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Abstract: Recently, scientific and technological interest in the synthesis of novel  

peptide-based hydrogel materials have grown dramatically. Applications of such materials 

mostly concern the biomedical field with examples covering sectors such as drug delivery, 

tissue engineering, and production of scaffolds for cell growth, thanks to their biocompatibility 

and biodegradability. In this work we synthesized Fmoc-Phe3 based hydrogels of different 

chirality by using a biocatalytic approach. Moreover, we investigated the possibility of 

employing a crosslinker during the biosynthetic process and we studied and compared some 

chemico-physical features of both crosslinked and non-crosslinked hydrogels. In particular, 

we investigated the rheological properties of such materials, as well as their swelling ability, 

stability in aqueous medium, and their structure by SEM and AFM analysis. Crosslinked and 

non-crosslinked hydrogels could be formed by this procedure with comparable yields but 

distinct chemico-physical features. We entrapped dexamethasone within nanopolymeric 

particles based on PLGA coated or not with chitosan and we embedded these nanoparticles 

into the hydrogels. Dexamethasone release from such a nanopolymer/hydrogel system was 
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controlled and sustained and dependent on genipin crosslinking degree. The possibility of 

efficiently coupling a drug delivery system to hydrogel materials seem particularly 

promising for tissue engineering applications, where the hydrogel could provide cells the 

necessary support for their growth, while nanoparticles could favor cell growth or 

differentiation by providing them the necessary bioactive molecules. 

Keywords: peptide hydrogel; biosynthesis; drug delivery  

 

1. Introduction 

Tissue engineering and regenerative medicine are part of an emerging multi- and interdisciplinary 

field that applies the principles of engineering and life sciences towards the development of biological 

substitutes [1,2]. Such research fields have the potential to revolutionize the way health and quality of 

life are improved for millions of people worldwide by restoring, maintaining, or enhancing tissue and 

organ function. Different elements are believed to be crucial for successful tissue regeneration: stem 

cells, growth factor, and scaffold. Cells provide the machinery for new tissue growth and differentiation, 

whereas growth factors and other molecules modulate the cellular activity and provide stimuli for cells 

to differentiate and support tissue neogenesis. 

A three-dimensional template structure for cell growth is provided by scaffolds able to support and 

facilitate the processes that are critical for tissue regeneration [3]. The nanotechnology approach to 

scaffold design and synthesis is an emerging area of research and study [4,5], one of the current biggest 

challenges is to exploit self-assembly processes (the spontaneous organization of matter into specific 

arrangements) to obtain materials and devices with innovative characteristics and functions, especially 

for biomedical and biotechnological use [6,7]. The aim is to achieve pre-defined specific, ordered or 

disordered, structures via the rational design of elementary “building blocks”. In this  

“bottom-up approach”, the effort is made in the direction of a rational design of the elementary 

components of the requested structure. Despite the large emphasis on the importance of the bottom-up 

approach in the production of new materials, up to now research has mostly focused on the synthesis 

and characterization of novel nanoparticles or of new macromolecules with the potential to self-assemble 

and, less frequently, on the study of collective structures (micelles, fibers, sheets, or three-dimensional 

networks, gels) arising from their self-assembly. 

Peptide hydrogels are interesting materials that are currently studied for their potential use in 

biomedical applications [8,9]. Recently, we have reported the lipase-supported synthesis of  

Fmoc-tripeptides, which occur in an aqueous phase through a reverse hydrolysis reaction [10]. These 

materials are biocompatible, as well as biodegradable and they possess a very interesting feature, which 

is their injectability, since the precursors used for their synthesis are liquid at room temperature. The 

possibility to use such biomaterials as drug delivery vehicles induced many scientists to investigate the 

possibility of modulating the crosslinking degree of the macromolecular 3D structures by using different 

crosslinking agents. 

Genipin is a natural compound, found in Gardenia jasminoides fruit extracts. It has traditionally been 

used in herbal medicine and as a food dye [11,12]. Genipin is known to be able to act as a crosslinking 
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agent for proteins and aminoacids, affording stable cross-linked products. In particular peptidic 

hydrogels can exhibit, as a function of their crosslinking degree, different mechanical properties in 

comparison to the non-crosslinked ones. Moreover, such chemical modification may be able to influence 

their in vivo stability. The mechanism of the genipin crosslinking reaction is still not fully understood, 

however it involves the formation of genipin dimers that bind amine groups on adjacent proteins [13,14], 

that give a blue-colored reaction product. Genipin is a particularly interesting cross-linking agent 

because of its low cytotoxicity, especially if compared with traditional crosslinkers such as 

glutaraldehyde and epoxy compounds [15]. Moreover, it has been recently reported that the presence of 

genepin may favor cell adhesion to artificial matrices [16]. For the above reasons, the use of genipin in 

the preparation of new materials for biomedical applications is highly attractive. So far, it has been used 

to crosslink polymeric hydrogel-forming materials such as gelatin and fibrin [16,17] or polypeptide 

hydrogels [18]. 

In this work, we used genipin for the first time as a crosslinker for Fmoc-tripeptide hydrogels of 

different chirality, synthesized by a lipase-supported reaction in aqueous phase that we developed in the 

past [10,19]. We characterized the rheological and chemico-physical properties of the obtained materials 

and we compared them with those of non-crosslinked ones in order to assess if genipin-mediated 

crosslinking could provide attractive features to the hydrogels in view of their use in tissue engineering 

approaches. In fact, such materials may be used as artificial scaffolds for cell growth, an approach that 

may lead to future applications in tissue engineering. With this objective, we loaded the hydrogels with 

a model drug, dexamethasone (DXM), and we studied its release kinetics from the different hydrogel 

materials also by using nanopolymeric vectors based on polylactic-co-glycolic polymers embededded 

with the Desamethsone (DXM) with the aim to modulate drug release. 

2. Results and Discussion 

2.1. Hydrogel Biosynthesis 

Both FmocF and FmocF* were used in lipase-catalyzed reversed hydrolysis reactions using respectively 

FF and F*F* dipeptides, with the formation of a peptide bond between the Fmoc-aminoacid and the 

dipeptide (Figure 1). The reaction products are FmocFFF and FmocF*F*F* tripeptides. The reaction 

conditions for such bioconversions have been optimized in previous works [19] and were employed both 

for non-crosslinked as well as for genipin-crosslinked hydrogels. As far as the crosslinked gels 

preparation is concerned, different genipin concentrations were used, corresponding to values ranging 

from 1/2000 to 1/20 with respect to the amount of Fmoc-aminoacid used. All the bioconversions, with 

and without genipin, afforded self-supporting hydrogels in the employed reaction conditions in about  

20 min, as evidenced by the inversion test. Chemically crosslinked gels were more firm to the touch and 

more easily removable from the glass vials in which they were formed, while gels fabricated without 

genipin were more easily torn during handling. For genipin-crosslinked hydrogels, a blue color, evidence 

of the ongoing crosslinking reaction, appeared within a few hours of hydrogel preparation. The reaction 

yields for all bioconversions were calculated, affording the results shown in Table 1. Such results, 

obtained for non-crosslinked gels and for gels crosslinked with the highest genipin concentration used, 

evidence that the presence of genipin did not affect the tripeptide reaction yield. 
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Figure 1. Reaction scheme of FmocFFF or FmocF*F*F* formation. 

Table 1. Reaction yields of PFL-catalyzed bioconversions. Reaction conditions: 40 μmol of 

Fmoc-aminoacid and dipeptide, 5 mg of PFL (Pseudomonas fluorescence lipase), 100 μL of 

10 mM genipin solution, aqueous phase total volume = 3 mL, pH 7.0, T = 30 °C, reaction 

time 30 min. Values are the means ± s.d. of three independent experiments. 

Material Reaction Yield (%) 

FmocF*F*F* 50 ± 2 
Genipin-crosslinked FmocF*F*F* 53 ± 3 

FmocFFF 27 ± 2 
Genipin-crosslinked FmocFFF 32 ± 2 

Preliminary investigations showed that genipin can react both with the dipeptide, that possesses  

an –NH2 group, as well as with the Fmoc-tripeptide, that possesses three –NH groups, but not with the 

Fmoc-aminoacid. The crosslinking reaction starts while the enzymatic reaction occurs, therefore genipin 

most probably reacts both with the dipeptide as well as with the Fmoc-tripeptide, whose formation 

triggers self-assembly and hydrogel formation [10]. Although the presence of genipin in the reaction 

medium does not influence the reaction yield of tripeptide formation, it could significantly influence the 

self-assembly and three-dimensional organization of the final product. 

2.2. Rheological Measurements 

As previously reported by the authors [20] the storage modulus, G', is remarkably sensitive to the 

chirality of the Fmoc-peptide. As shown in Figure 2A, when the polymer network formation involves 

the D isomer FmocF*F*F*, the value of G' at equilibrium is about twice the value of the storage modulus 

obtained when the L isomer is used. Such a result can be explained on the basis of an increase in the  

Fmoc-peptide reaction yield, as well as on the different structure and size of the fibers obtained by  

using substrates with D-chirality. When genipin is added, the mechanical behavior of the gel is reversed. 

The mechanical spectra of the genipin-treated hydrogels (Figure 2B) show that the L isomer provides a 

firmer hydrogel than the D. 
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Figure 2. Time evolution of storage modulus (G') of FmocFFF and FmocF*F*F* alone (A) 

and with 10 mM genipin (B). T = 30 °C. 

G' values are known to be directly proportional to the cross-linking density. An evaluation of the 

initial rate of the cross-linking reaction can provide information on the difference in the formation of the 

crosslinks in the presence of the two isomers. In the initial part of the kinetics of Fmoc-tripeptides 

without genipin, where a linear trend is expected, the slope of the curve obtained with D is about the 

double of the slope registered in the presence of the L isomer. This finding corroborates the results 

highlighted in the mechanical spectra of Figure 3A. 

The presence of genipin lowers the initial growth rate of G' for both isomers. However, consistently 

with the results of Figure 3B, genipin enhances the G' growth of the L- with respect to the D- isomer. 

This may reflect a different microscopic organization of the reaction products. 
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Figure 3. Mechanical spectra of FmocFFF and FmocF*F*F* in the absence of genipin, (A), 

and with 10 mM genipin, (B). T = 25 °C. Strain = 1%. Measurements were performed after 

overnight equilibration. 

2.3. Swelling Ratio and Weight Loss Ratio Measurements 

Hydrogel materials designed for biomedical applications will come in contact with biological fluids 

in vivo. Studying in vitro the behavior of such materials in the presence of aqueous-based solutions  

that simulate the in vivo environment, such as buffered solutions or Ringer solution, are therefore 

important and may afford valuable information on the in vivo interactions of the hydrogels with the 

surrounding environment. 

Figure 4 shows the swelling ratios of Fmoc-based hydrogels with different chirality, crosslinked with 

different genipin concentrations. As reported previously [20], hydrogels with an L chirality show lower 

swelling abilities than their D counterparts, and this is confirmed also for the genipin-crosslinked 
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materials. Crosslinked hydrogels have lower swelling ratios than non-crosslinked ones (that are around 

100%), with no significant differences among the different genipin concentrations used. This behavior 

may indicate that crosslinked Fmoc-tripeptides preferably interact with the crosslinker or with other 

tripeptide molecules, rather than with water molecules, therefore their swelling is lower, with values 

between 27% and 50%. 

 

Figure 4. Swelling ratios of peptidic hydrogels with different chirality and genipin concentration 

in the presence of Ringer solution. 

The effect of a Ringer solution on the stability of the hydrogels, evaluated through their weight loss 

ratios, was also studied after an incubation of 30 days, a period of time that can be considered long for 

such materials. Results are reported in Figure 5. Non-crosslinked hydrogels have a weight loss ratio of 

about 18%, with no significant differences between the two enantiomers. Cross-linked hydrogels show 

higher weight loss ratios, between 24% and 38%. There is no clear relation between the amount of 

crosslinker used and the weight loss ratio of the crosslinked material. Comparing these results with those 

obtained with different hydrogel materials, such as agar–kappa-carrageenan blend cross-linked with 

genipin [21], that show weight loss ratios of 15%–40% in approximately two days, we can affirm that 

all our materials are quite stable. 

 

Figure 5. Weight loss ratios in the presence of a Ringer solution of peptidic hydrogels with 

different chirality and genipin concentration. 
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2.4. DXM in Vitro Release Studies 

Peptide hydrogels are considered promising materials for biomedical applications, i.e., tissue 

engineering and tissue regeneration applications. Currently, three elements are considered to be crucial 

for successful tissue regeneration: stem cells, scaffold and growth factors or other chemicals used for  

in vitro cell differentiation, such as DXM. Therefore, the possibility of employing a hydrogel scaffold 

as a drug delivery system is a key to the application of such materials in regenerative medicine. With the 

aim to evaluate the potential of Fmoc-tripeptide hydrogels in this sense, we studied the release kinetics 

of a model drug into a buffered medium. 

Figure 6 shows DXM release kinetics from the peptidic hydrogel matrices of different chirality, both 

crosslinked with genipin at two different concentrations and non-crosslinked. 

 

Figure 6. DXM release kinetics from hydrogel matrices with different chirality:  

FmocFFF (A) and FmocF*F*F* (B). 

DXM is released at a higher rate from hydrogels with L chirality, both crosslinked or non-crosslinked, 

reaching values between 30% and 40% of the total DXM amount in approximately one week, providing 

a slow and sustained drug release over time. On the other hand, hydrogels with D chirality release 20%–

25% of DXM in the same time frame. This may be due to the different microscopic structure of 

hydrogels, which is closely linked to their chirality [20]. Overall, in accordance with the respective yields 
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of tripeptide formation, D-amino acid based hydrogels are more “dense” materials, that detain entrapped 

drugs more than their L counterparts. The presence of genipin-based crosslinking in the hydrogels did 

not affect significantly the total amount of released DXM, but had an effect on the release kinetics. All 

the tested materials were able to release the drug in a sustained manner and showed no burst effects, but 

rather an almost constant release over time. 

Moreover, we evaluated DXM release kinetics from polymeric NPs entrapped within FmocFFF and 

FmocF*F*F* hydrogels (Figure 7). Such hydrogels were chosen because their mechanical properties 

were the most promising among the materials studied in this work. Also in this case chirality had  

an influence on drug release, which, as observed for the release of free DXM from Fmoc-based hydrogels 

discussed above, reached higher values for hydrogels with L chirality. Moreover, for both gels a higher 

release rate was evidenced for uncoated PLGA NPs in comparison with (CS)-coated NPs. Overall, both 

formulations afforded a significantly slow and sustained DXM release over time, reaching values 

between 8% and 20% of released DXM in approximately seven days. Previous studies on NPs alone 

have already evidenced that DXM is entirely released from such formulations within a couple of  

hours [22], therefore the presence of the hydrogel matrix is responsible for obtaining a controlled drug 

release system. Both the gel and PLGA-based NPs seem to be able to interact with DXM and the synergy 

between such interactions affords its release in a sustained way. In conclusion, the direct encapsulation 

of DXM into the hydrogel seems to provide a more efficient and sustained release over time, making the 

system appealing for drug delivery approaches. On the other hand, the slower DXM release provided by 

the use of NPs, ensuring higher DXM concentrations within the hydrogel matrix, could be interesting in 

tissue engineering applications, i.e., cells grown within the hydrogel. 

 

Figure 7. DXM release kinetics from PLGA and CS-PLGA NPs entrapped within FmocFFF 

and FmocF*F*F* hydrogel matrices. 

2.5. SEM and AFM Measurements 

SEM and AFM were employed for the investigation of the morphology of fibers and hydrogels, also 

in the presence of genipin. In these studies, we chose to focus on D-peptide based hydrogels, on the  

basis of their promising characteristics, also evidenced by our previous works [20]. Figure 8 shows the 

morphology of FmocF*F*F* alone and crosslinked with genipin obtained by SEM and AFM. Such 

investigations revealed that all the peptidic hydrogels self-assemble with similar features, also in the 
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presence of chemical crosslinking, giving rise to nanofibers with similar structure. However, the 

presence of genipin seems to afford a different three-dimensional arrangement of the fibers, that results 

in an increase of fiber density. Also, in such conditions, the number of interconnections and knots 

between different fibers appears to increase, thus contributing to a more entangled organization of the 

hydrogel scaffold. In all the selected images, the fibers seem to be rather uniform in morphology and 

highly interconnected with knots. AFM analysis of the size of the fibers, both in the presence and in  

the absence of genipin, gives a narrow size distribution, with the same size, measured in the vertical 

direction of AFM images, of approximately 8 nm. Interestingly, in both hydrogels the R-handed twist 

repeats along the fiber length is visible (see, for example, the fibers marked by an arrow in panels B  

and E). The fiber pitch measured for FmocF*F*F* seems to be larger in respect to that of the same 

hydrogel crosslinked with genipin (around 50 nm and 30 nm, respectively, as determined from 

longitudinal profiles shown in corresponding panels H and I). This structural feature has to be further 

investigated in genipin-crosslinked FmocF*F*F* because it is observed with a minor clarity than in the 

non-crosslinked hydrogel, probably due to a variation of the imaging quality during the AFM scan. 

 

Figure 8. Cont. 
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Figure 8. Morphology of FmocF*F*F* (A-B) and FmocF*F*F* crosslinked with 0.25 mM 

genipin (C-D-E) obtained by SEM (A-C) and AFM (B-D-E) microscopy. Panel E shows  

a magnification of the region delimited by a square in panel D. Bars in panel A-C-D 

correspond to 1 μm, in panels B and E to 100 nm. Panels F and G show the height profile  

of the fibers of FmocF*F*F* and FmocF*F*F* crosslinked with genipin, respectively, 

measured along the sections individuated by a continuous line in panels B and E. Arrows  

in panels F and G indicate fibers where twisting is visible, whose longitudinal section is  

reported in panel H and I. 

3. Conclusions 

Fmoc-Phe3 based hydrogels of different chirality prepared by using a biocatalytic approach have been 

chemically crosslinked with genipin. SEM and AFM investigations revealed that the peptidic hydrogels 

crosslinked with genipin are porous with highly entangled fibers. We also studied and compared some 

chemico-physical features of both crosslinked and non-crosslinked hydrogels obtaining biomaterials 

with different elastic modulus G'. Moreover, DXM encapsulation into the hydrogel seems to provide a 

more efficient and sustained release over time, making the system appealing for drug delivery approaches. 

Overall, the results of these studies indicate that FmocF*F*F*–genipin hydrogels may be a useful 

scaffold for a variety of tissue engineering applications. We are currently attempting to discern the 

mechanisms of genipin crosslinking and determine the in vitro and in vivo cell attachment and 

degradation rate of genipin-crosslinked hydrogels. 

4. Experimental Section 

4.1. Materials 

Fluorenylmethyloxycarbonyl-L-phenylalanine (FmocF) (>99%), Fluorenylmethyloxycarbonyl-D-

phenylalanine (FmocF*) (>99%), L-diphenylalanine (FF) (>99%) and D-diphenylalanine (F*F*) (>99%) 

were purchased from Bachem GmbH (Weil am Rhein, Germany). Lipase from Pseudomonas fluorescens 

(PFL) (≥20.000 U/mg), genipin (≥98%) and all other chemicals were purchased from Sigma Aldrich (St. 
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Louis, MO, USA) and used without further purification. All solvents used in HPLC analysis were of 

HPLC grade and used as received. 

4.2. Biosynthesis of Peptide Hydrogels 

F-moc tripeptide hydrogels of different chirality (FmocFFF and FmocF*F*F*) were prepared as 

previously reported [20]. Briefly, 40 μmol of each substrate, an Fmoc-aminoacid and a dipeptide, were 

suspended in a mixture of 1 mL of H2O and 420 μL of 0.5 M NaOH and magnetically stirred until 

obtaining a homogeneous dispersion. Then, 0.1 M HCl was added to reach a final pH value of 7. A fixed 

amount (100 μL) of enzymatic solution (50 mg/mL) was then added to the substrate suspension and the 

mixture was placed in a thermostated bath at 30 °C for 30 min. 

Crosslinked hydrogels were prepared by following a similar procedure, adding to the substrate 

suspension at pH 7, before the enzymatic solution, a fixed amount (100 μL) of genipin solution with the 

selected concentration (0.1, 0.25, 0.5, 1, 5 and 10 mM). 

Tripeptide final reaction yields were calculated indirectly by measuring Fmoc–Phe amino acid 

disappearance in the reaction medium. The reaction products obtained from the biosynthetic process 

were analyzed 24 h after their preparation. Samples were dissolved in a fixed volume of organic solution 

(60% ACN, 40% H2O, 0.1% TFA). 0.5 M NaOH was also added to a final pH value of 8. The solution 

was then centrifuged at 14.000 rpm for 20 min at constant temperature (25 °C). Naphthalene was added 

to the supernatant as the internal standard. HPLC measurements of the final Fmoc–Phe amino acid in 

the reaction mixture were performed by using the following experimental conditions: C-18 silica 

column, eluent: 60% ACN, 40% H2O, 0.1% TFA, flow rate: 0.9 mL/min, λ = 256 nm. 

4.3. Rheological Measurements 

The viscoelastic behaviour of hydrogels was studied by monitoring the storage and loss moduli, G' 

and G", using an AR2000 rheometer (Waters—TA Instruments, Milan, Italy) equipped with a parallel 

plates geometry (diameter 20 mm, gap 1 mm) with a fixed plate equilibrated at 25 °C. The mechanical 

spectra were obtained recording G' and G" in oscillatory mode, from 0.01 to 100 Hz, at constant strain 

of 1% (limit of the linear viscoelastic strain was about 10%). Kinetics of hydrogel formation at 30 °C 

were carried out by monitoring the time dependence of G' at 30 °C, at the constant frequency of 1 Hz. 

4.4. Swelling and Stability Studies 

The swelling ratios of Fmoc hydrogels in PBS (pH 7.4) were measured by adding to each hydrogel 

sample 3 mL of PBS and incubating it overnight at 30 °C. Fully swollen hydrogels were weighed (Ws) 

immediately after the removal of excess water. Then, the hydrogels were freeze-dried and weighed  

again (Wd). The swelling behavior was expressed, according to Equation (1), as the swelling ratio q,  

that is the ratio between the weight of the swollen sample (Ws) and the weight of the freeze-dried 

hydrogel (Wd) 

q = (Ws − Wd)/Wd (1)

Each experiment was performed in triplicate. 
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Hydrogel in vitro degradation was evaluated by adding to previously synthesized Fmoc hydrogels  

a fixed amount (8.5 mL) of Ringer solution (NaCl 8.6 mg/mL, KCl 0.3 mg/L. CaCl2 0.33 mg/mL) and 

placing the system in a thermostated bath at 37 °C for 30 days. Hydrogels were weighed before the 

addition of the Ringer solution (W0) and after its removal (Wt) and the weight loss ratio (ΔW) was 

calculated as: 

ΔW = (W0 − Wt)/W0 (2)

4.5. DXM in Vitro Release Experiments 

DXM-loaded hydrogels, containing 6 mg of drug, were prepared by adding DXM-loaded PLGA  

or CS-coated PLGA NPs, or the corresponding amount of free DXM, during hydrogel formation.  

DXM-loaded PLGA or CS-coated PLGA NPs were prepared by a patented methodology [23], as 

described in previous works [24]. The mixture containing hydrogel precursors and free or entrapped 

DXM was then incubated at 30 °C for 1 h for gelation. Self-supporting hydrogels, entrapping DXM in 

their network, were formed in such conditions. After their preparation, DXM-loaded hydrogels were 

incubated in 2 mL of PBS (pH 7.4, 0.1 M) at 37 °C using a thermostated bath. At fixed time intervals, 

the supernatant was withdrawn and substituted with an equal amount of fresh PBS. DXM concentration 

in the supernatants collected at different time points were determined by HPLC by using the following 

experimental conditions: C-18 silica column, eluent: 60% ACN, 40% H2O, 0.1% TFA, flow rate:  

0.9 mL/min, λ = 243 nm. 

4.6. SEM and AFM Measurements 

Hydrogel morphology was investigated by SEM and AFM microscopy. SEM images were collected 

by using a Zeiss Auriga 405 microscope at low extracting voltage (1.5–4 kV) and current (7.5 m aperture), 

in order to reduce the significant charging of the substrate and avoid radiation damages and  

artifacts [25], and at a very low working distance (≈1 mm) to improve the quality of the signal received 

by the in-lens detector. Hydrogel samples were cryo-fractured. Internal fragments were collected,  

freeze-dried, and mounted on an aluminum stab using double-sided carbon tape. 

AFM images of the peptidic hydrogels were acquired in air at room temperature using a Dimension 

Icon (Bruker AXS, Billerica, MA, USA) instrument operating in Scan Asyst™ mode, with dedicated 

probes and using an ultra-sharp silicon tip (nominal radius of curvature 2 nm). This imaging mode allows 

the application of lower forces than standard tapping mode. Sample preparation for AFM measurements 

was performed according to the protocol described in a previous paper [20]. Aliquots of 10–20 μL were 

removed from the peptide hydrogel sample at the end of the gelation process and deposited onto a freshly 

cleaved mica surface. To optimize the amount of peptide adsorbed, each aliquot was left on mica for  

5 min and then gently washed with 200 μL of Milli-Q water. The mica surface with the adsorbed peptide 

was then flushed with a stream of nitrogen for drying, and analyzed after 30 min. Images were analyzed 

using the Gwiddion free software and are presented as raw data, except for flattening. No further image 

processing was carried out. 
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