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Abstract: Chickens continue to be an important reservoir of zoonotic multidrug-resistant illnesses.
Antimicrobial resistance correlated with colistin has emerged as a critical concern worldwide in
the veterinary field and the public health sector. The current study investigated the prevalence of
multidrug-resistant avian pathogenic Escherichia coli among chicken farms in three Egyptian gover-
norates, focusing on colistin resistance assessment. A total of 56 Escherichia coli isolates were recovered
out of 120 pooled samples obtained from diseased chicken broilers (46.7%). The E. coli isolates were
serotyped to nine different serotypes; the highest incidence was for O125 (n = 18). The E. coli isolates
demonstrated multidrug-resistant patterns against 10 antibiotics, especially clindamycin, tetracy-
cline, streptomycin and ampicillin, by 100, 100, 96.4 and 92.9%, respectively. On the other hand,
colistin resistance was 41.1% using AST. All E. coli isolates displayed positive colistin resistance
growth on chromogenic medium, but only 25% represented this positivity via MIC estimation and
Sensititre kit. PCR results revealed that all isolates harbored mcr-1, but no isolates harbored the
other 2–5 mcr genes. In conclusion, the study demonstrated the emergence of multidrug-resistant,
especially colistin-resistant, E. coli among chicken broiler flocks, and mcr-1 is the master gene of the
colistin resistance feature.

Keywords: APEC; colistin resistance; mcr-1; Egypt

1. Introduction

Currently, avian pathogenic E. coli (APEC) is a significant issue due to its pathogenicity
and implication in poultry deaths. On the other side, it threatens public health via the
harboring and transferring of antibiotic resistance genes around the world. The production
birds (broilers, layers, breeding flocks, ducks and geese) infected with APEC usually show
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colibacillosis and colisepticemia signs, such as airsacculitis, cellulitis, omphailitis, pericardi-
tis, perihepatitis, swollen-head syndrome, and other colibacillosis manifestations [1]. The
antimicrobial resistance phenomenon (AMR) among avian E. coli isolates has become a uni-
versal health apprehension in the last decades. Antimicrobial usage in poultry production
has been well reported as a likely source of AMR in humans via either a direct transfer of
AMR bacteria or the horizontal transfer of the genes responsible for antimicrobial resistance
(ARGs) to human pathogens [2]. Colistin is one of the most often used antimicrobials in
veterinary practice, particularly in underdeveloped nations such as Egypt, where excessive
antimicrobial usage (AMU) is typically unregulated [3].

Colistin (polymyxin E) shares a high degree of structural resemblance with well-
known polymyxin B. It consists of a cationic peptide ring of seven amino acids linked to a
hydrophobic acyl tail by a linear series of three amino acids, which plays a role in its mode
of action [4]. Colistin is promptly bactericidal on Gram-negative bacteria in vitro but is
considerably less effective in vivo. This shortage may be overcome by combination with
certain other antibiotics in therapeutic programs [5].

However, it has been clearly affirmed that colistin’s combination with the lipopolysac-
charide (LPS) layer on Gram-negative bacteria’s surface causes the outer membrane (OM)
to be disrupted, and consequently, cell lysis and bacterial death occur. It is suggested that
the positively charged peptide ring and hydrophobic tail structure produce a detergent-like
activity and lead to damage of the cell membrane’s phospholipid bilayer [6]. In human
medicine, the development of resistance to colistin is worrisome because the drug is con-
sidered a last resort for the treatment of grave illnesses caused by multi-drug-resistant
Enterobacteriaceae bacteria [7].

Prior to 2015, chromosomal mutations were thought to be the only cause of the
induction of colistin resistance. Later, many reports from various countries recorded
resistance in other ways, and plasmid-mediated colistin resistance and nine mcr genes
(mcr-1 to mcr-9) with some variations have since been found [8].

International attention has been directed to the one-health concept and the potential of
livestock zoonotic, drug-resistant bacteria as a human health hazard. This study aimed to
investigate the existence of mcr-1 as well as other mcr genes associated with the emerging
colistin resistance among E. coli isolates obtained from infected broilers from some farms
distributed in the middle and delta regions in Egypt and the relation between this form of
genetic detection and other phenotypic methods.

2. Material and Methods
2.1. Sample Collection

The gathered samples were taken from 120 poultry farms located in various geograph-
ical regions in Egypt’s middle and delta regions (Dakahlia, Sharqia and Giza Governorates)
from October 2019 to October 2020. Five diseased broiler chickens aged from 1 to 5 weeks
were gathered from each farm and pooled to constitute one sample. The sampled chickens
manifested depression, loss of appetite and ruffled feathers.

Birds were transmitted to the Reference Laboratory for Veterinary Quality Control on
Poultry Production, AHRI, Giza, Egypt. The taken samples were exposed to post mortem
inspection under aseptic conditions. Samples were taken from internal organs (heart, liver,
lung and spleen) of birds that displayed colisepticemia, air sacculitis, pericarditis and
perihepatitis, then pooled together for bacterial examination and isolation. All sample
collection steps were legally consented by the Ethics Committee of the Animal Health
Research Institute, Egypt, under agreement number (AHRI-42429).

2.2. Isolation and Identification

E. coli was recovered and identified as depicted [1]. Concisely, samples were inoculated
into buffer peptone water and incubated aerobically for 24 h at 37 ◦C. Each incubated sample
was streaked onto MacConkey agar (Oxoid, Manchester, UK) and eosin methylene blue
agar (Lioflichem, Roseto degli Abruzzi, Italy) plates and incubated for 24 h at 37 ◦C. On
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MacConkey agar, the suspected colonies were 1–2 mm in diameter and had a hot-pink
color, whereas on eosin methylene blue agar, they had a metallic color and sheen.

Suspected pure E. coli colonies were collected and subjected to further classical bio-
chemical screening (oxidase test, citrate utilization, indole test, methyl red, Voges Proskauer
and Triple Sugar Iron “TSI”) as well as using the API 20E system (BioMérieux, Craponne,
France) following the manufacturer’s guidelines. Furthermore, antisera against somatic
(O) antigens (DENKA SEIKEN Co., Tokyo, Japan) were used for serotyping isolated E. coli
following the kit instructions.

2.3. Antimicrobial and Colistin Susceptability Patterns of E. coli Isolates
2.3.1. Antimicrobial Sensitivity Test (AST)

All E.coli isolates were subjected to AST using the disc diffusion test on Mueller–Hinton
agar, as previously described [9], against 10 antibiotics (Oxoid, Basingstoke, UK), and
inhibition zones were interpreted following the guidelines of the Clinical and Laboratory
Standards Institute (CLSI) [10]. The following antibiotic discs were used: ampicillin (AMP)
10 µg, apramycin (APR) 30µg, ciprofloxacin (CIP) 5 µg, clindamycin (DA) 2 µg, colistin
sulphate (CT) 10 µg, norfloxacin (NOR) 10 µg, spectinomycin (SPT) 100 µg, streptomycin
(S) 10 µg, sulfamethoxazole–trimethoprim (SXT) 23.75 + 1.25 = 25 µg and tetracycline (TE)
30 µg.

2.3.2. Assessment of Colistin Resistance by Chromogenic Medium

The obtained isolates were streaked onto CHROMagarTM COL-APSE base (CHRO-
Magar, Paris, France). The chromogenic medium was used to detect and isolate colistin-
resistant Gram-negative pathogens. The positive colistin resistance E. coli growth is repre-
sented by dark pink to reddish colonies.

2.3.3. Quantitative Determination of Colistin Resistance (E-Test)

All E. coli isolates were checked to quantitatively determine colistin minimum in-
hibitory concentration (MIC). Colistin Ezy MIC strip (CL) (0.016–256 µg/mL) (Himedia®,
Mumbai, India) was applied according to the kit instuctions. The MIC reading was
interpreted following CLSI guidelines [10], with ≤2 µg/mL indicating sensitivity and
≥4 µg/mL indicating resistance.

2.3.4. Quantitative Determination of Colistin by Minimum Inhibitory Concentration (MIC)

Further testing was carried out for confirmation of MIC results on randomly selected
E. coli isolates (n ≈ 20) shoing different degrees of colistin resistance in E-test using
SensititreTM GNX3F kit (Thermo scientific, Loughborough, UK), which is a commercial
broth microdilution kit of a 96-well plate coated with different concentrations of colistin
(0.25, 0.5, 1, 2 and 4 µg/mL). The concentration reading depends on the sediment appearing
on the bottom of the 96-well plate; when no sedement appears in all concentrations, it
means MIC ≤0.25 µg/mL and the result was measured for the last sediment appearing. Of
note, isolates with an MIC value of ≤2 µg/mL were deemed sensitive while those with
≥4 µg/mL were counted as resistant, following CLSI guidelines [10].

2.3.5. Genotypic Characterizations of Colistin Resistance of E. coli Isolates

Genomic DNA was reduced from cultured bacteria via Purification Kit (Roche Diag-
nostics, Mannheim, Germany) following the manufacturer’s instructions. Consicely, at
56 ◦C/10 min, a 200 µL sample bacterial culture was treated with 10 µL of proteinase K and
200 µL of lysis buffer. After incubation, the lysate was given 200 µL of 100% ethanol. After
washing and centrifuging the sample, the nucleic acid was eluted with 100 µL of elution
buffer. All E. coli isolates were tested using primers specific for the existence of colistin
resistance genes mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5, supplied from Metabion (Planegg,
Germany), as previously described and listed in Table 1. The previously extracted DNA
underwent conventional PCR assays using EmeraldAmp Max PCR Master Mix (Takara,



Vet. Sci. 2022, 9, 282 4 of 10

Japan). Amplification was carried out using an Applied biosystem 2720 thermal cycler.
Each cycle consisted of a primary denaturation (1 cycle) for 5 min at 94 ◦C, except for
mcr-3 at 95 ◦C. All subsequent steps are illustrated in Table 1. The PCR products were
electrophoresed in 1× TBE buffer at room temperature using 5 V/cm gradients on 1.5%
agarose gel (Applichem GmbH, Darmstadt, Germany). For gel analysis, 20 µL of the prod-
ucts were placed in each gel slot. The fragment sizes were defined using a GelPilot 100 bp
plus DNA Ladder (Qiagen GmbH, Hilden, Germany) and 100 bp DNA ladder (Genedirex,
Taoyuan, Taiwan). A gel documentation system (Alpha Innotech, Biometra, Jena, Germany)
was used to photograph the gel, and the data was processed via computer software.

Table 1. Primer sequences, objective genes, amplicon sizes and cycling conditions.

Target Gene Primers Sequences Amplified
Segment (bp)

Amplification (35 Cycles)
Final

Extension ReferenceSecondary
Denaturation Annealing Extension

mcr-1
CGGTCAGTCCGTTTGTTC

309 94 ◦C
30 s

55 ◦C
30 s

72 ◦C
30 s

72 ◦C
10 min

[11]
CTTGGTCGGTCTGTAGGG

mcr-2
TGGTACAGCCCCTTTATT

1617 94 ◦C
30 s

55 ◦C
40 s

72 ◦C
1.2 min

72 ◦C
12 min

[12]
GCTTGAGATTGGGTTATGA

mcr-3
TTGGCACTGTATTTTGCATTT

542 94 ◦C
30 s

50 ◦C
40 s

72 ◦C
45 s

72 ◦C
10 min

[13]
TTAACGAAATTGGCTGGAACA

mcr-4
ATTGGGATAGTCGCCTTTTT

487 94 ◦C
30 s

54 ◦C
40 s

72 ◦C
45 s

72 ◦C
10 min

[14]
TTACAGCCAGAATCATTATCA

mcr-5
ATGCGGTTGTCTGCATTTATC

1644 94 ◦C
30 s

50 ◦C
40 s

72 ◦C
1.2 min

72 ◦C
12 min

[15]
TCATTGTGGTTGTCCTTTTCTG

3. Results
3.1. E. coli Isolation, Biochemical Characterization and Serotyping

In total, 56 out of 120 samples indicated that their farms were positive for E. coli, with
a recovery percentage of 46.7%. The E. coli isolates were accounted for from the pooled
internal organs (heart, liver, lung and spleen) of ill broiler chickens gathered from poultry
farms located in the Giza, Dakahlia and Sharqia governorates from October 2019 to October
2020. On MacConkey agar, the suspected colonies were 1–2 mm in diameter and of a
hot-pink color, whereas on eosin methylene blue agar, they had a metallic color and sheen.
One pure colony from each positive sample was further biochemically identified. The
isolates demonstrated acidic slant with gas production bottom on TSI, positive reaction for
catalase, indole and methyl red while negative for oxidase, VP and citrate production tests,
with the biochemical profiles obtained via the API 20E system, as displayed in Figure 1.
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Figure 1. The biochemical profile of obtained E. coli isolates via API 20E system.

The E. coli isolates were serotyped to nine different serotypes; the isolate with the
highest incidence was O125 (n = 18), followed by O55 (n = 8) and O86 (n = 7), while the
other serotypes were O111 (n = 6), O127 (n = 5), O159 (n = 4), O18 (n = 4) O157 (n = 2) and
O166 (n = 2).
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3.2. Antimicrobial Senstivity Patterns of the Isolated E. coli
3.2.1. Antimicrobial Sensitivity Test (AST)

In our study, the various isolates were tested for their susceptibility to groups of
common, commercially used antibiotics. The E. coli isolates showed a high resistance
pattern against clindamycin (56/56, 100%) and tetracycline (56/56, 100%), followed by
streptomycin (54/56, 96.4%) and ampicillin (52/56, 92.9%). At the same time, colistin
resistance was (23/56, 41.1%). The complete susceptibility pattern is shown in Table 2.

Table 2. Antimicrobial sensitivity patterns of isolated E. coli from poultry.

Antimicrobial Agent
E. coli (56) Poultry Isolates

Resistant No. (%) * Intermediate No. (%) * Sensitive No. (%) *

Ampicillin (AMP10) 52 (92.9%) 4 (7.1%) 0 (0%)

Apramycin (APR30) 40 (71.4%) 7 (12.5%) 9 (16.1%)

Ciprofloxacin (CIP5) 37 (66.1%) 7 (12.5%) 12 (21.4%)

Clindamycin (DA2) 56 (100%) 0 (0%) 0 (0%)

Colistin Sulphate (CT10) 23 (41.1%) 0 (0%) 33 (58.9%)

Norfloxacin (NOR10) 37 (66.1%) 4 (7.1%) 15 (26.8%)

Spectinomycin (SPT100) 31 (55.2%) 0 (0%) 25 (44.6%)

Streptomycin (S10) 54 (96.4%) 0 (0%) 2 (3.6%)

Sulfamethoxazole–Trimethoprim (SXT25) 46 (82.1%) 1 (1.8%) 9 (16.1%)

Tetracycline (T30) 56 (100%) 0 (0%) 0 (0%)

* Percentage of positive samples.

3.2.2. Growth on Chromogenic Medium

All 56 tested E. coli isolates appeared to have dark pink to reddish colonies on CHROMagarTM

COL-APSE, so it can be concluded that all isolates were colistin resistant.

3.2.3. Quantitative Determination of Colistin Resistance MIC by E-Test

Upon examination of 56 E. coli isolates using Colistin Ezy MIC strip (CL) (0.016–256 µg/mL),
only 14 isolates displayed resistance to colistin (MIC ≥ 4 µg/mL) with a percentage of 25%
or greater ( Figure 2).
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Hinton agar plates.

3.2.4. Confirmatory Quantitative Determination of Colistin Resistance MIC by Sensititre

The data of the Sensititre kit for the examined 20 E. coli isolates showed great similarity
with that obtained by E- test. The same results were obtained in 19 out of 20 isolates (95%),
as shown in Table 3.
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Table 3. Comparison of MIC values determined by Sensititre with those of E-Test.

Code No. E-Test (µg/mL) Interpretation Sensititre (µg/mL) Interpretation

1 1 S ≤0.25 S

2 4 R =2 S

3 1 S ≤0.25 S

4 2 S =2 S

5 1 S ≤0.25 S

6 4 R =4 R

7 1.5 S ≤0.25 S

8 1 S ≤0.25 S

9 4 R >4 R

10 1 S =0.5 S

11 1.5 S ≤0.25 S

12 1.5 S ≤0.25 S

13 1 S ≤0.25 S

14 1 S ≤0.25 S

15 4 R =4 R

16 1 S =0.5 S

17 2 S =2 S

18 0.75 S ≤0.25 S

19 0.75 S =1 S

20 4 R >4 R
(S) referred to sensitive while (R) referred to resistant to colistin.

3.2.5. Genotypic Characterizations of Colistin Resistance

All 56 E. coli isolates were positive only for the mcr-1 gene and negative for the rest of
the colistin-resistance genes, as shown in Figure 3.
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4. Discussion

This study investigated the incidence of pathogenic multidrug resistant E. coli among
Egyptian farms in the Dakahlia, Giza and Sharqia governorates, highlighting the colistin
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resistance profiles. Overall, 56 out of 120 pooled samples showed positive isolation and
biochemical identification of E. coli, with an incidence of 46.7%. Our result may be higher
than the usual average (9.52 to 36.73%) mentioned by Lutful Kabir [16], who stated that
the most susceptible age was 4 to 6 weeks. For instance, in the United States, it is reported
that APEC was recovered from at least 30% of commercial flocks at every point in time [17].
Notably, the higher-than-average incidences may be common in developing countries
such as Egypt. Awad et al. [18] reported a near prevalence of 51.85%. Additionally,
Mohamed et al. [19] isolated 92 isolates from the internal organs of dead broiler chickens
and also recovered 32 isolates from the cloacal swabs or feces of apparently healthy broiler
chickens. The samples were gathered from six Algerian veterinary clinics. Another very
high incidence of APEC isolates (89.2%) was reported in Pakistan [20]. Our data revealed
that the E. coli isolates were typed serologically to nine different serotypes. with the
serotype with the highest incidence being O125 (n = 18), followed by O55 (n = 8) and O86
(n = 7), while the other serotypes were O111 (n = 6), O127 (n = 5), O159 (n = 4), O18 (n = 4),
O157 (n = 2) and O166 (n = 2). These findings coincide with previous studies [18,21] but
differ from those isolated in Jordan (O1, O2, O25 and O78) [22]. Multiple E. coli serotypes,
specified as “avian pathogenic E. coli” (APEC), are the etiology of colibacillosis, which is
considered one of the major causes implicated in mortality (up to 20%) as well as morbidity
and which results in the lowering of meat and egg production among poultry flocks
worldwide [23]. Certain APEC serotypes have been reported as a prospective foodborne
zoonotic pathogens as well as a reservoir or source of extra-intestinal infections in humans
(i.e., the O18, O55, O125 and, of special concern, O157 serogroups) [24].

The investigated E. coli isolates displayed multidrug resistance behavior against the
tested antibiotics with different patterns, as shown in Table 2. The high resistance to
clindamycin, tetracycline, streptomycin, ampicillin and sulfamethoxazole–trimethoprim
was mentioned in other reports [18,20,22,25–27].

Concerning our drug of focus, colistin, the AST revealed resistance of 41.1%, and other
Egyptian studies have recorded extreme variations in colistin resistance–associated APEC.
Awad et al. [18] reported a high incidence (92.31%) among 54 broiler flocks in two North
Delta governorates. On the other hand, Moawad et al. [3] mentioned a low incidence (7.9%)
from 48 broiler farms located in five governorates in northern Egypt. Additionally, the
study addressed the isolated E. coli strains for colistin-associated resistance linked with the
mcr genes. Special effort was made to detect the mcr genes responsible for the emergence of
colistin resistance due to its importance as one of the last drugs of resort for the treatment
of infections in humans.

All E.coli isolates (56/56, 100%) displayed dark pink to reddish colonies on the used
chromogenic medium in the initial cultural screening, and this result is congruent with that
mentioned by Abdul Momin et al. [28]. Nevertheless, only 14 isolates exhibited resistance
to colistin (MIC ≥ 4 mcg/mL) with a percentage of 25% or higher by using the Colistin Ezy
MIC strip (CL) (0.016- 256 µg/mL), as shown in Figure 2. In contrast to our data, a study of
MIC testing that investigated 100 APEC strains was carried out in Iran and recorded 99%
resistance against colistin [29].

Despite the two MIC test concentration differences, there was a close similarity in
comparing the Sensititre test results with those of the E –test, and there was resemblance in
19 out of 20 tested isolates for colistin resistance (95%) (Table 3). These data were harmo-
nized with those reported by Matuschek et al., in 2018 [30], and Kansak et al., in 2020 [31],
who concluded that the use of commercial kits offered more accurate testing compared
to the reference method and advised the use of such testing. The recent emergence of the
concept of the genetic control of colistin resistance suggested the existence of both chromo-
somal mutations and transferable plasmid-mediated (mcr) genes [11]. All 56 E. coli isolates
were tested for the presence of mcr1–5 gene variants by the application of conventional
PCR assays and the data revealed that all isolates harbored only the mcr-1 gene and were
negative for the other examined colistin resistance genes (mcr-2, mcr-3, mcr-4 and mcr-5), as
demonstrated in Figure 3.
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Our data agree with other reports which indicated that mcr-1 is the most important
gene in colistin resistance [3,32]. Additionally, the same data have been reported in North-
ern Africa, Algeria [33], Morocco [34], Tunisia [35] and worldwide [36–39]. Interestingly,
our data about the correlation between the existence of the mcr-1 gene and the other per-
formed methods are greatly supported. The identical, 100% screening of chromogenic
media and PCR was emphasized by Abdul Momin et al. [28], who mentioned that CHRO-
Magar COL-APSE was more sensitive in supporting the growth of Enterobacteriaceae with
colistin resistance when accompanied by the harboring of mcr-1.

Furthermore, the MIC results were in agreement with those reported by Liu, et al. [11],
who mentioned that most of the mcr-1-harboring strains displayed a low MIC for colistin,
at around 4 µg/mL. Furthermore, the presence of mcr genes does not always equate to
colistin resistance phenotypically [40].

5. Conclusions

Pathogenic E. coli in poultry farms in Egypt constitutes a significant public health con-
cern. This study demonstrated a high incidence of multidrug- and colistin-resistant E. coli
isolates among the sampled poultry farms, with harboring of the mcr-1 gene (the major
gene implemented in controlling colistin resistance, although the existence of mcr genes in a
genome does not imply that the corresponding isolate is resistant). Phenotypic techniques
are indicated as complementary indicators of the presence of colistin-resistant strains.

In our suggestion that the presence of the mcr-1 gene, combined with resistant MIC
or the nearest zone of resistance, indicates that the bacteria harbor the resistance. The
study findings revealed that, in countries where colistin is used for animal husbandry,
a significant source of resistance in the human food chain could develop. The usage of
commercial kits for colistin resistance–detection is more accurate, quicker and advised to
be combined with the molecular techniques as a complementary diagnostic system. The
findings also highlight the need to improve plans and programs for the proper use of
antibiotics among poultry farms.
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