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Abstract: Electrolytes play a critical role in battery performance. They are associated with an increased
risk of safety issues. The main challenge faced by many researchers is how to balance the physical
and electrical properties of electrolytes. Gel polymer electrolytes (GPEs) have received increasing
attention due to their satisfactory properties of ionic conductivity, mechanical stability, and safety.
Herein, we develop a gel network polymer electrolyte (GNPE) to address the challenge mentioned
earlier. This GNPE was formed by tri-epoxide monomer and bis(fluorosulfonyl)imide lithium salt
(LiFSI) via an in situ cationic polymerization under mild thermal conditions. The obtained GNPE
exhibited a relatively high ionic conductivity (σ) of 2.63 × 10−4 S cm−1, lithium transference number
(tLi

+, 0.58) at room temperature (RT), and intimate electrode compatibility with LiFePO4 and graphite.
The LiFePO4/GNPE/graphite battery also showed a promising cyclic performance at RT, e.g., a
suitable discharge specific capacity of 127 mAh g−1 and a high Coulombic efficiency (>97%) after
100 cycles at 0.2 C. Moreover, electrolyte films showed good mechanical stability and formed the
SEI layer on the graphite anode. This study provides a facile method for preparing epoxy-based
electrolytes for high-performance lithium-ion batteries (LIBs).

Keywords: gel polymer electrolytes; tri-epoxide monomer; LiFSI; in situ cationic polymerization;
lithium-ion batteries

1. Introduction

LIBs were initially commercialized in the 1990s. Since then, their application has
been expanded to many things ranging from portable devices to electric vehicles [1–4].
LIBs present considerable energy density and efficiency while being lightweight and
small [5–9]. However, the leakage of electrolytes is always a hot issue in that it can
lead to burning and even explosions [10–12]. Electrolytes are among the most critical
components of LIBs. They play a vital role in lithium-ion transport, battery span life,
and cell performance [13,14]. It is well-known that liquid electrolytes are used in mostly
LIBs because of their excellent electrochemical performance, especially regarding RT ionic
conductivity. Liquid organic solvents can provide a high dielectric constant value, fluidity,
and electrode compatibility [15–17]. On the other hand, they can lead to reduced thermal
stability, low flame retardancy, and liquid leakage of electrolytes [18,19]. Safety concerns
of LIBs have promoted the increased development of polymer electrolytes that exhibit
a superior thermal stability to liquid electrolytes and excellent mechanical strength to
relieve hazards from lithium dendrites. Furthermore, they offer a high energy density
to high-capacity LIBs [20–22]. Unfortunately, a low σ at RT and considerable interfacial
resistance between electrolytes and electrodes limit the practical application of LIBs [23,24].
Modifications of polymer electrolytes have been extensively studied for several decades to
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address these limitations [25,26]. Typically, an all-solid polymer electrolyte (ASPE) can form
an intimate connection with electrodes through high temperature and pressure, resulting in
similar ionic conductive values to liquid electrolytes. However, the demanding electrolyte
plate preparation process also limits its production scale and application [27–29]. On the
other hand, many previous works have demonstrated that gel polymer electrolytes can
reflect relatively high RT σ and satisfactory electrode interface compatibility, although they
have more moderate production procedures than those of all-solid electrolytes [30,31]. The
preparation of the GPEs can be divided into physical and chemical methods. Generally, in
the physical methods, polymer matrices are dissolved in the solvents and then mixed with
additives. The dried polymer film, which is obtained after evaporating solvents, is soaked
in the liquid electrolyte solution to form a gel polymer electrolyte. However, the polymer
matrices are facial to dissolve or deform into the liquid electrolyte after temperature
increases and prolonged aging, resulting in solution leakage and battery performance
degradation. In addition, the lower thermal stability of the prepared GPEs limits this
method for practical application [32]. In terms of chemical methods, initiators and lithium
salts are first dissolved in a monomer or liquid electrolyte to form a precursor electrolyte
solution. The polymerization is then carried out by thermal-, radical-, or electrochemical-
initiated methods for obtaining the crosslinked GPEs. The chemical methods offer an
essay procedure to prepare electrolyte and cell assembly and are also named “in-situ”
polymerization. The obtained GPEs provide a high thermal and mechanical stability,
promising contact with the electrodes, and satisfactory electrochemical performance [33,34].

In terms of polymer matrices, linear polymers bearing ethylene oxide structures have
been broadly investigated due to a high donor number for lithium ions and chain flexibility.
Poly(ethylene oxide) (PEO), the most well-known polymer matrix, possesses promising
physicochemical properties, especially regarding a high lithium salt solubility and dielec-
tric constant [35,36]. Unfortunately, the high crystal phase in PEO restricts ion mobility,
leading to insufficient room temperature σ and difficulty meeting the requirements of elec-
trolytes [37]. Recently, heterocyclic ring monomers have been researched to form polymer
electrolytes via ring-opening polymerization to overcome this shortcoming [33,38]. Herein,
epoxide monomers are expected to be alternative structure electrolytes owing to their low
Tg and crystallinity, which are essential for polymer chain mobility and ion transport [39].
Moreover, as thermosetting monomers, epoxide monomers exhibit excellent thermal sta-
bility to withstand high temperatures. They can maintain good mechanical strength after
curing polymerization, which is beneficial for batteries far from lithium dendrites dam-
age [12,40–42]. On the other hand, epoxide monomers carrying various functional groups
can create considerable variants and easily modify characteristics of polymer electrolytes.
Moreover, the ring-opening of epoxy will yield a CH2-CH2-O- structure, which tends to
have a good ion transport ability and high conductive values [43]. Coincidentally, epoxide
monomers can offer excellent solubility to lithium salts and are catalyzed by lithium salts,
leading to ring-opening polymerization under certain conditions. In brief, lithium salts can
react with a trace of moisture and produce Brønsted acid, which continuously attacks the
carbon-oxygen bond of epoxy and yields a polymer chain growth [44–46]. This reaction
process finally results in a crosslinked network polymer electrolyte that is free of impurities.

On the other hand, trimethylolpropane (TMP) has been increasingly researched in
gel polymer electrolytes. The chemical structures of trimethylolpropane offer excellent
physical support for the electrolytes. Dong Zhou et al. [47] reported crosslinked trimethy-
lolpropane trimethylacrylate-based gel polymer electrolytes showing high ionic conduc-
tivity (>10−3 S cm−1 at 25 ◦C) and a wide electrochemical window (>5.0 V). The three-
dimensional framework offered excellent electrochemical properties and high mechanical
strength. Qiu-Jun Wang et al. [48] prepared an electrolyte presenting improved ionic con-
ductivity and low interfacial resistance due to the TMPTMA providing structure support
for liquid parts in the GPEs by chemical crosslinking.

In the present work, we used trimethylolpropane triglycidyl ether, which bears tri-
epoxy functional groups, as a crosslinker to form a polymer matrix. In terms of lithium
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salts, LiFSI was applied in this study because it had a better ionic conductivity, viscosity,
and thermal stability than others. In addition, LiFSI can also offer a good capacity for Li-ion
batteries [49–51]. Moreover, small amounts of EC/DEC solution can be added into elec-
trolytes due to the EC/DEC well-known dielectric constant and ability to increase [52–54].
Gel polymer electrolytes have been successfully prepared by in situ thermal polymeriza-
tion. The obtained electrolytes exhibited an outstanding battery performance with bright
development prospects for epoxy-based gel polymer electrolytes.

2. Results and Discussion
2.1. In Situ Polymerization and Properties of GNPEs

GNPEs were fabricated via in situ cationic ring-opening polymerization of TMPTE
using LiFSI as an initiator as described in Scheme 1 and Figure S1 of the Supplementary
Materials (SM). Li-ions and sulfonimide anion formed after LiFSI dissociates in EC/DEC
could react with protogenic components such as impurity traces of water or alcohols to
yield a superacid initiator, H+FSIOH– (R1). The Brønsted superacid H+FSIOH– then rapidly
protonated the cyclic epoxy monomer to form the secondary oxonium species (R2). The
cationic ring-opening polymerization was produced under SN2 attack by the nucleophilic
cyclic ether monomer to secondary oxonium species (R3). Finally, a network polymer
was accomplished after continual repetitive attack by cyclic epoxy on the heterocyclic
intermediate [55,56].
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Scheme 1. Illustration of in situ cationic ring-opening polymerization catalyzed by LiFSI and the
eventual chemical structure of a gel network polymer electrolyte based on TMPTE.

Figure 1a macroscopically compares the polymer electrolyte state before and after
cationic ring-opening polymerization. All materials, including LiFSI, TMPET, and EC/DEC
solvent, can dissolve with each other sufficiently, resulting in a transparent, clean, and
viscous precursor solution. The viscosity is increased when the LiFSI mole ratio is increased.
After thermal cationic polymerization, an elastic gel polymer electrolyte is formed without
excess fluid liquid in the obtained electrolyte, which is beneficial for future coin cell
assembly (in Figure 1a right). The ring-opening polymerization was monitored by FT
IR. The resulting spectra are shown in Figure 1b. Pure TMPTE presents three fingerprint
peaks at 2876, 1093, and 902 cm−1 corresponding to C−H, C−O−C stretching, and epoxide
bending vibration, respectively. As the reaction proceeded, the intensity of the characteristic
peak for epoxide bending declined dramatically and the C=O stretching peak appeared at
1804−1742 cm−1 due to the addition of the EC/DEC solvent [57]. These results proved the
occurrence of the cationic ring-opening polymerization of TMPTE with LiFSI. Noticeably,
the liquid epoxy monomer did not transfer to the all-solid state even after a long time of
polymerization, which was inevitable in the gel polymer electrolyte forming process [26].
Figure S2 reflects the polymerization of GNPE-1 at different time points, with a small
epoxide bending peak remaining at 902 cm−1 even after 7 days.
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Figure 1. (a) Macroscopical comparison of electrolyte state before and after cationic ring-opening
polymerization, (b) FT IR results of GNPEs compared with pure TMPTE.

TGA and DSC were utilized to investigate the thermal properties of the prepared GN-
PEs. Figure 2a illustrates the epoxy monomer TMPTE with a one-step weight degradation
from 184 ◦C. Because of the addition of lithium salt and EC/DEC solvent, GNPEs presented
a ca. 5% weight loss from 150 ◦C. The secondary weight decomposition of GNPEs was ob-
served above 170 ◦C for GNPE-1 and GNPE-1.5 and 160 ◦C for GNPE-2. DSC measurement
was carried out at a temperature range of −60 to 150 ◦C to identify the glass transition
temperature of GNPEs. The results are shown in Figure 2b. Tg values were observed
at −23, −25, and −23 ◦C for GNPE-1, GNPE-1.5, and GNPE-2, respectively. The DSC
result revealed that these GNPEs could offer sufficient chain flexibility at RT or sub-zero.
Furthermore, there was no exothermic peak in the investigated temperature range for these
GNPEs, hinting that these obtained electrolytes presented amorphous phases. Combining
TGA and DSC data, the prepared GNPEs were thermally stable from around −25 to 150 ◦C,
values which were close to some PEO and PMMA-based polymer electrolytes. On the
other hand, lithium-ion transfer in the polymer matrix could also be conducted over a wide
temperature range.
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In addition, XRD analysis was performed to further investigate the crystallization of
TMPTE and GNPEs. As shown in Figure 2c, intensely shaped characteristic diffraction
peaks were not observed, indicating crystalline phases for TMPTE and GNPEs. Broad
diffraction peaks were found at 18~20◦ for samples, indicating an amorphous phase of
both TMPTE and GNPEs, consistent with the DSC results. Moreover, GNPE-2 exhibited
a similar theta degree to other polymers but appeared to have a lower theta degree than
other samples. It also showed a small peak at 69◦, attributed to the fact that GNPE-2
was fabricated with high concentrations of lithium salts, which affect the arrangement of
polymers. The lack of impurity peaks in the spectrum also confirmed the purity of the
as-prepared electrolytes. These results suggest that the obtained GNPEs can process a facial
channel for lithium ions hopping in polymer electrolytes.
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2.2. Electrochemical Performances of GNPEs

To calculate the σ values of GNPEs, the EIS values of electrolyte samples were collected
using a asymmetric dummy cell, where stainless steel was used as a blocking electrode.
Nyquist plots were fitted with a common equivalent electric circuit model in Z-view. The
resulting values are displayed in Figure S3. The σ was calculated using the equation
σ = L/Rb A, where L was the thickness and Rb and A were the bulk resistance and contact
area of polymer electrolytes, respectively. Figure 3a displays plots of temperature versus the
σ values of the GNPEs. The σ values monotonically increased with increasing temperature
of measurement. It was found that the σ values were between 10−4 and 10−5 S cm−1. It
is well known that the mobile ability of polymer segments can be enhanced at high tem-
peratures due to increased chain flexibility. As a result, lithium ions could be transported
easily in polymer electrolytes at high temperatures [58]. Moreover, the obtained electrolytes
of GNPE-1, GNPE-1.5, and GNPE-2 had σ values of 2.63 × 10−4 S cm−1, 1.17 × 10−4 S
cm−1, and 6.21 × 10−5 S cm−1 at RT, respectively. Surprisingly, these σ values decreased
as the LiFSI concentration increased at low temperatures. GNPE-2 revealed a little higher
ionic conductivity than GNPE-1.5 from 50 to 80 ◦C. However, GNPE-1 still maintained the
highest σ values at all measurement temperatures. This might be due to the fact that too
much conjugation between FSI- and epoxy can restrict polymer chain movement. The free
volume in the polymer matric could also decline, thus affecting ion transport in polymer
electrolytes. The highest value of GNPE-1 also conformed to the XRD result that GNPE-1
had the largest FWHM and smallest particle size, suggesting sufficient free volume in
the polymer matrix. The tLi

+ of GNPEs was calculated from the Bruce–Vincent equation
using AC impedance spectroscopy combined with DC polarization at RT (Table S1). These
electrolytes were sandwiched between lithium chips using a CR2032 coin cell. Figure 3b–d
exhibit the chronoamperometry profiles and AC impedance of GNPEs before and after
polarization under a voltage of 10 mV. The resultant AC impedance values for GNPE-1,
GNPE-1.5, and GNPE-2 were 0.58, 0.46, and 0.42, respectively. GNPE-1 still presented the
best lithium transport behavior, possibly due to its appropriate LiFSI concentration. The
comparison of the ionic conductivity and the tLi

+ of the published gel polymer electrolyte
is demonstrated in Table S2.

Linear sweep voltammetry (LSV) was conducted to further confirm the maximum
irreversible oxidative voltage and electrochemical stable window of GNPEs. This parameter
is related to the energy density and capacity of the LIBs [59]. The obtained GNPEs were
assembled in a structure of stainless steel (SS)/ GNPEs/ Li foil, wherein SS was used as a
working electrode and Li foil was used as both counter and reference electrode. Figure 3e
displays the LSV profiles of GNPEs from 0 to 6 V at a sweep rate of 1 mV s−1. GNPE-1
exhibited an anodic stability up to 4.15 V vs. Li/Li+. GNPE-1.5 showed a lower stable
voltage, below 4 V vs. Li/Li+. GNPE-2 decomposed at a pretty low voltage, ca. 1.5 V
vs. Li/Li+. These results indicate that GNPE-1 can meet the voltage requirements for
LFP-based lithium-ion batteries (2.5–4.2 V). In addition, cyclic voltammetry (CV) was
performed to ascertain the plating and stripping of lithium ions. Figure 3f illustrates the
cyclic voltammogram of the LiFePO4/GNPE-1/Li foil half-cell conducted at a scan rate
of 0.1 mV s−1. The voltammograms showed anodic and cathodic peaks at ca. 4.0 and
2.8 V vs. Li/Li+, which corresponded to Li-ions delithiation (oxidation) and lithiation
(reduction), respectively. Noticeably, these peaks from the 3rd to the 10th cycle remained at
similar voltages, indicating the excellent reversibility of redox reactions at the interface of
the GNPE/electrodes.

The rate and long-cycle performance are the most critical parameters for rechargeable
LIBs. To evaluate the cell performances of electrolytes, the charging and discharging of
GNPE-1 was carried out from 2.5 to 4.2 V at RT to obtain its best ionic conductivity and
electrochemical window. Figure 4a shows the charging and discharging profiles of the
LiFePO4/GNPE-1/graphite CR 2032 coin cell. GNPE-1 presented the maximum specific
discharge capacity of 127.03 mAh g−1 at 0.2 C. Its capacity declined with increased cycles,
which dropped to 78.28 mAh g−1 after 100 cycles (61.62% of the initial capacity). As shown
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in Figure 4b, the discharge capacity returned to 126.54 mAh g−1 when the current density
rate was 0.1 C again, suggesting the excellent reversibility and stability of GNPE-1 in
rechargeable LIBs. As shown in Figure 4c, the cell with GNPE-1 showed a Coulombic
efficiency of over 97% and a capacity of 98 mAh g−1 at 0.2 C after 100 cycles, which could
maintain 85% of its initial capacity. The cycle performance further confirmed that the
application of GNPE-1 to LIBs had a satisfactory stability in a long cycle. The promising
initial capacity of the cell with GNPE-1 might be ascribed to the excellent wettability of
polymer electrolyte on the LiFePO4 electrode, forming a stable interface on the electrode.
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The interface between GNPE-1 and the LiFePO4 electrode before and after the cycling
test was compared by FE-SEM. Figure 5a shows the cross-sectional image, displaying
that the prepared GNPE (top) is in close contact with the LFP cathode (bottom), which
is attributed to the precursor electrolyte solution penetrating the LFP cathode well. The
aging process resulted in an intimate contact interface with the electrode after in situ
polymerization. Such connections between the electrode and electrolyte were also observed
after the cycle test. Figure 5b displays a cross-sectional SEM image of GNPE-1 after 100
cycles of the cell test. The GNPE-1 layer still presented excellent compatibility with the LPF
cathode and maintained its mechanical integrity after the cycle test. These results not only
exhibit that the in situ prepared GNPE-1 has excellent mechanical stability, but also hint
that the formed crosslinked network can suppress lithium dendrite growth and ensure a
long lifespan of LIBs. Additionally, the electrolyte element analysis using EDS outlined
that all components were homogeneously distributed on the electrode because all materials
in the precursor solution were mixed uniformly (Figure S4).
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Figure 5. SEM images of a cross-section for GNPE-1 before (a) and after (b) 100 cycles on the
LFP cathode.

Furthermore, XPS was selected for the chemical surface composition investigation of
the graphite anode after the cycling test. To the best of our knowledge, LiF was formed after
LiFSI electrochemical reduction through S-F bond cleavage [60]. This result can explain
the high amount of LiF in the SEI when an imide-based lithium salt is applied to the
electrolyte [61]. In Figure 6, the LiF peaks in F 1s (684.5 eV) and Li 1s (55.2 eV) implied that
the SEI layer formed on the graphite anode after the cell test [49]. The dominant peak at
687.29 eV in the F 1s spectra was attributed to the SO2F of LiFSI, which could also be found
at the peak of 168.99 eV in the S 2p spectra [62,63]. Moreover, the S=O species located at
539.29 eV in the O1s spectra overlapped with the C-O species. Turning to the C 1s scan, the
peaks from 284.83 to 289.78 eV were mainly assigned to the solvent of the EC/DEC and
CH2-CH2-O chain after epoxy ring-opening polymerization. The corresponding peak of
the CH2-CH2-O chain was also surveyed in the O 1s spectra at 531.59 eV according to a
previous report [64,65]. Finally, the N 1s spectra exhibited two peaks at 400.93 and 399.44
eV corresponding to S-N and NH2 from the FSI− anion [66].
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3. Conclusions

In this work, gel network polymer electrolytes, GNPEs, were prepared via a tri-epoxide
functional monomer and LiFSI with a little EC and EDC. The polymerization was catalyzed
by LiFSI under thermal (60 ◦C) conditions using an in situ process. As expected, impurity-
free gel polymer electrolytes were obtained, showing excellent interface compatibility with
the electrodes. Moreover, the prepared GNPEs showed comparable thermal stability (>150
◦C) to the liquid electrolyte, having a relatively high σ (2.63 × 10−4 S cm−1) and tLi

+(0.58) at
RT. The battery of LiFePO4/GNPE-1/graphite demonstrated an excellent initial discharge
capacity of 127.03 mAh g−1 at 0.2C. It also possessed a good cycling Coulombic efficiency
(>97%) and rate performance. The as-prepared GNPE also prevented lithium dendrites
from destroying batteries to a certain degree and forming an SEI layer on the anode. In
summary, the fundamental findings of the present work could improve our conventional
knowledge of epoxy-based gel polymer electrolytes and provide a facial method to prepare
high-performance electrolytes for LIBs.

4. Materials and Methods
4.1. Sources

Trimethylolpropane triglycidyl ether (TMPTE, technical grade) and LiFSI (ultradry,
99.9%) were obtained from Sigma-Aldrich (Seoul, South Korea). Solvents of ethylene
carbonate (EC, ≥99%, acid <10 ppm, H2O <10 ppm), diethyl carbonate (DEC, ≥99%, acid
<10 ppm, H2O <10 ppm), and N-methyl-2-pyrrolidone (NMP) were procured from Sigma-
Aldrich (Seoul, South Korea). Coin cell cases, aluminum foil, copper foil, and related
components were purchased from the MTI Corporation (Richmond, CA, USA). Lithium
iron (II) phosphate (LiFePO4), carbon black (super P, Timcal), and poly(vinylidene fluoride)
(PVDF, power) were purchased from Alfa Aesar (Seoul, South Korea).

4.2. Electrodes Preparation

LiFePO4, carbon black, and PVDF were mixed at a mass ratio of 80:10:10. NMP was
added as a solvent. A slurry was obtained after thoroughly grinding with a ball mill. The
obtained slurry was used to coat aluminum foil followed by drying at 120 ◦C to remove
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the solvent of NMP. Active materials were loaded on the foil at 12 mg cm−2. The obtained
cathode foil was punched into circular pieces with a diameter of 16 mm followed by drying
at 100 ◦C for 12 h before cell assembly. The graphite anode was prepared with a similar
process. The slurry contained graphite, carbon black, and PVDF at a mass ratio of 85:5:10.

4.3. In Situ Polymerization of GNPEs and Cell Assembly

To prepare the precursor electrolyte solution, various mole ratios of LiFSI were dis-
solved in TMPTE and EC/DEC (50:50/v:v) mixture. The precursor solution was then
dripped on the LFP cathode and polymerized at 60 ◦C for 12 h. The obtained in situ
electrolytes were named GNPE-1, GNPE-1.5, and GNPE-2, respectively. The numerical
suffix indicates the molar concentration of LiFSI. The LiFePO4/GNPE/graphite cell was
assembled with a GNPEs-LFP plate. It was then aged at RT for 24 h before measurement.
All preparations, including in situ polymerization and cell assembly, were carried out
in an argon glove box (H2O and O2 < 1 ppm). Scheme S1 presents the details of the
preparation process.

4.4. Instrumentations and Measurements

A Nicolet iS5 infrared Fourier transform (FT IR) spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) was used to monitor the polymerization of the electrolyte in a scan
range of 4000 to 500 cm–1 with a spectral resolution of 4 cm–1. Thermogravimetric analysis
(TGA) was performed to evaluate the thermal stability of electrolytes on a TGA-8000 (Perkin
Elmer Co., Ltd., Waltham, MA, USA) over a temperature range of RT–500 ◦C at a heating
rate of 10 ◦C min−1 under a nitrogen (N2) atmosphere. Differential scanning calorimetry
(DSC) for confirming the glass-transition temperature (Tg) was performed with a Perkin-
Elmer DSC 6000 (Waltham, MA, USA) at temperatures between −60 and 150 ◦C with
a heating/cooling rate of 10 ◦C min−1 under a N2 atmosphere. Interfacial morphology
and elemental compositions were investigated with a field emission scanning electron
microscope (FE-SEM) and an energy-dispersive X-ray spectroscope (EDS) using a JSM-6700F
(JEOL, Tokyo, Japan) at an accelerating voltage of 15.0 kV. Crystal phase and X-ray diffraction
(XRD) analyses were performed with a D2 Phaser (Bruker, Leipzig, Germany) with Cu Kα
radiation in a 2θ range from 10 to 80◦ at a speed rate of 2◦ min−1. X-ray photoelectron
spectroscopy (XPS) was performed with a K Alpha+ analyzer (Thermo Scientific, Oxford,
UK) using monochromatic Al Kα X-rays (hν = 1486.6 eV) with a beam spot size of 400
µm. The wide survey and narrow scan pass energies were 200 and 50 eV, respectively.
Data were analyzed on a Ca XPS software (inCAx-sight7421) fitting with a Shirley-type
background and calibrated to adventitious C 1s bending energy at 284.6 eV. For electrode
sample preparation, the LPF cathode and graphite anode were collected from cells after
100 cycles and cut in the liquid nitrogen to avoid cross-side deformation. Electrochemical
impedance spectroscopy (EIS) was performed with an IM6ex, Zahner-Elektrik GmbH &
Co. K.G. instrument (Kronach, Germany) between RT and 80 ◦C at a frequency range of
0.1 Hz to 1 MHz with an alternating current (AC) amplitude of 10 mV. EIS spectra fitting
was run on Z-view (version 3.1, Scribner Associates Inc., Southern Pines, NC, USA). At RT,
the electrochemical stability window was confirmed by cycle voltammetry (CV) and linear
sweep voltammetry (LSV). Data were collected at a voltage of 0–6 V with a scan rate of
1 and 0.1 mV s−1. Cell performance tests were all carried out on an Ivium-n-Stat (Ivium
Technologies B.V., Eindhoven, The Netherlands) at RT. The charging/discharging test was
performed with a CR2032 coin cell at cutoff voltages of 2.5−4.2 V vs. Li/Li+.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels10010040/s1, Figure S1: GNPEs preparation and cell
assembly structure; Figure S2: Chemical structure of TMPTE and FT IR resulting spectra of elec-
trolytes with different times; Figure S3: Nyquist plots of electrolytes at various temperatures and
an equivalent electric circuit model; Figure S4: Elemental mapping and EDS analysis of GNPE-1;
Table S1: Currents and resistances of the electrolytes for tLi

+ calculation; Table S2: Comparison of
electrochemical properties of polymer electrolyte from reported works [67–72].

https://www.mdpi.com/article/10.3390/gels10010040/s1
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