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Abstract: Aspergillus flavus infection of vegetative tissues can affect the development and integrity
of the plant and poses dangerous risks on human and animal health. Thus, safe and easily applied
approaches are employed to inhibit A. flavus growth. To this end, the fungal endophyte, i.e., Aspergillus
fumigatus, was used as a safe biocontrol agent to reduce the growth of A. flavus and its infection in
maize seedlings. Interestingly, the safe endophytic A. fumigatus exhibited antifungal activity (e.g.,
77% of growth inhibition) against A. flavus. It also reduced the creation of aflatoxins, particularly
aflatoxin B1 (AFB1, 90.9%). At plant level, maize seedling growth, leaves and root anatomy and
the changes in redox status were estimated. Infected seeds treated with A. fumigatus significantly
improved the germination rate by 88.53%. The ultrastructure of the infected leaves showed severe
disturbances in the internal structures, such as lack of differentiation in cells, cracking, and lysis in
the cell wall and destruction in the nucleus semi-lysis of chloroplasts. Ultrastructure observations
indicated that A. fumigatus treatment increased maize (leaf and root) cell wall thickness that conse-
quentially reduced the invasion of the pathogenic A. flavus. It was also interesting that the infected
seedlings recovered after being treated with A. fumigatus, as it was observed in growth characteristics
and photosynthetic pigments. Moreover, infected maize plants showed increased oxidative stress
(lipid peroxidation and H2O2), which was significantly mitigated by A. fumigatus treatment. This
mitigation was at least partially explained by inducing the antioxidant defense system, i.e., increased
phenols and proline levels (23.3 and 31.17%, respectively) and POD, PPO, SOD and CAT enzymes
activity (29.50, 57.58, 32.14 and 29.52%, respectively). Overall, our study suggests that endophytic
A. fumigatus treatment could be commercially used for the safe control of aflatoxins production and
for inducing biotic stress tolerance of A. flavus-infected maize plants.

Keywords: maize; fungal infection; ultra-structural features; aflatoxins; Aspergillus fumigatus

1. Introduction

Phytopathogenic fungi negatively affect plant growth and yield. A. flavus, Penicillium,
and other genera produce toxins that, in turn, accumulate in plants and lead to many
problems, starting with the germination inhibition and disturbances in physiological pro-
cesses [1–4]. Mycotoxins are toxic secondary metabolites produced by pathogenic fungi (not
mushrooms) that accumulate in plant crops, which are toxic for animals and humans [5–7].
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Some mycotoxins could induce liver cancer, and cancer of the nervous system [8]. Among
toxic mycotoxins, Aflatoxins are the most common mycotoxin in poultry feed; they are quite
stable and resistant to degradation. Aflatoxins are poisonous, carcinogenic, mutagenic,
immunosuppressive, and teratogenic secondary metabolites, formed by Aspergillus flavus,
A. parasiticus [9], and A. nomius [10]. Common groups of aflatoxins are: aflatoxin B1 (AFB1),
aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) [11,12]. Furthermore, the
most toxic of these aflatoxins is AFB1 [13,14]. AFB1 may be converted into its hydroxylated
form, called aflatoxin M1 (AFM1), which is excreted in the breast milk of humans and
animals, following the ingestion of AFB1-contaminated food or feed [15]. In developing
countries, about 4.5 billion people are chronically exposed to uncontrolled amounts of
aflatoxins [16]. Consumption of contaminated products causes aflatoxicosis in humans
and animals. Aflatoxicosis may be acute and chronic. The acute condition causes death,
while the chronic condition results in immune suppression and cancer. In humans, it is
characterized by vomiting, abdominal pain, pulmonary edema, convulsions, coma, and
death, with cerebral edema and fatty involvement of the liver, kidneys, and heart [17].
In plants, the action of mycotoxins is represented in affecting the permeability of the cell
membrane or by inhibiting the enzymatic activity in the plant and, thus, disturbances occur
in the enzymatic reactions [18]. The production of mycotoxins also alters the plant growth,
yield and their primary and secondary metabolism [19]. The accumulation of aflatoxins in
maize is a destructive agricultural problem for human and animal health, besides the loss
of yield [20]. For instance, a clear decline in plant physiological activity and chlorophyll
content were reported in plants in response to A. flavus infection [21]. Further, many fungal
pathogens produce toxins that inhibit photosynthesis by decreasing chlorophyll biosyn-
thesis and inhibiting photosynthetic key enzymes [22]. The fungal infection leads to an
imbalance in the transport of nutrients and water within the plant organs. Consequently
this disturbs plant functions, causing disease in the entire plant [23]. Furthermore, infection
with A. flavus alters the internal structures of the affected tissues, leading to an abnormal
increase or decrease in organelles size [24]. For instance, infection with A. flavus directly
affects the protoplast of the host cells that destroy or kill the cells [25].

Although the use of chemical pesticides in combating plant infection with pathogenic
fungi that causes plant diseases has generally been proven to have tangible efficiency, it
has negative effects on soil, plants and microorganisms [26]. The accumulation of chemical
pesticides in plants can indirectly affect human and animal health [27]. Moreover, they lead
to an increase in production costs, while not ensuring the effectiveness of their impact [28].
All of these reasons led to the transformation of the concept of agricultural sustainability
with the need to improve the product quality and freedom from pesticide residues and
toxicity [29]. In this context, the attention of scientists has turned to the use of derived
biocides, such as endophytic fungi from microorganisms or natural extracts against plant
pathogens [30]. This increases plant resistance by preventing or limiting the progression
of damage under biotic or abiotic stress [31]. Endophytic fungi are fungi that can grow in
healthy plant tissues without any harmful effects on their host plants [32,33]. In general,
leaves are the main source of the endophytic fungal community, promoting the effect on
plant health [34]. The degree of microbial diversity of living host plants differs according to
the plant species that have been described as protecting agents against biotic attacks [35]. In
this regard, many studies reported that endophytic fungi are rich in secondary metabolites,
with a broad range of biological activities, such as antifungal activity [32,33]. The aim of this
study was to mitigate the effect of A. flavus infection and its mycotoxins on maize growth,
anatomy, and the redox status of maize seedlings, using the endophytic A. fumigatus. This
will clear the way for alternative and eco-friendly methods for managing fungal pathogens.

2. Materials and Methods
2.1. Chemical Reagents

Sodium hypochlorite NaOCl (Sigma-Aldrich, Germany), potato dextrose agar (PDA)
medium (Oxoid, Basingstoke, UK) (Sigma-Aldrich), PD broth medium (Sigma-Aldrich),
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chloramphenicol (Sigma-Aldrich), ethanol (Sigma-Aldrich), tween 80 (Sigma-Aldrich),
acetone, 5% trichloroacetic acid, thiobarbituric acid (TBA), titanium dioxide, sulfuric acid,
folin reagent, sodium carbonate Na2CO3, sulfosalicylic acid, ninhydrin acid, phosphoric
acid, glacial acetic acid, phosphate buffer pH 6.8, phosphate buffer (pH 7.8), pyrogallol,
hydrochloric acid HCl, phosphate buffer pH 7, and hydrogen peroxide H2O2 were used in
this study.

2.2. Isolation of FUNGAL Pathogen

Isolation of the fungal pathogen A. flavus was carried out by minor modification of the
method from [36]; therefore, 100 infected corn seeds (Giza-Balady) were surface sterilized
in NaOCl (2.5% for 60 s) followed by washing with sterile distilled water. The sterilized
seeds were cultured on potato dextrose agar (PDA) medium (Oxoid) supplemented with
2% chloramphenicol (Sigma-Aldrich). Cultivated plates were incubated for 4 days at
27 ◦C and examined daily. Growing mycelium was sub-cultured at 27 ◦C for 5 days on
PDA medium [37,38].

2.3. Isolation of Endophytic Fungi

Isolation of endophytic fungi was achieved using the method of Aldinary et al. [35].
Apparently healthy Moringa oleifera leaves were obtained from the National Research Center,
Dokki, Egypt. These leaves were washed with tap water then sterilized with 70% ethanol
for 1 min, then with 4% NaOCl for 1 min. The epiphytic sterilized leaves were cultivated on
PDA supplemented with chloramphenicol (0.2 g/L). The cultivated plates were incubated
at 27 ◦C ± 2 for 3 weeks through daily examination, then sub-cultured into a sterilized
PDA medium.

2.4. Morphological and Molecular Identification of Fungal Pathogen and Endophytes

Morphological identification of the target fungus was carried out by observing the
morphological characteristics (color, texture, and appearance) and microscopic characteris-
tics using light and scanning electron microscope (SEM) [5,39–41]. Molecular identification
of fungal pathogen and fungal endophyte was carried out using internal transcribed
spacer (ITS) genes according to Khalil et al. [32]. DNA was extracted from agar cul-
tures using Quick-DNA Fungal/Bacterial Microprep Kit (Zymo research; D6007, Irvine,
CA, USA) following the manufacturer’s protocol and supported by Sigma Scientific Ser-
vices Company (Giza, Egypt). PCR was performed using Maxima Hot Start PCR Master
Mix (Thermo, Waltham, MA, USA; K1051). The primers used were Forward ITS1-F (50-
TCCGTAGGTGAACCTGCGG-30) and Reverse ITS4-R (50-TCCTCCGCTTATTGATATGC-30).
The reaction conditions were: initial denaturation at 95 ◦C for 10 min, followed by 35 cycles
of denaturation at 95 ◦C for 30 s, annealing at 57 ◦C for 30 s and extension at 72 ◦C for
1.5 min; a final extension phase was performed at 72 ◦C for 10 min. At first, the follow-
ing components were added for each 50 µL total reaction volume at room temperature:
Maxima Hot Start PCR Master Mix (2×) 25 µL, ITS1 Forward primer 1 µL (20 µM), ITS4
Reverse primer 1 µL (20 µM), Template DNA 5 µL, water, and nuclease-free 18 µL. The
obtained PCR product was purified using GeneJET PCR Purification Kit (Thermo K0701)
following the manufacturer’s protocol. Finally, sequencing to the PCR product in GATC
Company (Konstanz, Germany) by use of an ABI 3730xl DNA-sequencer was performed
using the same forward and reverse primers mentioned above and by combining Sanger
and 454 technologies for DNA sequencing according to manufacturer’s instructions. The
obtained ITS sequences were aligned by Clustal W (codons) with the required minor man-
ual adjustments. The final sequence was compared with similar sequences retrieved from
DNA databases by using the NCBI n-BLAST search program in the National Center for
Biotechnology Information (NCBI). Evolutionary analyses were conducted in Molecular
Evolutionary Genetics Analysis MEGA-X.
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2.5. In-Vitro Antifungal Activity

Two isolated fungal endophytes, i.e., A. fumigatus and A. terreus, were evaluated as
antifungal against toxigenic A. flavus using dual culture technique according to Singh
and Sati [42]. The mycelial growth inhibition percentage was calculated according to the
following formula:

I (%) = (Dc − Dt/Dc) × 100

I (%): inhibition percentage; Dc: average diameter of the control colonies; Dt: average
diameter of the treated colonies.

To inhibit aflatoxins production, PD broth medium was inoculated with fungal endo-
phyte (A. fumigatus) and fungal pathogen (A. flavus), while control included the A. flavus
only without treatment at the same conditions.

2.6. Extraction and Detection of Aflatoxins by High-Performance Liquid Chromatography (HPLC)

From fungal culture: AFs were extracted using liquid–liquid extraction method. Each
sample was adjusted to pH 2 with HCl and an aliquot (5 mL) was transferred in a separating
funnel. Next, 10 mL of dichloromethane was added three times and the mixture was shaken
for 1 min, then the dichloromethane extracts were collected in a flask. The final extract was
evaporated to dryness in a rotary evaporator at 35 ◦C. The residue was dissolved in 1 mL
of H2O:CH3OH 1:1 for the HPLC.

From plant material: AFs were extracted using liquid–liquid extraction method. All
samples were homogenized and stored in a refrigerator at −20 ◦C until extraction. Then,
1 g of each homogenized sample was placed in a centrifuge tube with 0.5 g of NaCl and
10 mL of extraction solution (CH3OH:CH3CN:H2O 10:45:45 v/v/v adjusted to pH 3 with
o-phosphoric acid) was added. The mixture was shaken for 30 min in an ultrasonic bath
and then centrifuged at 5000 rpm for 5 min. Solid phase extraction was performed us-
ing hydrophilic lipophilic balanced (HLB) copolymer cartridges (Polyntell AttractSPETM
W/O 3 mL, 60 mg). First, 2 mL of clarified extract was diluted with 18 mL of HCl 0.01 N
then passed through a conditioned cartridge (conditioning was made first with 3 mL
of CH3OH followed by 3 mL of H2O). After a washing step with 3 mL of water, toxins
were eluted with CH3OH:CH3CN 70:30 acidified with 0.1% of CH3COOH. The eluate was
dried in vacuum concentrator (Eppendorf) at 30 ◦C, and the extract was then dissolved
in 1 mL of H2O:CH3OH 1:1 for the HPLC [43,44]. The HPLC analysis was applied for
quantification of all aflatoxins, which included AFG1, AFG2, AFB1 and AFB2. Concentra-
tion of AFs standard AFG1, AFG2, AFB1 and AFB2 were 50, 15, 50 and 15 ng/mL. The
column used was Agilent C18 (4.6 mm × 250 mm i.d., 3.5 µm). The mobile phase was
water:methanol:acetonitrile 60:30:10 and the flow rate was 1 mL/min. The injection volume
was 20 µL for each of the sample solutions. The fluorescence detector was adjusted to
360/450 nm (Excitation/Emission). The column temperature was maintained at 40 ◦C. The
limit of quantification (LOQ) for AFs is 0.01 ng/mL.

2.7. In-Vivo Pot Experiments

Pot experiment was conducted at the research garden of the Botany and Microbiology
Department, Faculty of Science, Al-Azhar University, Egypt. Apparently healthy corn
seeds (single hybrid Giza-162) were obtained from Agricultural Research Center (ARC),
Giza, Egypt, and seeds were surface sterilized by immersing in 0.01% sodium hypochlorite
for 60 s followed by 70% ethanol for 60 s, then washed with distilled water [45]. The
method of Tédihou et al. [46] was used for inoculation of A. flavus culture which was
originally isolated from infected maize seeds. After purification of A. flavus by single-spore
isolation, the fungus was grown in plates containing PDA medium, then the plates were
kept in an incubator at 28 ◦C in the dark for 7 days. The conidia were collected and
suspended in sterile distilled water. Approximately 0.1 mL of tween 80 was added per liter
of water and the concentration of the suspension was determined using a hemocytometer
to 2.7 × 107 conidia per liter. The inoculum was 20 mL per pot. The seeds were sown in
plastic pots with a diameter of 15 cm containing 3 kg of clay soil. The sterilized seeds were
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divided into three groups: (1) Control group, in which the healthy seeds were soaked in
distilled water for 2 h then sown in non-infected soil, (2) Control infected group, in which
the healthy seeds were soaked in distilled water for 2 h then sown in infected soil with
A. flavus, and (3) Infected group, where the seeds were soaked in A. fumigatus filtrate for 2 h
then sown in infected soil. The replicates were 5 for each treatment. The three treatments
for each pot meant that 8 seeds were planted 3 cm deep in each pot. Potted samples were
harvested 14 days after seed germination. The inoculums (A. flavus and A. fumigatus) were
prepared according to Attia et al. [47].

2.8. Photosynthetic Pigments

Photosynthetic pigments were determined according to Lichtenthaler and Buschmann [48].
A previously mentioned technique was used to measure the presence of chlorophyll a,
chlorophyll b and carotenoids in fresh Zea mays leaves (three replicates for each treat-
ment). Throughout this procedure, 100 mL of acetone (80%) was used for photosyn-
thetic pigments extraction from fresh maize leaves (1.0 g) and the extract was filtered
and the established green color was spectrophotometrically calculated at 665, 649 and
470 nm. Photosynthetic pigments were determined by the equations, chlorophyll (a) mg/g
tissue = 11.63 (A665) − 2.39 (A649), chlorophyll (b) mg/g tissue = 20.11 (A649) − 5.18
(A665), chlorophyll (a + b) mg/g tissue = 6.45 (A665) + 17.72 (A649) and Carotenoids =
1000 × O.D470- 1.82Ca − 85.02Cb/198 = mg/g fresh weight. “A” denotes the reading of
optical density.

2.9. Lipid Peroxidation (MDA) and Hydrogen Peroxide (H2O2) Contents

The content of Malondialdehyde (MDA) in fresh Zea mays leaves (three replicates
for each treatment) was assessed according to Hu et al. [49]. Fresh leaf samples (0.5 g)
were extracted with 5% trichloroacetic acid and centrifuged at 4000× g for 10 min. Two
milliliters of the extract was mixed with 2 mL of 0.6% thiobarbituric acid (TBA) solution
then the reaction mixture was incubated in a water bath for 10 min. After cooling, the
absorbance of the developed color was measured at 532, 600 and 450 nm. MDA content
was determined using the following equation: 6.45 × (A532 − A600) − 0.56 × A450. The
H2O2 content of fresh Zea mays leaf (three replicates for each treatment) was measured as
stated by Mukherjee and Choudhuri [50]. In this method fresh leaves (0.5 g) were extracted
in 4 mL of cold acetone then 3 mL of the extract was mixed with 1 mL of 0.1% titanium
dioxide in 20% (v/v) sulfuric acid and the mixture was then centrifuged at 6000× g rpm for
15 min. The formed yellow color was measured at 415 nm.

2.10. Assessment of Proline Level and Phenolics

Total phenols content was estimated according to the method described by Dai
et al. [51]. In this method, 1 g of dried shoots was extracted in 5–10 mL of 80% ethanol
for at least 24 h. After centrifugation, the residue was re-extracted 3 times with 5–10 mL
of 80% ethanol. Then, the clarified supernatants of the two extracts were filled to 50 mL
with 80% ethanol. Following this, 0.5 mL of the extract was mixed well with 0.5 mL of
folin’s reagent then shook for 3 min. One milliliter of saturated Na2CO3 solution and three
milliliters of distilled water were well mixed with the extract. After 1 h, the blue color was
measured at 725 nm. The method of Bates et al. [52] was used for estimation of proline. In
this procedure, the dried shoots (0.5 g) were digested in 10 mL (3%) of sulfosalicylic acid.
As such, 2 mL of filtrate reacted with 2 mL of ninhydrin acid (1.25 g ninhydrin in 30 mL of
glacial acetic acid and 20 mL of 6 M phosphoric acid) and 2 mL of glacial acetic acid in a
boiling water bath for 1 h, then the reaction was stopped by placing the reaction mixture in
an ice bath. We added 4 mL of toluene to the mixture, then read the absorbance at 520 nm.
Three replicates for each treatment in biochemical indicators were carried out. Proline was
determined according to standard curve and the following equation:

mg/g proline = ((X) ppm × mL extract)/(2X sample dry weight × 100)
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2.11. Assessment of Antioxidant Enzymes

The activity of antioxidant enzymes, i.e., antioxidant enzymes peroxidase (POD),
polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)) in fresh shoots
were determined according to Bergmeyer [53], Dai et al. [51], Kong et al. [54] and Chen
et al. [55]. Superoxide dismutase (SOD) were peroxidase (POD), catalase and polyphenol
oxidase (PPO) enzymes were estimated in plant materials. The enzyme extract was ob-
tained as the follows: 2 g of the terminal buds in addition to the first and second young
leaves 14 days after seed germination were homogenized with 10 mL of phosphate buffer
pH 6.8, then centrifuged at 2 ◦C for 20 min at 20,000 rpm, after which the clear supernatant
was taken and enzyme activity was determined. The activities were determined by equa-
tion (A × T v × 60 min)/(t × v × F. Wt.), where A is the absorbance of the sample after
incubation minus the absorbance at zero time, T v is the total volume of filtrate, t is the
time (minutes) of incubation with substrate and v is the total volume of filtrate taken for
incubation and F. Wt. is the fresh weight used.

2.11.1. Superoxide Dismutase (SOD) Activities

The solution (10 mL) consisted of 3.6 mL of distilled water, 0.1 mL of enzyme, 5.5 mL of
50 mM phosphate buffer (pH 7.8) and 0.8 mL of 3 mM pyrogallol (dissolved in 10 mM HCl),
used for determination of SOD. The rate of pyrogallol reduction was measured at 325 nm
with UV spectrophotometer (Jenway).

2.11.2. Peroxidase (POD) Activities

The solution containing 5.8 mL of 50 mM phosphate buffer pH 7, 0.2 mL of the enzyme
extract and 2 mL of 20 mM H2O2 after addition of 2 mL of 20 mM pyrogallol was used for
determination of POD. The rate of increase in absorbance as pyrogallol was determined
spectrophotometrically by UV spectrophotometer (Jenway) within 60 s at 470 nm and 25 ◦C.

2.11.3. Polyphenol Oxidase (PPO) Activities

The 125 µmol solution of phosphate buffer (pH 6.8), 100 µmol pyrogallol, and 2 mL of
enzyme extract were used for determination of PPO. After the incubation period of 5 min at
25 ◦C, the reaction was stopped by adding 1 mL 5% H2SO4. The blank sample was made by
using very-well-boiled enzyme extract and the developed color was measured at 430 nm.

2.12. Proportion of Mycotoxins

Three biological replicates of the three treatments were dried to determine the propor-
tion of mycotoxins in grains according to F Abdallah et al. [56].

2.13. Microscopic Examination

Ultra-structural variations generated in leaves and roots were examined (three repli-
cates for each treatment) with a JOEL JM 100-C Transmission Electron Microscope (Electron
Microscope Unit, Regional Center of Mycology and Biotechnology, Al-Azhar University,
Cairo, Egypt). The chosen samples were fixed and handled for electron microscopy exami-
nation [57]. Small sections of leaf and root specimens were individually cut and fixed in
Universal E.m. fixative and kept at 4 ◦C till processing. Samples were rinsed twice in 0.1 M
phosphate buffer for 10 min. Post fixation in 1% of 0.2 M phosphate-buffered osmium
tetra-oxide for 1 h at 4 ◦C. Then samples were re-rinsed with phosphate buffer for 10 min,
after which dehydration started. As such, 50, 70, and 95% ethyl alcohol was added twice
for 15 min with continuous shaking. Propylene oxide was added twice for 8 min, and then
mixed with epon 1:1 mixture for 30 min, then to 1:3 ratio mixture for 30 min each time with
continuous shaking. Vials were opened and placed in individual beakers and left overnight
to allow for the evaporation of propylene oxide. The next day, each piece of tissue was
embedded in individually labeled beam capsules. Blocks were trimmed to trapezoid shape.
Thin sections were made using an LKB ultra-microtome and 3–4 grids were loaded for each
specimen and kept in a Petri dish with proper identification. The ultrathin sections were
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stained for 10 min in a mixture of saturated solution of uranyl acetate and acetone (in equal
volume), then with Reynold’s lead citrate. Two grids were loaded for each specimen and
kept in a Petri dish with proper identification.

2.14. Statistical Analysis

One-way analysis of variance (ANOVA) was applied to the resulted data. Duncan’s
multiple range test using Costate (Cohort’s software, Monterey, CA, USA) was applied to
show statistically significant differences among the treatments at p < 0.05. Obtained data
were shown as means ± standard errors (n = 3).

3. Results and Discussion
3.1. Isolation and Identification of Fungal Pathogens

The fungal pathogen was isolated from infected corn seeds on a PDA medium mor-
phologically, and fungal isolates were identified as A. flavus. Observed colonies on the
PDA were 40 mm in diameter at 27 ◦C after 4 days of growing (Figure 1A). They often
display central floccose, white, conidial heads, usually borne uniformly over the whole
colony. Characteristically, the colony color is greyish green, yellow green, then becoming
greenish in old age. Vesicles globose to sub-globose shape, metula and phialides long
covered 75.00% of the head; conidia were spherical to sub spheroidal, with relatively thin
walls (Figure 1B). To validate the morphological identification, molecular identification
was performed. It confirmed the morphological identification, where the isolated strain is
similar to A. flavus, with an identity of 97.50% (Figure 1C). Furthermore, this strain was
deposited in GenBank with the accession number MW680843. The isolation of A. flavus
from infected corn plants was in line with previous studies [58,59].
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3.2. Isolation and Identification of Endophytic Fungi

Two fungal isolates were isolated from Moringa oleifera leaves, which were morpho-
logically identified as A. fumigatus and A. terreus. According to [33,60] the morphological
identification, colonies grow rapidly on a PDA medium, reaching 60 mm in diameter at
27 ◦C after 4 days (Figure 2A). The rate of growth is rapid, with a smoky-grayish-green
color and pale-yellow reverse color. Conidiophores ending with oval vesicle bearing a
single series of sterigmata covered almost half of the vesicle. The sterigmata bore a series
of sub-spherical or oval, rough-walled conidia, and the conidial head was a columnar
shape (Figure 2B). Molecular identification also confirmed the morphological identifica-
tion as A. fumigatus AM1, with a similarity percentage of 98.50%. A. fumigatus AM1 was
recorded in GenBank with the accession number MW444550. Previous studies revealed that
A. fumigatus can be isolated from healthy Moringa oleifera leaves [61,62]. A. fumigatus was
selected for further study, according to the noticeable antagonistic effect against A. flavus.
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3.3. Antagonistic Effect of Endophytic A. fumigatus and A. terreus against A. flavus

Fungi have the ability to perform mycoparasite interaction with other fungi, where
they can produce secondary metabolites that could control the growth of other pathogenic
fungi [63,64]. Consequentially, fungal endophytes A. fumigatus and A. terreus were used to
inhibit the growth of aflatoxin, producing A. flavus (Figure 3B,C). The results revealed that
both A. fumigatus and A. terreus reduced A. flavus growth, where A. fumigatus was more
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efficient than A. terreus. Moreover, the inhibition percentage of A. fumigatus against A. flavus
was 77.60%, while in the case of A. terreus, it was 39.70% (Figure 3D). Therefore, fungal
endophyte A. fumigatus was selected for further experiments.
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3.4. In-Vitro Inhibition of Aflatoxins Production of A. flavus Using A. fumigatus in
Liquid Medium

In vitro, the effect of A. fumigatus on the production of aflatoxins by A. flavus in a
liquid medium was measured using HPLC methods (Figure 4). The results revealed
that A. fumigatus reduced all aflatoxin types in the medium, reducing AFG1 from 6.88 to
1.40 ng/mL with 79.60% inhibition, and also reduced AFB1 from 3647.1 to 332.5 ng/mL
with 90.90% inhibition. The fungal endophyte A. fumigatus has great efficiency in decreas-
ing the most toxic and commonly occurring toxin (AFB1), which has been classified as
a group I human carcinogen by the International Agency for Research on Cancer [65].
Furthermore, A. fumigatus reduced the production of AFB2 from 99.39 to 6.80 ng/mL, with
a high inhibition value of 93.10% (Table 1). On the other hand, AFG2 was not detected,
neither in the control nor treated samples.

Table 1. In-vitro inhibition percentages of aflatoxins using endophytic A. fumigatus.

Aflatoxin Type
Aflatoxin (ng/mL)

Inhibition %
Control Treated

AFG1 6.88 1.40 79.6
AFG2 ND ND ND
AFB1 3647.15 332.50 90.90
AFB2 99.39 6.80 93.10

ND means not detected.



J. Fungi 2022, 8, 482 10 of 22

 

 

Fig.4. Figure 4. HPLC chromatogram of aflatoxin level in control 
(infected maize with A. flavus) and treated (infected maize treated with 
endophytic A. fumigatus). 
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3.5. In-Vivo Inhibition of Aflatoxins Production in Infected Corn Plants

A. flavus induced mycotoxins in plant grains, making them unsuitable for human and
animal consumption [64]. Therefore, the prevention of pre and postharvest mycotoxins,
particularly in foods, is urgently required. The results in Table 2 and Figure 5 showed
that the A. flavus pathogen is considered to be a high aflatoxins producer, where the most
produced aflatoxins were AFB1, then AFB2 and AFG2 type (497.09, 4.37 and 1.10 ng/g,
respectively); however, AFG1 was not detected. Similarly, Savić et al. [66] reported that
A. flavus was the main source of aflatoxins B in maize plants. These findings were also
confirmed by other studies [67,68]. Interstingly, A. fumigatus reduced all aflatoxins types in
the corn plant, while it completely prevented AFG2 production but reduced AFB1 from
794.09 to 462.57 ng/mL, with an inhibition percentage of 41.74%. It also reduced aflatoxin
AFB2 from 4.37 to 1.63 ng/mL, with an inhibition percentage of 62.70%. In line with our
findings, Abbas et al. [69] reported that non-mycotoxigenic fungi can control the aflatoxins
produced by toxogenic A. flavus in corn plants. These results are explained by the fact
that A. fumigatus can degrade aflatoxin groups and metabolize to less toxic, or nontoxic,
components [70] or by increased nutrient competition [71]. This can also be explained by
the ability of endophytic A. fumigatus to induce high activities of POD, PPO, SOD and
CAT enzymes in treated maize plants that support the plant to mitigate aflatoxins-induced
oxidative stress [72].
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Table 2. Inhibition percentages of aflatoxins using A. fumigatus in vivo.

Aflatoxin Type
Aflatoxin (ng/g)

Inhibition %
Control Healthy Control Infected Treated with A. fumigatus

AFG1 ND ND ND ND
AFG2 ND 1.11 ND 100.00
AFB1 4.60 794.09 462.57 41.74
AFB2 ND 4.37 1.63 62.70

ND means not detected.

1 
 

 

0.75 

30 

20 

Figure 5. HPLC chromatogram of healthy and infected control and treated samples in in-vivo
maize seedlings.

3.6. A. fumigatus Attenuates Inhibitions of Maize Seedling Germination and Growth Caused
by A. flavus

A noticeable decrease in the percentage of maize seeds germination, as well as a decline
in the shoot and root lengths of maize seedlings, were recorded for A. flavus-treated maize
plants (Table 3 and Figure 6). In this regard, the germination % was decreased by 53.2%,
and both stem and root lengths were decreased by 56.00% and 67.60%, respectively, com-
pared to healthy seedlings. Similarly, the infection of corn seeds with the toxic fungus
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A. flavus leads to a significant inhibition in the germination process [73]. In this context, the
infection of seeds with pathogenic fungi leads to seed abort and necrosis, reduction in seed
germination, seedling damage and plant disease induction [73]. This decrease was likely
due to the secretion of mycotoxins, which impede the germination process, possibly by
affecting seed respiration [74]. In line with our results, aflatoxins produced by pathogenic
fungi reduced the seed germination and seedling growth of corn and bean plants [75].
Moreover, according to Bhat, Fazal [76], and El-Naghy et al. [75], A. flavus reduced corn
seed germination, metabolism, and seedling growth.

Table 3. Effect of A. flavus infection and A. fumigatus on germination % and shoot and root lengths in
corn seeds.

Treatment Germination % Shoot Length (cm) Root Length (cm)

Healthy control 87 ± 1.00 a 13.66 ± 1.00 a 5.66 ± 0.57 a

Infected control 40.66 ± 1.52 c 6.00 ± 1.00 b 1.83 ± 0.28 b

Infected treated with
A. fumigatus 76.66 ± 0.57 b 13.0 ± 1.53 a 6.33 ± 0.58 a

LSD at 0.05 2.2 2.4 0.99
Data are expressed as means ± standard deviations of triplicate assays. The different alphabetic superscripts in
the same column are significantly different (p < 0.05).
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infected and infected treated with endophytic fungus A. fumigatus.

On the other hand, our results showed an increase in the seeds germination rate
after endophytic A. fumigatus treatment, reaching 76.66%, with a recovery rate of 88.53%.
A. fumigatus showed anti-fungal effects and inhibitory effects on mycotoxins produc-
tion [77]. It is also considered as one of the growth-stimulating organisms that have
the ability to produce natural hormones and vitamins that stimulate seed germination
and plant growth [78,79]. It also stimulated phenols production and antioxidant enzymes
activity, as well as the synthesis of antimicrobial phytoalexins [80,81].

3.7. Effect of A. fumigatus on Photosynthetic Pigments of Zea maize Seedlings

The infection with A. flavus led to a noticeable decrease in the level of chlorophyll a
and b, where the decrease in chlorophyll a and b contents reached up to 45.90% and 37.90%,
respectively (Figure 7A). On the other hand, carotene pigments were increased in infected
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maize seedlings by 53.80%. These reductions can be attributed to the disruption of the
photosynthesis process by pathogenic A. flavus infection, as it induced a disturbance in
chloroplast structure and function [82]. The production of toxins can suppress the photosyn-
thetic machinery and activity [83]. Possibly, A. flavus acts as biotic stress and significantly
decreases the chlorophyll biosynthesis [21]. Our results are in line with the findings of
Georgieva [84], who reported that the content of chlorophyll pigments reduced due to
fungal infection. Interestingly, the application of A. fumigatus to infected plants stimulated
the photosynthesis process, as indicated by the significant improvement in chlorophyll a
and b, and this is strong evidence of the plants recovering from infection. The improvement
role of endophytic fungi may be recognized as the fact that they stimulate the biogenesis of
phytohormones and chlorophyll enzymes under different stressful conditions [85].
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are significantly different (p < 0.05).

3.8. Effect of A. fumigatus on Stress Biomarkers

Oxidative stress caused by infection with A. flavus led to a serious disturbance in
plant cells and raised the production of H2O2, as well lipid peroxidation (MDA), in the
leaves of corn plants. Here, the infection with A. flavus led to increased oxidative stress
markers, i.e., MDA and H2O2 (35.36 and 40.2%, respectively), compared to uninfected corn
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plants (Figure 8). On the other hand, the content of MDA and H2O2 declined in response
to A. fumigatus treatment by 10.66% and 10.18%, respectively, compared to infected corn
plants (Figure 8). In this regard, the application of A. fumigatus reduced oxidative damage
by inducing antioxidant properties that scavenge ROS and prevent oxidative stress from
affecting the cellular membranes [86,87].
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3.9. Improvement in Redox Status by Treatment with A. fumigatus

To understand how plant-mitigated infection induced oxidative stress, antioxidant
phenolics and proline were measured (Figure 7B). Maize seedlings grown in soil infected
with A. flavus showed a significant increase in the content of phenols and proline (66.00%,
34.95%, and 180.00%). In agreement, Sultana et al. [21] found an increase in the total
phenols and proline of rice plants infected with A. flavus. Mostly, the production of phenols
increased in biotic stressed plant tissues [88]. Phenols play an important dual role in both
repelling and attracting different organisms in the vicinity of plants [89]. The application of
endophytic A. fumigatus enhanced proline and phenol contents in corn plants. These results
are in harmony with [90,91]. Phenols act as protective agents by increasing plant immunity
and inhibitors against fungal pathogens [92]. Both phenols and proline are involved in
regulating and strengthening plant physiological immunity [93]. Proline is also increased
by stress to maintain oxidative stress balance, plant cell wall stability, enzyme action, and
capturing free radical ROS [94]. A. fumigatus application further increased the content of
phenolics and proline by 23.30 and 29.97%, respectively. However, the content of proline
was increased due to its role in osmoregulation and ROS scavenging [95]. Overall, the
inoculation of maize plants with endophyte fungi is known to reduced oxidative stress by
inducing the antioxidant metabolites and enzymes production [90].

At antioxidant enzymes activity level, our results, in Figure 7C, showed an increase in
the activity of antioxidant enzymes (POD, PPO, SOD and CAT) in infected maize seedlings,
where increases of 32.80%, 10.80%, 51.50%, and 53.8%, respectively, were observed. These
results can be explained as a natural reaction to detoxify free radicals (ROS) [35]. These
enzymes act as the initial steps in increasing plant resistance to various stresses, as well
as the formation of phenolic compounds [96]. Antioxidant enzymes SOD, CAT, POD, and
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POO provide a large number of defensive enzymes associated with fungal infection [35].
POD, PPO, SOD, and CAT are defensive enzymes associated with mitigating biotic-stress-
induced oxidative damage [97]. On the other hand, treatment with A. fumigatus showed a
clear response by increasing the antioxidant enzymes of infected plants (POD, PPO, SOD
and CAT), where the increases were 29.40%, 57.60%, 28.70%, and 30.10%, respectively.
These increases in antioxidant enzymes by A. fumigatus are a way to protect cells from
oxidative stress as a result of injury [35].

3.10. Ultra-Structural Study

The ultra-structural features of corn leaves and roots of healthy and A. flavus-infected
leaves were investigated using the ultra-thin section technique. The study aimed to detect
the cytopathic effects of A. flavus on the cellular features of infected cells. By examina-
tion of ultrathin sections of healthy leaves, we found that the cells were of normal size,
surrounded by a regular and thickened cell wall, and contained the nucleus in a normal
shape (Figure 9A,B). Chloroplasts were located near the cell wall between the cytoplasm
and tonoplast membrane and contained starch-encapsulated grains that contained grana
grains. The mitochondria were arranged in regular rows and connected to each other by
lamella granules.

On the other hand, infection induced severe disturbances, found in the internal struc-
tures after A. flavus infection (Figure 9C,D). There was a lack in the differentiation of the
cells, cracking, and lysis in the cell wall, destruction in the nucleus, and semi-lysis of
chloroplasts, and these notes are consistent with Ismaiel and Tharwat [98]. A. flavus caused
soft rot diseases by forming toxins or by producing enzymes that break down plant cell
walls [99]. Soft rot is described as the complete decomposition of plant tissues by the
pathogen, where the plant tissue becomes soft and gelatinous in texture and accompanied
by an unpleasant odor sometimes [100]. Interestingly, by examining the leaves of plants
treated with A. fumigatus, a recovery was observed in the anatomical structures, where
healthy medium-sized cells and chloroplasts containing starch granules coated with grana
near the cell wall were observed. Further, the presence of thickening in the cell wall was
found (Figure 9E,F).

At the root level, healthy plant roots showed a regular, cohesive, and thickened cell
wall that contained cytoplasm inside the nucleus, mitochondria, and the rest of the cell’s
organelles were not affected (Figure 10A,B). On the contrary, it was found that the cell
wall of the infected plants was broken and irregular (Figure 10C,D), indicating the lack
of coherence and harmony of cell organelles, the decomposition of the nucleus and the
disappearance of the cytoplasm. These pathological observations agreed with [101,102],
who found that cells of infected plants show elongated deformation and decomposition
of the nucleus. Further, in the roots of plants treated with A. fumigatus (Figure 10E,F),
many differences were observed for the infected plant, where a cohesive and thickened cell
wall and the presence of its nucleus inside the cytoplasm were observed. Treatment with
A. fumigatus improved plant response to the resistance against the invasion of pathogenic
fungi by increasing the thickness of the cell wall and, thus, preventing pathogen penetration.
This increase in thickness occurs as a result of the sedimentation of substances that are
difficult to penetrate by fungi, such as lignin; thus, this thickening wall limits or progresses
the pathogen or prevents its advancement [103].
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Figure 9. Ultra-micrograph sections of corn (Zea mays L.) showing leave cells, healthy (A,B), where
thickened cell wall (CW) is clear compared with untreated, infected. There was a noticeable lack
in the differentiation (LD) of the cells, cracking, and lysis in the cell wall and destruction in the
nucleus (C,D); also, a presence of thickening in the cell wall (CW) was noticed in treated sample (E,F).
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Figure 10. Ultra-micrograph section of corn (Zea mays L.) showing healthy root cells (A,B), where
thickened cell wall (CW) is observed compared with untreated, infected sample. There was a notice-
able lack in the differentiation (LD) of the cells, cracking, and lysis in the cell wall and destruction
in the nucleus (C,D); also, a presence of thickening in the cell wall (CW) was noticed in treated
sample (E,F).

4. Conclusions

The present study investigated the effect of endophytic A. fumigatus on the growth
and aflatoxins produced by A. flavus. Endophytic A. fumigatus showed a noticeable ability
to inhibit the growth and decrease aflatoxins production, particularly AFB1. Moreover,
endophytic A. fumigatus improved the infected maize growth, as well as its redox status.
At the level of the cell, TEM analysis exhibited that the plant could resist A. flavus by
increasing the thickness of the cell wall and, thus, prevent fungal penetration, where a
recovery in structural features was recorded. Eventually, the application of endophytic



J. Fungi 2022, 8, 482 18 of 22

A. fumigatus treatment could be commercially used for controlling A. flavus growth and
aflatoxins production, as well as their subsequent effects on maize growth.
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