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Abstract: Turner syndrome (TS), most frequently caused by X-monosomy (45,X), is 

characterized in part by cardiovascular abnormalities, including aortopathy and bicuspid 

aortic valve (BAV). There is a need for animal models that recapitulate the cardiovascular 

manifestations of TS. Extracellular matrix (ECM) organization and morphometrics of the 

aortic valve and proximal aorta were examined in adult 39,XO mice (where the parental 

origin of the single X was paternal (39,XPO) or maternal (39,XMO)) and 40,XX controls. 

Aortic valve morphology was normal (tricuspid) in all of the 39,XPO and 40,XX mice 

studied, but abnormal (bicuspid or quadricuspid) in 15% of 39,XMO mice. Smooth muscle 

cell orientation in the ascending aorta was abnormal in all 39,XPO and 39,XMO mice 

examined, but smooth muscle actin was decreased in 39,XMO mice only. Aortic dilation 
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was present with reduced penetrance in 39,XO mice. The 39,XO mouse demonstrates 

aortopathy and an X-linked parent-of-origin effect on aortic valve malformation, and the 

candidate gene FAM9B is polymorphically expressed in control and diseased human aortic 

valves. The 39,XO mouse model may be valuable for examining the mechanisms 

underlying the cardiovascular findings in TS, and suggest there are important genetic 

modifiers on the X chromosome that modulate risk for nonsyndromic BAV and aortopathy. 

Keywords: cardiovascular malformation; valves; heritability; disease models; genomic 

imprinting; Xlr3b; FAM9B; 39,XO  

 

1. Introduction 

Turner syndrome (TS), most frequently caused by X-monosomy (45,X), is characterized by diverse 

developmental, endocrine and cardiovascular abnormalities, and affects approximately 1 in 2500 live 

born females [1]. Cardiovascular malformations (CVM) are present in 75% of TS fetuses and 20%–45% 

of live born infants, with bicuspid aortic valve (BAV), typically resulting from fusion of the right and 

left coronary cusps, being the most commonly observed malformation (20%–30% of TS cases) [2,3]. 

Aortic coarctation and thoracic aortic aneurysm also occur [4]. 

Two distinct genetic mechanisms may contribute to the phenotype of individuals with a 45,X 

constitution: first, haploinsufficiency for one or more of products of genes that escape X-inactivation 

(~15%–20% of the X-linked genetic complement [5]). Second, phenotypic variability within 45,X 

individuals may be due to the parental origin of the single X chromosome; in ~70% of TS cases, the X 

chromosome is inherited from the mother (45,XM) whereas in the remainder it is inherited from the 

father (45,XP). X-linked parent-of-origin effects (POE), i.e. where the appearance of 45,XM and 45XP 

subjects differs significantly, have been described on diverse phenotypes including: brain morphology 

and cognitive function, neck webbing, sensorineural hearing loss, renal and ocular abnormalities [6–9]. 

Some limited evidence exists for increased rates of non-syndromic CVMs (including aortic valve 

malformation and aortopathy) in 45,XM subjects relative to 45,XP subjects [6,10], somewhat consistent 

with increased rates of aortic valve malformation in males (46,XMY) relative to females (46,XPXM) [11]. 

However, other studies have shown no difference in CVMs, including specifically BAV, between 

45,XM and 45,XP individuals [2,12,13]. X-linked POE could be explained by the presence of X-linked 

imprinted genes (i.e., genes that are solely, or predominantly, expressed from either the paternally or 

maternally inherited allele) [14]; to date, no X-linked imprinted genes have been identified in man. 

Alternatively, such POE might be explained by the presence of cryptic mosaicism (notably the 

presence of Y-linked sequences in 45,XM individuals only) [15]. 

The 39,XO mouse model, where the parental origin of the X chromosome can be varied (39,XPO or 

39,XMO) partially recapitulates several aspects of the Turner syndrome phenotype, including X-linked 

POE on cognition [16]; as a consequence of how they are generated, these mice cannot possess cryptic 

X or Y-linked sequences [17]. Here, we studied the cardiovascular system of 39,XO mice for the first 

time. We hypothesized that 39,XMO mice would exhibit higher rates of aortopathy and aortic valve 

malformation than 39,XPO (and 40,XX female) mice. 
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2. Methods and Materials 

40,XX, 39,XPO and 39,XMO mice were bred on an MF1 outbred albino strain background and 

karyotyped post mortem as described previously [16]. Mice aged 6 weeks to 12 months were used. We 

used an outbred background because: (a) 39,XO mouse physiology has previously been extensively 

characterized on this background; and (b) humans are not inbred, hence the data obtained in our model 

may have greater translational relevance. Adult hearts were dissected, fixed in 4% paraformaldehyde, 

dehydrated in ethanol and stored in 70% ethanol at −20 °C before histological processing. Importantly, 

cardiovascular morphology was analyzed blind to karyotype. Briefly, short axis serial sections 

showing the aortic valve en face were examined to determine aortic valve morphology based on the 

number and location of cusp attachments, which was classified as unicuspid, bicuspid, tricuspid 

(normal), or quadricuspid according to established definitions [18]. Morphometrics were performed 

using sections obtained in the long axis to examine aortic valve tissue (annulus area, cusp length, and 

hinge thickness), aorta tissue (medial thickness in the aortic root and ascending aorta), and the caliber 

of the aortic lumen at different levels (aortic valve annulus, aortic root, sinotubular junction and 

ascending aorta dimensions), analogous to clinical measures, as previously described [19]. By early 

adulthood the bodyweights of 40,XX and 39,XO mice do not differ significantly [16], therefore there 

is no need to normalize aorta measurements for body size as is done in TS subjects due to short  

stature [20,21]. Extracellular matrix (ECM) organization of both the aortic valve and the ascending 

aorta was assessed using Movat’s pentachrome stain [22]. The aorta was studied further by examining 

the presence of alpha smooth muscle actin (SMA) and phospho-histone H3 (a marker of proliferation) 

using immunohistochemistry. Smooth muscle cell orientation was assessed by measuring the angle of 

the plane of the cell relative to the adjacent elastic fiber; an angle greater than 60 degree was 

considered abnormal. Our model allowed us to assess the effects of X-monosomy (40,XX vs. 39,XO), 

and X-linked POE (39,XPO vs. 39,XMO) on the measures described. Morphometric data were analyzed 

by One Way ANOVA with a between-group factor of KARYOTYPE. Data regarding frequency of 

aortic valve malformations were analyzed by a one-tailed Freeman Halton extension of Fisher’s Exact 

Test. Human FAM9B expression was examined in human aortic valve control and disease samples by 

reverse transcriptase polymerase chain reaction using the following primers: 5′-CGCCTCTAGCTTCC 

CAGGACAA-3′ and 5′-GGCTTCTTGGTATTAGCCCCCGT-3′. FAM9B cDNA was used as the 

positive control (Thermo Fisher MGC cDNA, MHS6278-211690668). 

3. Results and Discussion 

3.1. Aortic Valve 

The overall prevalence of aortic valve malformation in 39,XO mice was 4/45 (8%). While aortic 

valve morphology was normal (tricuspid) in all of the 39,XPO (n = 18) and 40,XX (n = 21) mice 

studied, four mice (15%) from the 39,XMO group (n = 27) exhibited valve abnormalities (p = 0.03); 

three 39,XMO mice displayed BAV and one a quadricuspid aortic valve (Figure 1D–G). Two of the 

BAVs seen in the 39,XMO group had fusion of the right and left coronary cusps, and one had fusion of 

the right and non-coronary cusps, consistent with the frequency identified in human studies [2].  

There was no gross evidence of raphe or partial fusion. The aortic valve findings appear highly specific 
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in that ECM trilaminar organization and valve morphometrics were equivalent in 40,XX, 39,XPO and 

39,XMO mice (One Way ANOVA effect of KARYOTYPE on hinge thickness: F[2,23] = 1.58, p = 0.23, 

cusp thickness: F[2,23] = 0.21, p = 0.81, cusp length: F[2,23] = 0.51, p = 0.61 and on annulus area: F[2,23] = 1.19, 

p = 0.32, Table 1, Figure 1). While our current data provide intriguing initial support for an X-linked 

parent-of-origin effect on aortic valve malformation, we cannot completely discount the possibility that 

such abnormalities are seen in both 39,XPO and 39,XMO groups; this will require testing in further 

larger-scale studies. 

 

Figure 1. Aortic valve morphology is abnormal in 39,XMO mice only. Aortic valves and 

proximal aortas are shown in the long axis view in adult 40,XX wild type controls  

(A) 39,XPO (B) and 39,XMO (C) mice. Trilaminar extracellular matrix (ECM) organization 

in both aortic valve and aorta tissue is preserved in 39, XO mice (B,C). Normal aortic 

valve morphology is seen in the short axis view in 40,XX (D) and 39,XPO mice (E), i.e., a 

tricuspid pattern with three commissures (yellow arrowheads); however, 39,XMO mice 

demonstrate a variety of malformation patterns, including bicuspid aortic valve (BAV), as 

evidenced by two commissures (F), and quadricuspid aortic valve, which shows four 

commissures (G). Panels shown at 20× magnification; scale bar 250 μm. 

Table 1. Aortic Valve and Aorta Morphometrics in a Mouse Model of Turner Syndrome. 

 

Valve Annulus 

Area (μm2) 

Valve Hinge 

Thickness (μm) 

Valve Cusp 

Length (μm) 

Aortic Root 

Thickness (μm) 

Ascending Aorta 

Thickness (μm) 

XX (n = 8) 5563 ± 1628 47 ± 14 279 ± 57 58 ± 8 111 ± 16 

XPO (n = 6) 4738 ± 1639 50 ± 6 325 ± 101 63 ± 4 103 ± 5 

XMO (n = 12) 7180 ± 1328 59 ± 19 318 ± 112 57 ± 7 104 ± 14 

Mean ± Standard Deviation.  

3.2. Ascending Aorta 

There were no significant differences across 40,XX (n = 5), 39,XPO (n = 5) and 39,XMO (n = 9) 

groups with regard to aortic root dimensions (F[2,16] = 3.14, p = 0.07), aortic dimensions (F[2,14] = 2.38, 

p = 0.13), or aortic valve annulus size (F[2,16] = 2.08, p = 0.16), but there appeared to be a trend 

whereby all aortic measurements were greater in 39,XO mice than 40,XX mice with 39,XMO mice 

showing the greatest deviation from 40,XX subjects; a proportion of 39,XO mice showed aorta 

measures greater than two standard deviations from the 40,XX mean (Table 2). Interestingly, while 
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elastic fiber architecture, including gross lamellae number and medial thickness, was ostensibly normal 

across all three experimental groups, smooth muscle cell orientation in the ascending aorta was 

abnormal in all 39,XPO and 39,XMO mice examined when compared with 40,XX mice, demonstrating 

misaligned cells arranged in a plane orthogonal to the lamellae rather than the normal parallel plane; 

the average proportion of cells misaligned in 40,XX (n = 5), 39,XPO (n = 5) and 39,XMO (n = 9) was 

12.5%, 72.7% and 82.6%, respectively (x2
[2] = 165.43, p < 0.0001, Figure 2A–C). The cell density and 

proliferation index were not different between genotypes (data not shown). Interestingly, SMA 

staining was decreased in 39,XMO mice only (Figure 2D–F). To our knowledge, this intriguing 

phenotype has not previously been reported in individuals with TS and warrants further investigation 

in this population. 

Table 2. Aorta Dimensions by Pathology in a Mouse Model of Turner Syndrome. 

 
Valve Annulus  
Dimension (μm) 

Aortic Root  
Dimension (μm)

Sinotubular Junction  
Dimension (μm) 

Ascending Aorta 
Dimension (μm) 

XX (n = 5) 486 ± 40 735 ± 52 502 ± 54 517 ± 41 

XPO (n = 5) 
500 ± 36 778 ± 65 531 ± 62 559 ± 25 
(0/5, 0%) (1/5, 20%) (1/5, 20%) (1/5, 20%) 

XMO (n = 9) 
537 ± 50 826 ± 63 540 ± 59 566 ± 44 

(3/9, 33%) (5/9, 56%) (3/9, 33%) (2/7, 29%) 

Mean ± Standard Deviation; parentheses reflect proportion of mice > 2 SDs from the XX mean. 

 

Figure 2. Aorta smooth muscle cell orientation is abnormal in both 39,XMO and 39,XPO 

mice, but content is decreased in 39,XMO mice only. High magnification of the ascending 

aorta in adult 40,XX wild type controls (A) 39,XPO (B) and 39,XMO (C) mice demonstrate 

intact elastic fiber architecture and subtle smooth muscle cell misalignment abnormalities 

in both 39,XPO and 39,XMO mice. Note the plane of the smooth muscle cells in the 39, XO 

mice (yellow arrowheads) is orthogonal to the plane of elastic fibers, when compared with 

the normal parallel orientation of the cells (yellow arrowheads in panel H). SMA staining 

shows normal diffuse expression in 40,XX (D) aortas, as well as 39,XPO (E) aortas despite 

the cell orientation abnormality, but significantly decreased expression in 39,XMO mice (F). 

Panels are shown at 100×; scale bar 25 μm. 
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3.3. Discussion  

Here we have demonstrated preliminary evidence for aortic valve malformation and aortopathy in 

the 39,XO mouse. Our aortic data from mutant mice suggest abnormalities in smooth muscle cell 

adhesion to the elastic fiber, similar to previous studies in a mouse model of aortopathy [23], but not 

overt elastic fiber pathology, and a propensity for latent dilation of the proximal aorta, particularly in 

39,XMO subjects. Aortic dilation in 39,XO mice is consistent with observations in TS individuals with 

aortic valve pathology [24]; unfortunately as our aortic valve and aortic size measurements were 

assessed from short and long axis sections respectively, we could not determine the frequency of both 

defects being present in the same individual mice. Further in vivo work in large cohorts of older 39,XO 

animals, as well as replication in other inbred strains, will be required to identify mechanisms 

underlying the aberrant smooth muscle orientation observation, to verify any dilated aorta phenotype, 

and to more accurately ascertain its prevalence, age of onset, potential POEs and relevance to 

pathophysiology. While the variable ages used in this study do not impact the evaluation of a 

congenital defect like BAV, they do confound the determination of TAA since the manifestation of 

this disease is typically sometime after birth. In addition, a more comprehensive assessment of cardiac 

structure in these mice is warranted to evaluate for subtle but clinically significant CVM associated 

with TS, such as partial anomalous pulmonary venous return. The finding of a quadricuspid aortic 

valve suggests there is a related spectrum of aortic valve malformation ranging from unicuspid to 

quadricuspid, a concept that has been forwarded previously [25]. While there was no conspicuous 

evidence of more severe CVM, such as hypoplastic left heart syndrome (HLHS), it is important to note 

that 39,XO mice, unlike TS patients, do not appear to show significant in utero mortality, an 

observation that may represent a significant limitation of the model but also suggests this mouse may 

be a good model for individuals with TS who survive to birth, including those who may be XX, XO 

mosaics. Lymphatic abnormalities resulting in hydrops are widely regarded as the primary cause of 

fetal loss in TS. Studies have sought to establish that “flow-related” CVMs, ranging from BAV to 

HLHS are caused by the hygroma in TS, but CVM occurs without lymphatic abnormality, fetal loss 

occurs in the absence of CVM, and severe CVM, including HLHS, is viable in TS [26,27], suggesting 

that CVM is neither necessary nor sufficient for fetal loss in TS. The lack of fetal loss in mice may be 

attributable to the fact that far fewer X-linked genes escape X-inactivation in the mouse than in 

humans (hence the loss of an X chromosome is less deleterious). 

Our aortic valve malformation data indicate an overall prevalence of ~8% in 39,XO mice 

(consistent with increased rates in TS) with 39,XMO mice being selectively affected. While this 

putative X-linked POE on aortic valve morphology cannot be explained by cryptic mosaicism, it could 

theoretically result from the fact that the 39,XMO mice are generated from a separate cross to 40,XX 

and 39,XPO mice; the fact that the 39,XMO mice were born to wild type 40,XX mothers, and raised in 

identical conditions to the other two experimental groups strongly argues against this possibility. The 

most parsimonious explanation for this finding is that there are one or more X-linked imprinted genes 

that influence aortic valve development in mice; the expression/function of these genes might be 

affected by modifier genes and/or the environment, hence why not all 39,XMO mice exhibited aortic 

valve abnormalities. To date, the only X-linked gene known to be imprinted in the mouse heart is 

Xlr3b, the expression of which is approximately 12-fold greater in 39,XMO than 39,XPO mice during 
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late embryogenesis [16]. The function(s) of Xlr3b are currently unknown, but roles in chromatin 

metabolism and in response to toxic insults have been suggested [14,28]. Therefore, Xlr3b represents a 

potentially important genetic candidate for predisposing to developmental aortic valve abnormalities in 

mice, and further work on the role of this protein within the mammalian heart is warranted. It will also be 

worthwhile comparing gene expression in 39,XPO and 39,XMO heart tissue to identify novel underlying 

X-linked imprinted gene candidates. 

In terms of relevance to Turner syndrome, our data indicate two possibilities: (i) there is an  

X-linked POE on aortic valve morphology in mice but not in humans due to species’ different 

physiology; or (ii) there is an X-linked POE in both species, in the same direction, and of a similar 

magnitude. It is possible that, in some studies, an X-linked POE in humans could have been obscured 

by the presence of mosaicism (i.e., 46,XX and 45,XMO cells in some individuals), by the relatively low 

frequency of abnormalities in the 45,XM group, and/or by using scanning techniques to examine 

cardiac morphology rather than post mortem histology. An obvious candidate gene for any X-linked 

POE on aortic valve development in humans is FAM9B, the closest orthologue of Xlr3b [16]. FAM9B 

is located on the short arm of the X chromosome at Xp22.32 within a region recently shown to be 

important in aortic valve and aorta development [29]. In an additional analysis, we have shown that 

FAM9B is polymorphically expressed in human aortic valves (Figure 3). In this small sample, there 

was no clear relationship between FAM9B expression status and gender (male or female), aortic valve 

morphology (tricuspid or bicuspid), or the presence of aortic valve disease (AVD) (pediatric or adult). 

Whether FAM9B is imprinted in human heart tissue, why it is polymorphically expressed in the aortic 

valve, and how it influences cardiac biology remains to be investigated. 

 

Figure 3. FAM9B is polymorphically expressed in human aortic valve tissue. FAM9B is 

expressed in control (No BAV, No AVD) human aortic valve tissue; however, there is no 

clear relationship between FAM9B expression (black arrowhead at ~275 bp) status, when 

compared with positive control expression from a human FAM9B cDNA clone (left columns), 

and aortic valve morphology (tricuspid or bicuspid), the presence of aortic valve disease 

(pediatric or adult), or gender (male or female). Samples were run simultaneously two per 

group (black bars), except BAV aAVD Male due to a technical failure (lane 12), and  

beta-actin (ACTB) was used as the housekeeping gene. BAV bicuspid aortic valve; AVD 

aortic valve disease; p: pediatric; a: adult; loading control (lane 3). 
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4. Conclusions  

In summary, our findings suggest the 39,XO mouse as a much-needed animal model for 

examination of the biological mechanisms underlying the cardiovascular findings in Turner syndrome, 

and indicate that there may be important genetic modifiers on the X chromosome in nonsyndromic 

BAV, aortic valve disease and aortopathy. Specifically, our work suggests FAM9B as a potential novel 

X-linked genetic modulator of CVM risk. 
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