.4200 Antigen Non-allergen

Twin-arginine translocase
subunit TatC Ehrlichia

chaffeensis
WP_011452677.1

Bacterial secretion
system, Ehrlichia

chaffeensis Arkansas
K03118 ech03070 Protein transport

by the Tat complex

Protein
transmembrane

transporter
activity

DB01277
DB13173

Mecasermin
cerliponase alfa

C331H518N94O101S7
Not Available

Approved,
investigational

Approved,
investigational

No Inner
membrane 0.8915 Antigen Non-allergen

Aspartate kinase E. chaffeensis WP_011452940.1
Monobactam

biosynthesis, E.
chaffeensis Arkansas

K00928 ech00261

Lysine
biosynthetic
process via

diaminopimelate

Aspartate kinase
activity DB11638 Artenimol C15H24O5

Experimental,
investigational Yes Cytoplasmic 0.5049 Antigen Non-allergen

Preprotein translocase
subunit SecG F. tularensis

SCHU S4
YP_169156.1 Quorum sensing, F.

tularensis. S4 K03075 ftu02024 Protein secretion
Protein

translocase
activity

DB00887
DB01016
DB01050
DB04941
DB08820
DB09213
DB09280

Bumetanide
Glyburide
Ibuprofen

Crofelemer
Ivacaftor

Dexibuprofen
Lumacaftor

C17H20N2O5S
C23H28ClN3O5S

C13H18O2
Not Available
C24H28N2O3

C13H18O2
C24H18F2N2O5

Approved
Approved
Approved
Approved
Approved,

investigational
Approved,

investigational
Approved

Yes Inner
membrane 0.7645 Antigen Non-allergen

UDP-N-acetyl muramate-l-
alanine ligase F. tularensis

SCHU S4
YP_169292.1

Peptidoglycan
biosynthesis, F.

tularensis SCHU S4
K01924 ftu00550 Murein

biosynthesis Ligase activity DB00157
DB09092

NADH
Xanthinol

C21H29N7O14P2
C13H21N5O4

Approved,
nutraceutical

Approved,
withdrawn

Yes Cytoplasmic 0.4349 Antigen Non-allergen

Preprotein translocase
subunit SecY F. tularensis

SCHU S4
YP_169394.1 Quorum sensing, F.

tularensis SCHU S4 K03076 ftu02024 Protein transport None predicted
evidence

DB00313;
DB05541

Valproic acid
brivaracetam

C8H16O2
C11H20N2O2

Approved,
investigational

Approved,
investigational

Yes Cytoplasmic 0.6388 Antigen Non-allergen

UDP-N-acetyl
muramoylalanyl-d-

glutamate-2,6-
diaminopimelate ligase F.

tularensis SCHU S4

YP_169464.1
Peptidoglycan
biosynthesis, F.

tularensis SCHU S4
K01928 ftu00550 Murein

biosynthesis Ligase activity DB11638 Artenimol C15H24O5
Experimental,
investigational Yes Inner

membrane 0.3851 Non-antigen Non-allergen

Cytochrome d ubiquinol
oxidase subunit II-

R. rickettsii Sheila Smith
WP_012150506.1

Two-component
system, R. rickettsii

“Sheila Smith”
K00426 rri02020 Oxidation-reduction

process
None predicted

evidence DB01221 Ketamine C13H16ClNO Approved, vet
approved Yes Inner

membrane 0.6850 Antigen Non-allergen
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Figure 2. Subcellular localization of target proteins showing the majority are cytoplasmic. Borrelia burgdorferi
(B. burgdorferi), Anplasma phagocytophilum (A. phagocytophilum), Ehrlichia chaffeensis (E. chaffeensis),
Rickettsia rickettsii (R. rickettsii), Francisella tularensis (F. tularensis).

3.3. Functional Analysis of Unique Pathways

Comparative analysis of the metabolic pathways of TBPs against the host (H. sapiens and B. taurus)
revealed 66 unique pathways in TBPs having no similarities with the host. The KO list of TBPs
proteins provided by the KAAS server was searched against each pathogen pathway to screen the
unique essential proteins involved in unique pathways. Among them, 12 unique pathways—such as
quorum-sensing, two-component system, and lysine biosynthesis in A. phagocytophilum HZ; flagellar
assembly in B. burgdorferi B31; bacterial secretion system and monobactam biosynthesis in E. chaffeensis
str. Arkansas; quorum-sensing and peptidoglycan biosynthesis in F. tularensis SCHU S4; and the
two-component system in R. rickettsii str. “Sheila Smith”—have unique essential proteins having no
similarities with host pathways (Table 2).

Proteins present in the quorum-sensing pathway are responsible for the bioluminescence, sporulation,
competence, antibiotic production, biofilm formation, and virulence factors secretion [86–88]. Two
of the target proteins, preprotein translocase subunit SecY and preprotein translocase subunit SecG
protein, are present in the quorum-sensing pathway of A. phagocytophilum HZ and F. tularensis SCHU S4,
respectively, which can be used as potential drug targets. The two-component system pathway, essential
for the growth and survival in adverse environmental conditions, is ubiquitous in bacteria and has been
reported to be involved in virulence [89,90]. The chromosomal replication initiator protein DnaA (dnaA)
and cytochrome d ubiquinol oxidase subunit 1 protein are present in the two-component system pathway
of the A. phagocytophilum HZ and R. rickettsii str. “Sheila Smith”, respectively. The peptide cross-linking
in the peptidoglycan layer of bacteria plays a central role in pathogenesis. Inhibitors of peptidoglycans
form a significant class of antibiotics and have been demonstrated as probable drug targets [91,92].
The biosynthesis of peptidoglycan involves various ADP forming ligases, such as MurA, MurC, MurD,
MurE, and MurF, which catalyze the successive additions of l-alanine, d-glutamate, a diamino acid, and
d-alanine-d-alanine to UDP-N-acetylmuramic acid [93]. Both UDP-N-acetylmuramate-l-alanine ligase
(murC) and phospho-N-acetylmuramoyl-pentapeptide-transferase (murE) are present in the peptidoglycan
pathway of the F. tularensis SCHU S4. These drug targets, which inhibit peptidoglycan biosynthesis,
have the potential to control pathogens and minimize microbe-generated pathogenicity [77]. The general
secretion (Sec) and twin-arginine translocation (Tat) pathways are the bacterial secretion system, most used
to transport proteins across the cytoplasmic membrane [94]. Pathogens require a functional Tat pathway for
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virulence during infection, survival, and other physiological functions [95–97]. Similarly, the twin-arginine
translocase subunit TatC present in the bacterial secretion system pathway, and aspartate kinase in the
monobactam biosynthesis pathway of E. chaffeensis str. Arkansas is required for survival and virulence.
Aspartate-semialdehyde dehydrogenase is present in the lysine biosynthesis pathway of A. phagocytophilum
HZ. Several proteins of the flagellar assembly pathway are involved in protein export, especially in
the export of VFs [98]. The proteins UDP-N-acetylmuramoyl-tripeptide-d-alanyl-d-alanine ligase and
Flagellar secretion chaperone FliS are present in the flagellar assembly pathway of B. burgdorferi B31.

All the predicted 12 target proteins present in the unique pathways of TBPs have no similarities with
the host pathways (H. sapiens and B. taurus). Thus, proteins involved in these pathways are potential drug
targets, and their inhibition will increase the susceptibility of TBPs to various drugs (Table 2).

3.4. Druggability and Virulence Analysis for the Identification of Potential Drug Targets and
Vaccine Candidates

To evaluate the druggability potential, the shortlisted essential proteins were subject to BLASTp
against the FDA approved drugs. A total of fifteen proteins from all pathogens were predicted
to be druggable. For instance, there were four protein targets (i.e., chitibiose transporter protein
ChbA, FLiS, flagellar hook capping protein, UDP-N-acetylenolpyruvoyl glucosamine reductase) in
B. burgdorferi B31, three-drug targets (i.e., twin-arginine translocase subunit TatC, preprotein translocase
subunit SecA, and aspartate kinase) in E. chaffeensis str. Arkansas, one drug target (i.e., cytochrome
d ubiquinol oxidase subunit I) in R. rickettsii str. “Sheila Smith”, four drug targets (i.e., UDP-N-
acetylmuramate-l-alanine ligase, preprotein translocase subunit SecG, preprotein translocase subunit
SecY, and UDP-N-acetylmuramoylalanyl-d-glutamate-2,6-diaminopimelate ligase) in F. tularensis SCHU
S4, and three-drug targets (i.e., preprotein translocase subunit SecY, chromosomal replication initiator
protein DnaA, and aspartate-semialdehyde dehydrogenase) in A. phagocytophilum HZ. Screening of
VFs has been a promising option for the prediction of therapeutic targets [99]. To find virulency,
the fifteen predicted protein targets of all pathogens were subject to BLASTp against the core data set
(R1) of the VFDB. All target proteins were virulent except twin-arginine translocase subunit (TatC)
from E. chaffeensis str. Arkansas (Table 2). The VFs inherited properties required for bacteria to adhere,
colonize, invade, and conquer the host defense system and, thus, are considered as potential drug
targets and vaccine candidates [100].

3.5. Screening of Essential, Non-Homologous Target Proteins Versus Gut Metagenome and Secondary
Structure Analysis

The beneficial microbes that reside in the human digestive tract constitute gut microbiota.
There are trillions of microbes that reside symbiotically in a human intestine [101,102]. These microbes
contribute to ferment undigested carbohydrates and produce energy, preventing harmful species
growth, and enhance the functions of the immune system in the residing host [101]. To exclude
those proteins found in human gut flora, TPBs proteins were subject to BLASTp against the human
microbiome project database. After metagenomics, eleven protein targets were found to have no
similarity with the gut metagenome of the host and were considered as final target proteins. The eleven
target proteins included: twin-arginine translocase subunit TatC, aspartate kinase, UDP-N-acetyl
muramate-l-alanine ligase, preprotein translocase subunit SecG, preprotein translocase subunit
SecY, UDP-N-acetylmuramoylalanyl-d-glutamate-2,6-diaminopimelate ligase, preprotein translocase
subunit SecY, chromosomal replication initiator protein DnaA, aspartate-semialdehyde dehydrogenase,
UDP-N-acetylmuramoyl-tripeptide-d-alanyl-d-alanine ligase, and flagellar protein FLiS (Table 2).
These essential, non-host homologous, and virulent target proteins can be used as potential drug
targets and vaccine candidates.

The predicted secondary structure drawn using SOPMA revealed the percentage of the α-helix,
extended strand, β-turn, and random coil in each target protein (Table 3). The confidence of prediction
observed throughout the predicted secondary structures was high, and a high percentage of α-helices
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was found in most of the target proteins. For instance, the α-helices contents were found to be 59.31% in
FLiS protein. Most of the transmembrane proteins, especially those present in the cytoplasmic membrane,
are solely constituted by α-helices. The extended strands or beta-sheets linked to the α-helices may
construct the external transmembrane regions, thus providing stability to these proteins [103–106].

3.6. Phylogenetic Analysis

The phylogenetic relationship is crucial for understanding the evolution and background history
of various proteins. Nearly all proteins have structural similarities with other proteins and in some
cases, share a common evolutionary origin. To determine the evolutionary relationship of the predicted
vaccine candidate (FLiS protein), a neighbor-joining tree was constructed [65] which showed a 91%
bootstrapping support value (Figure 3). All sequences were clustered together which suggested that
this protein is highly conserved among various strains of B. burgdorferi and may play a functional role
in pathogen survival, propagation, transmission, and pathogenesis. Further, the FLiS protein is present
in TBP (B. burgdorferi B31) and other pathogens; it may serve as a universal vaccine by eliciting an
immune response against several infectious agents [107,108].
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Table 3. Secondary structure prediction of drug targets and vaccine candidates.

SOPMA a
Flagellar

Protein (FLiS,
B. burgdorferi)

UDP-N-acetyl
muramoyl-
tripeptide

-d-alanyl-d-
alanine ligase
B. burgdorferi

Preprotein
Translocase

Subunit SecY (A.
phagocytophilum)

Chromosomal
Replication Initiator

Protein DnaA (A.
phagocytophilum)

Aspartate-
Semialdehyde

Dehydrogenase (A.
phagocytophilum)

Twin-Arginine
Translocase

Subunit TatC
(E. chaffeensis)

Aspartate
Kinase (E.

chaffeensis)

Cytochrome d
Ubiquinol

Oxidase Subunit
II (R. rickettsii)

Preprotein
Translocase

Subunit SecG
(F. tularensis)

Preprotein
Translocase

Subunit SecY
(F. tularensis)

UDP-N-acetyl
muramate-l-

alanine ligase
(F. tularensis)

UDP-N-acetyl
muramoylalanyl-d-

glutamate-2,6-
diaminopimelate

ligase (F. tularensis)

α-helix 59.31% 38.36% 47.24% 54.03% 36.80% 55.42% 37.65% 50.74% 33.33% 47.62% 37.69% 42.17%
310 helices 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pi helix 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Beta bridge 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Extended strand 13.10% 22.84% 18.66% 12.64% 22.26% 15.66% 22.54% 15.34% 16.24% 17.91% 21.95% 18.79%
β-turn 3.45% 7.11% 8.06% 2.83% 6.53% 4.42% 7.19% 4.72% 2.56% 8.62% 7.98% 5.22%

Bend region 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Random coil 24.14% 31.68% 26.04% 30.50% 34.42% 24.50% 32.61% 29.20% 47.86% 25.85% 32.37% 33.82%

Ambiguous states 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Other states 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

a SOPMA: Self Optimized Prediction Method from Multiple Alignment is a server used for secondary structure prediction.
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3.7. Characterization of Drug Targets and Vaccine Candidates

Among the twelve targets after cellular localization, five proteins were cytoplasmic, five inner
membranes and only one protein was each outer membrane and extracellular. In the adhesion
and invasion mechanism during the host–pathogen interaction, outer membrane proteins played a
significant role in invading a host cell and entering the tissue [21]. Comparatively, it was evident
from previous reports that outer membrane proteins are vaccine candidates and that cytoplasmic
proteins are drug targets [21,109]. It is well known that exported proteins are the prominent molecules
of interaction with cells infected by pathogens; therefore, they are potential candidates for vaccine
targets [110–114]. The antigenicity and allergenicity analysis of target proteins revealed that eight
among them were antigenic while the remaining four proteins were non-antigenic and all the target
proteins were non-allergen (Table 2). The FLiS protein in B. burgdorferi B31 has several antigenic
epitopes having the potential as a vaccine candidate. The extracellular protein (FLiS; UniProt ID:
O51500_BORBU, accession no, NP_212684.1, KEGG ID: BBU02040) was found with a high antigenic
score of 0.42 as well as human non-allergen. Potential T-cell epitopes were predicted within the FLiS
protein for the prediction of an epitope-based subunit vaccine. The molecular weight of the FliS
protein was 16.45 kDa, while the theoretical pI was measured as 9.20 which indicated that this protein
should have a negative charge. The half-life of the vaccine was expected to be more than 10 h in E. coli
in vivo. The estimated rate of extinction and an aliphatic index were 15,470 and 115.66, respectively.
The protein’s computed GRAVY value was −0.253 while the index of instability (34.07) classified the
protein as stable. The results of predicted B-cell epitopes of FLiS protein are shown in (Figure 4).

3.8. Homology Modeling and Molecular Dynamic Simulation

Structure similarity search for B. burgdorferi B31 protein UDP-n-acetylmuramoyl-tripeptide-
D-alanyl-D-alanine ligase showed a 27% identity with crystal structure of unliganded CH59UA,
the inferred unmutated ancestor of the RV144 anti-HIV antibody lineage producing CH59 Protein
Data Bank (PDB ID 4QF5.1) (Figure 5I) and FLiS showed a 33.3% identity with a flagellar export
chaperone in complex with its cognate binding partner from Aquifex aeolicus (PDB ID 1ORY.1)
(Figure 6E). The A. phagocytophilum HZ protein preprotein translocase subunit SecY showed a
43.36% identity with crystal structure of the TEPC15-Vk45.1 anti-2-phenyl-5-oxazolone NQ16-113.8
scFv in complex with phOxGABA (PDB ID 3J45.1) (Figure 5H), chromosomal replication initiator
protein DnaA showed 35.53% identity with AMPPCP-bound DnaA from A. aeolicus (PDB ID 2HCB.1)
(Figure 5D), and aspartate-semialdehyde dehydrogenase showed 31.68% identity with aspartate
semialdehyde dehydrogenase complexed with glycerol and sulfate from Mycobacterium tuberculosis
H37Rv (PDB ID 3VOS) (Figure 5F). The E. chaffeensis str. Arkansas protein twin-arginine translocase
subunit TatC showed 34.62% identity with twin arginine translocase receptor-Tatc In DDM from A.
aeolicus (PDB ID 4HTT.1) (Figure 5C) and aspartate kinase showed 44.31% identity with aspartate
kinase from Synechocystis species (PDB ID 3L76.1) (Figure 5K). The R. rickettsii str. “Sheila Smith”
protein cytochrome d ubiquinol oxidase subunit II showed 12% identity with alternative complex
iii from Rhodothermus marinus (PDB ID 6F0K.1) (Figure 5E). The F. tularensis SCHU S4 protein
preprotein translocase subunit SecG showed a 52.11% identity with quaternary complex between
SRP, SR, and SecYEG bound to the translating ribosome from E. coli (PDB ID 5NCO.1) (Figure 5A),
UDP-N-acetylmuramate-l-alanine ligase showed a 37.27% identity with 2.25 angstrom resolution
crystal structure of UDP-n-acetylmuramate–L-alanine ligase (murC) from Yersinia pestis CO92 in
complex with AMP (PDB ID 4HV4.2) (Figure 5J), preprotein translocase subunit SecY showed a 62.32%
identity with EM fitted model of bacterial holo-translocon from E. coli (PDB ID 5MG3.1) (Figure 5B),
and UDP-N-acetylmuramoylalanyl-d-glutamate-2, 6-diaminopimelate ligase showed a 29.94% identity
with Staphylococcus aureus MurE with UDP-MurNAc- Ala-Glu-Lys and ADP (PDB ID 4C12) (Figure 5G).
A total of five models were generated for every drug target and vaccine candidate. However, molecular
dynamics simulation was done only for the predicted vaccine candidate. The generated model of
the vaccine candidate, FLiS protein (B. burgdorferi B31), was validated, and the evaluation of Psi and
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Phi dihedral angles for FLiS model revealed that high residues lie in favored regions as compared
to allowed regions (Figure 6C). The details of the binding site and binding site residues of vaccine
candidate (FliS protein) are shown in (Table 4).

 1 

Figure 4. B-cell epitope in the FLiS protein based on Parker hydrophilicity prediction (A). Bepipred 2 
linear epitope (B). Chou and Fasman β-turn prediction (C). Emini surface accessibility prediction (D). 3 
Karplus and Schulz flexibility prediction (E). Kolaskar and Tongaonkar antigenicity (F). The x-axis and 4 
y-axis represent the sequence position and corresponding antigenic properties score, respectively. The 5 
threshold level was set as default parameter of the server. The regions shown in yellow color above the 6 
threshold value were predicted as B-cell epitope. 7 

Figure 4. B-cell epitope in the FLiS protein based on Parker hydrophilicity prediction (A). Bepipred
linear epitope (B). Chou and Fasman β-turn prediction (C). Emini surface accessibility prediction (D).
Karplus and Schulz flexibility prediction (E). Kolaskar and Tongaonkar antigenicity (F). The x-axis
and y-axis represent the sequence position and corresponding antigenic properties score, respectively.
The threshold level was set as default parameter of the server. The regions shown in yellow color above
the threshold value were predicted as B-cell epitope.

Table 4. The predicted binding site for vaccine candidates and their interacting residues using the
COFACTOR server.

Protein Name Cscore LB PDB Hit TM-Score RMSD a IDEN a Cov. BS-Score Lig. Name Predicted Binding Site
Residues

NP_2126841

0.30 3asoC 0.697 2.53 0.034 0.891 0.94 CDL 24, 35, 112, 116

0.10 3ag4C 0.696 2.54 0.034 0.891 1.01 CDL 20, 24, 28, 31, 119

0.08 1ory0 0.952 0.95 0.336 0.975 1.47 III

8, 10, 13, 14, 19, 22, 24, 25,
28, 57, 60, 61, 64, 65, 68, 69,
70, 73, 74, 76, 77, 80, 83, 84,

85, 87, 106, 107, 109, 110,
113, 114, 117, 118, 120, 121

0.02 2eikC 0.697 2.53 0.034 0.891 0.84 CD 26, 30, 108, 112

Cscore LB: Confidence score (Cscore) for the ligand binding (LB). PDB: Protein Data Bank. TM-score: Two Model
comparison score. RMSD a: Root Mean Square Deviation is the RMSD between residue structurally aligned (a) by
TM-align. IDEN a: Identity in the structurally aligned (a) region. Cov: Represent the coverage. BS-score: Based on
structural similarity. Lig Name: Ligand name. CDL: Cardiolipin.
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Figure 5. Predicted 3D structure of drug target proteins, preprotein translocase subunit SecG
(F. tularensis SCHU S4) (A). Preprotein translocase subunit SecY (F. tularensis SCHU S4) (B).
Twin-arginine translocase subunit TatC (E. chaffeensis str. Arkansas) (C). Chromosomal replication
initiator protein DnaA (A. phagocytophilum HZ) (D). Cytochrome d ubiquinol oxidase subunit II
(R. rickettsii str. “Sheila Smith”) (E). Aspartate-semialdehyde dehydrogenase (A. phagocytophilum
HZ) (F). UDP-N-acetylmuramoylalanyl-d-glutamate-2,6-diaminopimelate ligase (F. tularensis SCHU
S4) (G). Preprotein translocase subunit SecY (A. phagocytophilum HZ) (H). UDP-N-acetymuramoyl-
tripeptide (B. burgdoferri B31) (I). UPD-N-acetymuramate-l-alanine ligase (F. tularensis SCHU S4) (J).
Aspartate kinase (E. chaffeensis str. Arkansas) (K).
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With constant improvement in algorithm design for simulations, MD simulations have played
an essential role in the development of novel therapeutics [115]. The FLiS structure was simulated in
an explicit water environment for 20 ns. The deviation of the backbone atoms was examined by the
root-mean-square deviation (RMSD). Consequently, the results of the backbone deviation relative to
the original structures revealed that the simulation time of 20 ns is enough to reach the equilibration
at temperature 298 K. It was observed from the RMSD graphs that the FLiS system initially behaves
systematically steady (~3 Å) till 6 ns. However, this steady behavior dramatically increased and then
oscillated around (~4 Å) until 20 ns (Figure 6A). To understand the effect of specific residues in the
FLiS system, we analyzed the root-mean-square fluctuations (RMSF) (Figure 6D). The results revealed
a high fluctuation in some residues (residues 38–45 and 65–78) which suggested that these residues
might play a crucial role in flagellin recognition [116]. The compactness of the system was analyzed
through radius of gyration (RoG) during MD simulation which showed high compactness during
7 ns, while showing local compactness afterward (Figure 6B). These results delineate that the FLiS
protein possesses a highly dynamic N-terminal region, which is appended to the standard four-helix
bundle structure, and further indicates that the FLiS could be used as a potential vaccine candidate
against TBPs.

4. Conclusions and Future Directions

Subtractive proteomics is a rapid approach for the screening of drug targets and vaccine candidates
against a pathogen provided both the pathogen and host proteomes are available. We applied a
subtractive proteomics approach to find essential and non-host homologous protein targets in the
proteome of TBPs which can be used as potential drug targets and vaccine candidates. Further analysis
of shortlisted targets, such as different metabolic pathways proteins, subcellular localization of targets,
antigenicity, allergenicity, and druggable properties, revealed eleven drug targets (cytoplasmic proteins)
and one vaccine candidate (membrane-bound protein). Inhibiting proteins involved in these metabolic
pathways will increase the susceptibility of TBPs to various drugs. The identified FliS protein has
immunogenic and allergenic potential, and further studies on various aspects of this protein will help
in understanding its diverse functions, development of a suitable vaccine against TBPs, and treatment
of allergenic diseases caused by TBPs. This study will facilitate the development of drug targets
and vaccine candidates against TBPs and may play a role in the prediction of targets against other
pathogens. Furthermore, the proposed vaccine needs to be validated experimentally in an animal
model by effective immunological methods to ensure the control of TBPs.
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