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Abstract: Porcine circovirus 2 (PCV2), considered one of the most globally important porcine
pathogens, causes postweaning multisystemic wasting syndrome (PMWS). This virus is localized
in the mitochondria in pigs with PMWS. Here, we identified, for the first time, a mitochondrial
localization signal (MLS) in the PCV2 capsid protein (Cap) at the N-terminus. PK-15 cells showed
colocalization of the MLS-EGFP fusion protein with mitochondria. Since the PCV2 Cap also con-
tained a nuclear localization signal (NLS) that mediated entry into the nucleus, we inferred that the
subcellular localization of the PCV2 Cap is inherently complex and dependent on the viral life cycle.
Furthermore, we also determined that deletion of the MLS attenuated Cap-induced apoptosis. More
importantly, the MLS was essential for PCV2 replication, as absence of the MLS resulted in failure of
virus rescue from cells infected with infectious clone DNA. In conclusion, the MLS of the PCV2 Cap
plays critical roles in Cap-induced apoptosis, and MLS deletion of Cap is lethal for virus rescue.

Keywords: PCV2; Cap; MLS; subcellular localization

1. Introduction

Porcine circovirus 2 (PCV2) is the primary pathogen causing postweaning multisys-
temic wasting syndrome (PMWS), an emerging swine disease first discovered in Western
Canada approximately 30 years ago [1–3]. PCV, the smallest virus to infect mammals,
belongs to the family Circoviridae and the genus Circovirus. Four genotypes of PCV
have been identified [1]. In addition to pathogenic PCV2, more recently, PCV3 and PCV4
have also been identified and are considered to be pathogenic, although PCV1 is not
pathogenic [4,5]. Currently, PCV2 is one of the most important pathogens in the swine
industry, due to its pathogenicity and continuous evolution [6].

PCV2 is a non-enveloped virus that packages a 1.7 kb single-stranded and circular
DNA genome containing two major open reading frames (ORFs). ORF1 encodes two
replication-associated proteins (Rep and Rep’) responsible for viral genome rolling loop
replication in the nucleus [7–9]. ORF2 encodes a unique structural protein, the capsid
protein (Cap), with 60 Cap subunits forming an icosahedral viral nucleocapsid that is
~17 nm in diameter [10,11]. Evidence from subcellular localization studies shows that the
Cap allows PCV2 to shuttle between the cytoplasm and the nucleus during the infection
cycle, due to the presence of a 41 amino acid nuclear localization signal (NLS) at its
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N-terminal end [12]. The Cap of PCV2 induced cell death and apoptosis in an epithelial
cell line [13–15], indicating that it plays an important role in viral pathogenesis. More
importantly, the Cap is also responsible for stimulating the production of neutralizing
antibodies in pigs, and this effect has been exploited in vaccine design [16–18].

The main histological features that define PMWS are lymphocyte depletion and cluster-
ing of histiocytes and/or multinucleated giant cells in lymphoid tissues [2,19,20]. Electron
microscopy studies have shown that the lymph nodes in pigs with PMWS have important
ultrastructural changes, including severe hyperplasia and swelling of the mitochondria,
as well as expansion and proliferation of the Golgi complex and rough endoplasmic
reticulum [21]. Various intracytoplasmic inclusion bodies (ICIs) and intranuclear inclusion
bodies (INIs) have been reported in macrophages, lymphocytes, hepatocytes, and epithe-
lial cells, with PCV2 virus-like particles (VLPs) arranged in paracrystalline arrays [22].
ICIs were often detected adjacent to and inside mitochondria with severe pathological
changes [23]. Specific immunogold labeling revealed the presence of a PCV2 antigen
associated with the inner and outer mitochondrial membranes, and the mitochondrial
antigen has been detected in ICIs [22]. These findings suggest that mitochondria play key
roles in the PCV2 life cycle; however, the mechanisms by which viral particles are localized
and transported to mitochondria are not well characterized.

In this study, we identified a mitochondrial localization signal (MLS) in the PCV2 Cap
protein, which demonstrated the critical role of the newly identified MLS in Cap-induced
apoptosis, and determined that infectious cloned DNA missing the MLS was incapable of
virus rescue, demonstrating that MLS deletion of Cap is lethal for virus rescue.

2. Materials and Methods
2.1. Cell Culture

PK-15 cells free of PCV1, graciously provided by Nanjing Agricultural University, were
maintained in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with L-glutamine (Life Technologies), 10% fetal bovine serum (FBS) (Life Technologies),
100 units/mL penicillin, and 100 mg/mL streptomycin (Life Technologies). The atmo-
sphere was 5% CO2 and the incubator was maintained at 37 ◦C. For passaging, cells
were digested with 0.25% trypsin (Life Technologies) and 10% FBS, after which they were
collected by low-intensity centrifugation (<200× g).

2.2. Plasmid Construction

The pcDNA3.1-EGFP vector was purchased from Addgene, and the PCV2 Cap gene
(GenBank accession number: MK281580) was synthesized by GenScript (Nanjing, China).
The plasmid containing Mito-DsRed, which targeted mitochondria, was kindly provided
by Dr. Yu Chen (Institute of Zoology, CAS, Beijing, China). The plasmids of Cap-EGFP,
Cap(1–64)-EGFP, Cap(1–41)-EGFP, Cap(42–64)-EGFP, Cap(1–22)-EGFP, Cap(16–64)-EGFP
and Cap(16–41)-EGFP were constructed by inserting Cap fragments of various lengths into
pcDNA3.1-EGFP. The Cap plasmid was obtained by deleting EGFP from Cap-EGFP, and
the Cap-DMLS (deletion of 16–41) plasmid was obtained by deletion of the MLS of Cap.
PCV2 infectious clone DNA was pre-constructed in our laboratory [24], and the infectious
clone DNA mutant of PCV2 was derived from it, with the MLS sequence deleted.

2.3. Cell Transfection

A transfection reagent (Chemifect; Fengrbio, Beijing, China) was used to transfect
DNA into cells. Before transfection, Opti-MEME (Life Technologies, Carlsbad, CA, USA),
a plasmid, and the transfection reagent were mixed in a specific ratio (200 µL:2 µg:3 µL)
for 30 min. Meanwhile, cells were digested and seeded into the cell culture dishes at the
appropriate density. The mixture was then added to the cells, and downstream experiments
were performed after 24 h or 48 h.
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2.4. Virus Rescue

After transfection with PCV2 infectious clone DNA and mutant DNA, PK15 cells
were cultured and passaged for several generations. For each generation, half of the cells
were retained for extraction of total DNA using a plasmid extraction kit (Tiangen, Beijing,
China). To detect the viral genomic DNA in transfected and passaged cells, real-time
PCR was performed using an ABI PCR system (Applied Biosystems, Waltham, MA, USA)
with the extracted total DNA as the template. The primer sequences were as follows:
pPCV2-Cap-qpcr-F: ctgttttcgaacgcagtgcc and pPCV2-Cap-qpcr-R: aactactcctcccgccatac.

2.5. Immunofluorescence Assay

Cells were fixed with 4% paraformaldehyde (PFA) (Solarbio, Beijing, China) for 15 min
and washed three times with 1× PBS (Life Technologies, Carlsbad, CA, USA), for 5 min
each time. Next, 5% BSA (Sigma-Aldrich, St. Louis, MO, USA) in 1× PBS containing
0.2% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) was used to block non-specific
binding, after which cells were incubated with the primary antibody (anti-PCV2, rabbit
polyclonal, 1:500 dilution) diluted in 1× PBS with 1% BSA for 1 h. Cells were washed with
1× PBS three times, for 5 min each time. Next, cells were incubated with the secondary
antibody conjugated with Alexa-488 (Invitrogen, Carlsbad, CA, USA) (anti-rabbit, goat
polyclonal, 1:1000 dilution) diluted in 1× PBS with 1% BSA for 50 min and washed with
1× PBS three times, for 5 min each time. To indicate the nucleus, cells were stained with
DAPI (Invitrogen, Carlsbad, CA, USA) for 5 min and washed with 1× PBS three times, for
5 min each time. For imaging, cells were maintained in 1× PBS, which enabled storage for
up to 1 week. To preserve cells for longer intervals, they were washed three times with
sterile water to remove salts, air-dried, and sealed for storage at 4 ◦C.

2.6. Confocal Laser Scanning Microscopy

To allow imaging of the subcellular localization of the PCV2 Cap and mutants,
5 × 105 cells were placed into a 35 mm glass-bottomed Petri dish and transfected with
2 µg plasmid. At 24 h after transfection, confocal images were recorded using a Live
SR spinning disk confocal microscope (Live SR CSU W1, Nikon, Japan) equipped with
a sCMOS Prime 95B (Nikon, Japan) and a 100 × 1.4 NA oil objective (Nikon, Japan). To
image cells transfected with infectious clone DNA, cells from passage 4 were added to a
35 mm glass-bottomed Petri dish. After cell attachment, cells were fixed, and the indirect
immunofluorescence assay (IFA) was performed as described above. Confocal images
were recorded with a Live SR spinning disk confocal microscope (Live SR CSU W1, Nikon,
Japan) equipped with a sCMOS Prime 95B (Nikon, Japan) and a 10× objective (Nikon,
Japan). DAPI, EGFP/Alexa-488, RFP/Alexa-561, and Alexa-647 were excited with 405,
488, 561 and 647 nm lasers, respectively. Images in nd2 format were analyzed with ImageJ
(National Institutes of Health, Bethesda, MD, USA).

2.7. Flow Cytometry

For detection of apoptosis, cells were transfected with a plasmid (Cap and Cap-DMLS)
for 24 h, digested, collected in 1.5 mL tubes and stained with an Annexin-V/PI staining kit
(Solarbio, Beijing, China) according to the manufacturer’s instructions. Thereafter, cells
were analyzed by flow cytometry (BD FACSVerse, BD Biosciences, San Jose, CA, USA).
For each group, 10,000 cells were recorded. Finally, raw data were analyzed with FlowJo
software (BD Biosciences, San Jose, CA, USA).

2.8. Prediction of the Cellular Localization of Proteins

Prediction analysis was performed using the amino acid (aa) sequences of the PCV2
Cap protein (ID: O56129), thioredoxin (ID: Q99757) and nucleolin 1 (ID: Q9FVQ1). Two
internet-based tools, WoLF PSORTII [25] and PSORT II [26], were used to predict the
cellular localization of proteins based on their amino acid sequences.
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3. Results
3.1. Prediction of the MLS in PCV2

Two prediction servers (PSORTII [26] and WoLF PSORTII [25]) were used to predict
the subcellular location of PCV2 Cap. We first tested the reliability of the two methods with
the following two proteins, whose subcellular localization was well known: thioredoxin
and nucleolin 1. Thioredoxin is localized to the mitochondria and is important for the
control of mitochondrial reactive oxygen species homeostasis, apoptosis regulation, and
cell viability. In contrast, nucleolin 1 is localized in the nucleus and is associated with
intranuclear chromatin and pro-ribosomal granules. The predicted results were consistent
with the established cellular localization of thioredoxin and nucleolin 1 (Table 1).

Table 1. Prediction of the subcellular localization of proteins.

PCV2 Cap PSORII (%) WoLF PSORTII (%)

Mitochondrion 56.5 15.0
Nucleus 34.8 14.0

Cytoplasm 8.7 3.0

Thioredoxin

Mitochondrion 95.0 31.0
Nucleus 4.3 0

Cytoplasm 0 0

Nucleolin 1

Mitochondrion 0 0
Nucleus 91.3 32.0

Cytoplasm 4.3 0

For PCV2 Cap, PSORTII and WoLF PSORTII clearly predicted cellular localization
in the mitochondria (Table 1). Although the nucleus was also identified as a potential
location of PCV2 Cap, its probability was lower than that of the mitochondria. The WoLF
PSORTII algorithm revealed high similarity between PCV2 and many proteins localized
in the mitochondria, including thymidine kinase 2, which phosphorylates thymidine
and deoxycytidine in the mitochondrial matrix. The PSORT II algorithm predicted that,
for the N-terminal 64 amino acid cleavable signal peptide, the predicted probabilities
of mitochondrial localization and nuclear localization are 56.5% and 34.8%, respectively
(Figure 1).
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Figure 1. Schematic diagram of the PCV2 capsid protein sequence with the NLS region and predicted
cleavage site (red arrow) indicated. The sequence of the predicted MLS used in this study is shown
below, where an α-helix is marked in orange.

3.2. The PCV2 Cap Protein (16–42) Region Functions as a Mitochondrial Localization Signal

To confirm the location of the MLS of the PCV2 Cap protein, we first fused the pre-
dicted MLS (1–64) with the EGFP Cap(1–64)-EGFP and transfected the resulting fusion
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protein into PK15 cells to observe its subcellular localization by confocal fluorescence
microscopy. Cap(1–64)-EGFP was mainly localized in the nucleus after 24 h of transfection,
consistent with Cap(1–41) (Figure 2A,B). By analyzing the distribution of the fluorescent
signal, we concluded that Cap(1–64)-EGFP should be trapped in the nucleolus. Consid-
ering that the NLS of the Cap protein may affect the function of the MLS, a truncated
mutant removal of NLS Cap(42–64)-EGFP was constructed and transfected into PK15
cells. Confocal imaging showed that the subcellular location of Cap(42–64)-EGFP was
similar to that of EGFP expressed alone, presenting a diffuse distribution in the nucleus
and cytoplasm (Figure 2B). Summarizing these results, we proposed the hypothesis that the
NLS of Cap may have dual localization functions. To verify this hypothesis, we constructed
two truncated mutants, Cap(1–22)-EGFP and Cap(16–41)-EGFP, based on the structural
features of NLS, containing one α-helix and two disordered fragments (Figure 2A). Then,
we transfected them into PK15 cells and confirmed their subcellular localization with con-
focal fluorescence microscopy. Surprisingly, Cap(16–41)-EGFP had a rod-like and granular
distribution, and was mainly localized in the cytoplasm 24 h after transfection; this finding
was completely distinct from the previously observed nucleolar distribution (Figure 2B).
More importantly, Cap(16–41)-EGFP co-localized with the mitochondria, which were iden-
tified with TXN2-DsRed (Figure 2D). Cap(1–22)-EGFP exhibited a nuclear distribution,
and it was found to be trapped in the nucleolus and co-localized with fibrillarin (FBL)
(Figure 2C). These results strongly suggest that the N-terminal Cap (16–41) can function as
an MLS. The N-terminus of the Cap protein has dual localization functions; the NLS is the
dominant signal, whereas the mitochondrial signal may function at specific periods during
viral infection.

3.3. The MLS of the PCV2 Cap Plays a Role in Cap-Induced Apoptosis

The PCV2 Cap has been reported to induce mitochondrial apoptosis in PK15 cells.
To confirm the role of the MLS in Cap-induced apoptosis, a Cap mutant (Cap-DMLS),
with an MLS deletion, was constructed and transfected into PK15 cells. Apoptosis was
monitored for 24 h after transfection of the cells with plasmids. The apoptosis rate of the
cells transfected with Cap-DMLS (11.7%) was significantly decreased compared to that of
the cells transfected with wild-type Cap (16.8%) in PK15 cells, demonstrating that the Cap
MLS plays a role in Cap-induced apoptosis (Figure 3A,B).

3.4. The MLS of the PCV2 Capsid Protein Is Critical for Viral Propagation

In a previous study, PCV2 was rescued from PK-15 cells transfected with an infectious
DNA clone containing two copies of stem loops, but not rescued from cells transfected
with a DNA clone carrying only one copy of the stem loop [24]. To determine the function
of the MLS, an infectious DNA clone mutant, with deletion of the MLS, was prepared and
transfected into PK-15 cells. In the PK-15 cell culture, the viral genome of the Cap-DMLS
mutant was not detectable after passage 4, consistent with a negative control containing
only one copy of the stem loop, whereas a stable copy number of viral genomic DNA
was detected in the positive control containing two copies of stem loops until passage 8
(Figure 4B). Indirect immunofluorescence assays (IFA) for the Cap protein in cells of the
fourth generation also revealed that PCV2 was not rescued from the Cap-DMLS mutant
(Figure 4A). These results strongly suggested that the MLS deletion of Cap is lethal for
virus rescue.
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Figure 2. Subcellular localization of PCV2 Cap and mutations. (A) The sequence information of
recombinant protein Cap-EGFP and mutations. (B) Confocal images of the over-expressed Cap(1–
64)-EGFP, Cap(1–41)-EGFP, Cap(42–64)-EGFP, Cap(1–22)-EGFP, Cap(16–41)-EGFP and EGFP in PK15
cells. EGFP signal was indicated in green in PK15 cells. Scale bar: 10 µm. (C) Co-localization of
Cap(1–22)-EGFP (green) and FBL (red) in PK15 cells. (D) Co-localization of Cap(16–41)-EGFP (green)
and TXN2-DsRed (red) in PK15 cells.
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Figure 3. Apoptosis of PCV2 Cap and Cap-DMLS in PK15 cells was analyzed by flow cytometry.
PK-15 cells were transfected with recombinant plasmids of Cap and Cap–DMLS for 24 h. Precipitated
cells were acquired by centrifugation, stained with Annexin-V/ propidium iodide (PI) staining kit
and detected using flow cytometry. (A) Scatter plot of representative flow cytometry of Annexin-
FITC (X-axis) and propidium iodide (PI) (Y-axis). Cells expressing Cap (left panel), cells expressing
Cap-DMLS (middle panel), and cells with no DNA transfected as control (right panel). (B) Bar graph
presented the average quantitative results of three independent flow cytometry experiments in PK15
cells (*** p < 0.001).
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infectious clone DNA of WT (positive control, PC) and mutant, and immunofluorescence staining
of PCV2 Cap. The infectious clone DNA containing only one copy of stem loop was transfected as
negative control (NC). Green signal indicated the Cap and blue signal indicated the nucleus. Scale
bar: 100 µm. (B) PCV2 genomic copies in each passage were detected by quantitative real-time PCR.
The horizontal axis represented the numbers of cell passages, whereas the vertical axis represented
the viral genomic copies. The results of three independent experiments were used to analyze.
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4. Discussion

Mitochondria are double membrane-bound organelles present in most eukaryotes;
their most important function is to generate energy through oxidative phosphorylation [27].
In addition, mitochondria are involved in a variety of cellular metabolic processes, in-
cluding proliferation, differentiation, apoptosis, senescence, and calcium homeostasis [27].
Alterations in mitochondrial function and morphology can cause a variety of diseases [28].
Mitochondria have an important role in viral infections [29,30]. Most mitochondrial pro-
teins are localized to the mitochondria by the MLS; for example, apoptosis-inducing factor
(AIF) and endonuclease G are involved in apoptosis, and both proteins have an MLS located
at the N-terminus [31]. The MLS possess the following several common features: (1) they
are mostly located at the N-terminal of the peptide chain and consist of 15–70 amino acids;
(2) they have no negatively charged amino acids and form an amphipathic α-helix; (3) there
is no specificity requirement for the protein being transported, and non-mitochondrial
proteins attached to such signal sequences will also be transported to the mitochondria.
PCV2 infection has been shown to lead to apoptosis, although the mechanism underlying
this effect is not fully understood [32]. PCV2 Cap, but not PCV2 Rep, induced caspase-3
cleavage, indicating that PCV2 induced apoptosis [15]. The ORF3 protein of PCV2 induced
apoptosis alone, involving the caspase-8 pathway [33]. More importantly, the Cap also
induced ORF3-independent mitochondrial apoptosis via PERK activation and elevation of
cytosolic calcium concentrations [34]. Previous studies have shown that the N-terminal
of PCV2 Cap was highly conserved [35], contains an α-helix (16–22), and is rich in posi-
tively charged basic residues [36]. In this study, the subcellular location of PCV2 Cap was
predicted, and the results showed that the PCV2 Cap was found to have high similarity
with many mitochondrial proteins, and the probability of PCV2 Cap localization to the
mitochondria was 56.5% over 34.8% for nuclear localization, suggesting that the PCV2
Cap may have an MLS. Confocal fluorescence images clearly demonstrated that PCV2
Cap(16–41) co-localized perfectly with mitochondrial markers, suggesting that it functions
as an MLS (Figure 2B,D). More importantly, removal of the MLS attenuated Cap-induced
apoptosis (Figure 3B). This is known; the novelty is that the MLS sequence contributes
to apoptosis. In addition, Cap(1–22) could perform the functions of the NLS, similarly to
Cap(1–41) (Figure 2B), suggesting that the NLS of PCV2 Cap requires redefinition and the
mechanisms of nuclear transport need to be further investigated.

The replication site of PCV2 has been controversial. PCV2 replicates in the nucleus in
mitotic cells via a process dependent on host cellular DNA polymerase. In contrast, in non-
dividing macrophages, PCV2 may replicate in the mitochondria in a specific manner [37,38],
as indicated by the presence of aggregated immature viral particles in mitochondria [21,22].
Exploration of the ultrastructure of PCV2-infected cells revealed ICIs, composed of PCV2
VLPs, surrounding and filling proliferating and severely swollen mitochondria [22]. In this
study, we determined that the MLS of the PCV2 Cap is contained in its NLS, indicating
that the process of PCV2 Cap protein subcellular localization is complex, and suggesting
the possibility that PCV2 shuttles between the mitochondria and the nucleus in specific
cell types, at certain times during infection. Furthermore, we investigated the relationship
between the PCV2 Cap MLS and virus replication. We attempted to rescue the virus from
cells infected with clone DNA missing the MLS; however, deletion of the MLS resulted in
the failure of virus rescue (Figure 4A,B), suggesting that MLS deletion of Cap is lethal for
virus rescue. Therefore, the relationship between the PCV2 MLS and viral replication in
primary cells requires further confirmation.

In summary, the MLS of the PCV2 Cap protein was identified for the first time, and
it was found to play an essential role in virus rescue in PK-15. These findings provide
insights into the mechanisms underlying the subcellular localization and replication of
circovirus, as well as a new target for antiviral compounds.
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