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Abstract: The de-halogenation of highly concentrated halo-organic compounds using Zero Valent
Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the
effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming
highly concentrated hazardous halogenated compounds into environmentally benign materials
in the presence of BH4

−. The Zero Valent Iron-entrapped silica gel matrices were synthesized
using the sol–gel method. The de-halogenation products were analyzed using high-performance
liquid chromatography. The results suggest that the Zero Valent Iron-entrapped silica matrices are
effective catalysts in the de-halogenation reaction of halo-organics by BH4

− with 100% efficiency.
The current work also highlights the complete de-bromination of harmful wastewater generated
by the bromoacetic acid manufacturing industry using Zero Valent Iron-entrapped silica matrices.
Therefore, Zero Valent Iron-entrapped silica matrices can be considered potential candidates for the
catalytic removal of highly concentrated halo-organic compounds from contaminated water. This
technology can play a crucial role in reducing the environmental impact of hazardous substances.

Keywords: de-halogenation; halo-organic compounds; sol–gel; wastewater; zero-valent iron

1. Introduction

Halogenated organic compounds are considered one of the major groups of environ-
mental polluting chemicals that are used in industries and agriculture [1–3]. The massive
release and extensive dissemination of these chemicals into the environment generates
undesirable environmental contamination, leading to a deleterious impact on the envi-
ronment and serious damage to human health and aquatic systems due to their toxic
and carcinogenic effects [4]. Hence, this calls for the urgent development of advanced
technologies with effective, inexpensive methods for the degradation of these compounds
to resolve water contamination.

Chloro- and bromo-organic compounds are manufactured extensively for organic
synthesis and flame-retardants [5]. Since they are xenobiotic organic compounds, they
are fairly resistant to biodegradation and, hence, accumulate in the environment [4]. Sev-
eral studies have been conducted in past years to develop efficient methods to eliminate
these compounds from contaminated water. The most widely chosen method was re-
ductive de-halogenation, which converts the halogenated compounds into less harmful
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substances [6,7]. Another method for the removal of halogenated compounds is biodegra-
dation. While these compounds are resistant to biodegradation, some microorganisms have
been found to be capable of breaking them down. Biodegradation can be achieved using
bioreactors or by introducing appropriate microorganisms into the contaminated environ-
ment [8–10]. Advanced oxidation processes (AOPs) can also be used for the removal of
halogenated compounds from contaminated water. AOPs use highly reactive species, such
as hydroxyl radicals, to break down the compounds into less harmful substances [11–16].

A significant number of industries discharge highly concentrated halo-organic com-
pounds into water sources, underscoring the need to develop effective methods for the
degradation of concentrated halo-organic solutions. Generally, reductive de-halogenation
is a widely used method for the elimination of chloro- and bromo-organic compounds from
contaminated water [17,18]. In recent years, an efficient and cost-effective method using
zero-valent metals for the reduction of chlorinated organic compounds at room temperature
has been shown to be a promising method for treating contaminated underground water
and industrial wastewater [19–24]. Among them, zero-valent iron (ZVI) technology has
been extensively developed for industrial wastewater treatment, as iron is abundant, cost-
effective, eco-friendly, and the remediation process is easily manipulated [25]. The study
of the de-chlorination of compounds like chlorinated aliphatics [26,27] and chlorinated
aromatics [24] manipulating ZVI has been very active since the innovative works of Gillham
and O’Hannesin [26], as well as Matheson and Tratnyek in 1994 [27]. ZVI is commonly
used in the de-halogenation of halo-organic compounds in both batch processes and by the
injection of ZVI into contaminated underground water streams. However, this process can
cause the release of iron ions into the water streams [28]. Also, these processes are slow in
neutral and slightly alkaline conditions due to the formation of iron oxides/hydroxides
on the surface of the zero-valent iron nanoparticles (ZVI-NPs). An alternative approach is
stabilizing the ZVI as a heterogenous catalyst without the leaching of the metal ions.

Sol–gel silica entrapped nanoparticles are one of the most widely studied heteroge-
neous catalysts that have been applied in various catalytic processes due to their unique
properties and high catalytic activity [29–34]. Adhikari et al. investigated the catalytic de-
halogenation of halo-organic compounds using noble metal nanoparticles (gold and silver)
entrapped in sol–gel matrices [28]. The study used sodium borohydride as the reducing
agent for the de-halogenation of Br3CCO2

−, Br2CHCO2
−, BrCH2CO2

−, CH3CHBrCO2
−,

CH2BrCH2CO2
−, CH2BrCHBrCO2

−, Cl3CCO2
−, Cl2CHCO2

−, and ClCH2CO2
−, with

the final concentration of all the halo-organic compounds set at 1.4 × 10−3 M. As noble
metals are precious, their employment in industrial wastewater treatment is quite incon-
venient. A recent study reported that ZVI entrapped in sol–gel matrices is an effective
heterogeneous catalyst for reductive de-halogenation of halo-acetic acids [35] and chloro-
acetamides [36] by BH4

−. Neelam et al. used ZVI entrapped in sol–gel matrices to reduce
1.5 × 10−3 M concentrations of Br3CCO2H, BrCH2CO2H, Cl3CCO2H, and ClCH2CO2H;
however, complete de-halogenation was not achieved. The study on the de-halogenation of
chloro-acetamides (8.8 × 10−3 M) by Meistelman et al. demonstrated that ZVI entrapped in
sol–gel matrices could completely reduce dichloroacetamide and monochloroacetamide to
produce acetamide and acetic acid. The versatility of the sol–gel method for trapping ZVI
in organically modified silica (ORMOSIL) enhances the catalyst’s performance. However,
all the studies published so far have focused on the reduction of low concentrations of
halo-organic compounds. Addressing high concentrations of halo-organic compounds is
crucial for protecting both the environment and human health.

Given the critical importance of developing methods to degrade highly concentrated
halo-organic compound wastes, our present work highlights the efficiency of zero-valent
iron as a catalyst for converting concentrated, hazardous halogenated waste into envi-
ronmentally friendly materials. Improper handling of industrial waste can have serious
environmental and legal consequences. Hence, it is crucial for industrial plants to have
well-defined waste management plans and to adhere to best practices to protect both the
environment and public health. In the current work, a heterogeneous catalyst was designed,
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which consists of zero-valent iron nanoparticles encapsulated in an organically modified
silica matrix (ZVI@ORMOSIL) to reduce highly concentrated halogenated substrates. The
significance of the system is the mild reaction conditions and the high conversion values
obtained. The key feature of this work is the employment of the catalyst in the removal of
hazardous wastes in water from the bromoacetic acid (BAA) manufacturing industry.

2. Results and Discussion
2.1. Characterization of Matrices

The powder X-ray diffraction (XRD) patterns obtained for blank ORMOSIL,
ZVI@ORMOSIL, and ZVI-NP powder are provided in Figure 1. The broad peak at 2θ = 22◦

observed in blank ORMOSIL and ZVI@ORMOSIL confirms the amorphous nature of the
silica [37]. The observed peaks at 2θ of 44.63◦, 64.94◦, and 82.34◦ in ZVI@ORMOSIL cor-
respond to (110), (200), and (211) reflection planes of iron (JCPDS: 006-0696) [38]. X-ray
fluorescence (XRF) analysis was performed to ensure the presence of ZVI in the synthesized
catalyst. Figure 2 shows the data obtained for blank ORMOSIL and ZVI@ORMOSIL. The
XRF measured for ZVI@ORMOSIL exhibits peaks associated with Kα and Kβ lines of ZVI
at 6.4 keV and 7.06 keV. The analysis reveals that the weight percentage of ZVI obtained
was approximately 17%, which corresponds to the ZVI content present in the matrices.
Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) mea-
surements were performed to assess the morphology and the composition of the catalyst.
Figure 3 depicts the SEM images and EDX spectra of blank ORMOSIL (A and B) and the
ZVI@ORMOSIL catalyst (C and D). The SEM images of the blank and ZVI doped matrices
show amorphous silica monoliths, which are characteristic of matrices prepared by the
sol–gel synthesis route. A comparison of the two images indicates the amorphous nature
of both matrices and that the morphology did not change significantly upon entrapment
of the ZVI NPs. The prominent peaks observed in the EDX spectra for Si and O clearly
originate from the matrices. The low weight percentage of Fe0 nanoparticles observed on
the surface of the matrix indicates that most of the nanoparticles are entrapped in the pores
of the silica.
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To gain a better understanding of the pore systems in these materials, nitrogen adsorption–
desorption isotherms and pore distributions were analyzed for both the ZVI@ORMOSIL cata-
lyst and the blank ORMOSIL matrix. As shown in Figure 4, both materials exhibit a Type IV
N2 adsorption–desorption isotherm, which is a characteristic feature of mesoporous materi-
als (pores between 2 and 50 nm). The Brunauer–Emmett–Teller (BET) surface area and pore
volume for the ZVI@ORMOSIL catalyst were 558 m2g−1 and 0.34 cm3g−1, respectively,
while, for the blank ORMOSIL, they were 629.45 m2g−1 and 0.37 cm3g−1. The average
Barrett–Joyner–Halenda (BJH) pore diameters for ZVI@ORMOSIL and blank ORMOSIL are
2.5 and 2.2 nm, respectively, which confirms their mesoporous nature. Upon entrapment
of ZVI, slight changes in the shape of the hysteresis loop were observed (Figure 4B). The
decrease in the BET surface area, the pore volume and pore diameters for ZVI@ORMOSIL
compared to the blank ORMOSIL is due to the iron particles occupying space within the
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pores of the silica matrix. The higher density of ZVI reduces the overall accessible surface
area available for gas adsorption as measured by BET analysis.
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2.2. ZVI@ORMOSIL Catalyzed De-Halogenation of Halo-Organics Using NaBH4

At the first stage, de-halogenation experiments were performed for mono-bromo-
acetic acid (MBAA), tri-bromo-acetic acid (TBAA), mono-chloro-acetic acid (MCAA), and
tri-chloro-acetic acid (TCAA) at a [Substrate]/[NaBH4] molar ratio of 1:3 in the presence
of ZVI@ORMOSIL (Figure 5). A 100% reduction to acetic acid (AA) was obtained only in
the case of MBAA. Product distributions of 90% DBAA and 10% MBAA for TBAA; 85%
MCAA and 15% AA for MCAA; and 9% TCAA, 75% DCAA, and 16% MCAA for TCAA
reduction were obtained.
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To improve the de-halogenation percentage, the effect of increasing the relative ex-
cess of NaBH4 was examined. Therefore, the reduction was carried out using different
[Substrate]/[NaBH4] ratios to determine the specific ratio at which 100% de-halogenation is
achieved (Figure 6). The reduction of MBAA was tested using [Substrate]/[NaBH4] molar
ratios of 1:1 and 1:2 to determine if complete dehalogenation could be achieved with a
lower [NaBH4]. The products obtained were 47% AA for the 1:1 ratio and 84% AA for the
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1:2 ratio, with the remaining fraction consisting of unreduced MBAA. Therefore, it became
evident that a 1:3 [Substrate]/[NaBH4] molar ratio is necessary for the complete conversion
of MBAA to AA (Figure 6A).
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(D) TCAA at different [Substrate]/[NaBH4] molar ratios. Total volume = 20.0 mL.

For the reduction of TBAA and MCAA, the [Substrate]/[NaBH4] molar ratios used
were 1:7, 1:8, and 1:9. The yields obtained in the case of TBAA were 32% DBAA (di-bromo-
acetic acid) and 68% AA for the 1:7 ratio, 16% DBAA and 84% AA for the 1:8 ratio, and
100% AA for the 1:9 ratio (Figure 6B). For MCAA, 75% and 81% AA were formed for the 1:7
and 1:8 ratios, respectively, with the remaining yield consisting of unreacted MCAA. At the
1:9 ratio, a 100% reduction to AA was achieved (Figure 6C). The dehalogenation of TCAA
was performed with relatively higher [Substrate]/[NaBH4] molar ratios of 1:12, 1:13, and
1:14. The product distributions achieved were 28% MCAA and 72% AA for the 1:12 ratio,
10% MCAA and 90% AA for the 1:13 ratio, and 100% AA for the 1:14 ratio (Figure 6D).

To evaluate the catalyst’s stability, reusability tests were performed for the reduction
of MBAA, TBAA, MCAA, and TCAA. The matrix containing the catalyst was washed
thoroughly with de-aerated water between each reaction cycle. This washing step was
essential to remove all residual products from the previous reaction, ensuring that no by-
products or unreacted species would interfere with the subsequent cycles. After washing,
the matrix was dried before being reused in the next reaction. The use of de-aerated water
was to prevent oxidation that could affect the catalyst’s surface. Figure 7 displays the
complete de-halogenation for at least six reaction cycles and hence ensures the stability of
the catalyst.
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represented by 1–5 in the graphs. [substrate]/[NaBH4] = (A) 1:3, (B) 1:9, (C) 1:9, and (D) 1:14. Total
volume = 20 mL.

The de-bromination of MBAA and TBAA, conducted at a concentration of 0.4 M,
achieved complete de-bromination at [Substrate]/[NaBH4] molar ratios of 1:3 and 1:9,
respectively, with both substrates being efficiently reduced to acetic acid within an hour,
indicating that ZVI@ORMOSIL is an efficient catalyst. The degradation pathway of TBAA
involves sequential transformations leading to the formation of DBAA, then to MBAA,
and finally to acetic acid. Like TBAA, the degradation of TCAA also follows a sequential
transformation pathway. It proceeds from TCAA to DCAA (di-chloro-acetic acid) and
further to MCAA, ultimately resulting in the formation of acetic acid (AA). The reactions
are much slower than those of TBAA and MBAA de-halogenation due to the stronger
C-Cl bond. [Substrate]/[NaBH4] molar ratios of 1:9 and 1:14 are required for MCAA and
TCAA for complete conversion to acetic acid. It is proposed that the mechanisms of the
de-halogenations proceed via the following reactions (Equations (1)–(7)), in analogy to a
previously suggested mechanism [35].

ZVI-NP + (n/4)BH4
− + (3/4)nH2O → (ZVI-NP)-Hn

n− + (n/4)B(OH)3 + (3n/4)H+ (1)

(ZVI-NP)-Hn
n− + mH2O → (ZVI-NP)-Hn+m

(n−m)− + mOH− (2)

(ZVI-NP)-Hn+m
(n−m)− + XkH3−kCCO2

− → (ZVI-NP)-Hn+m−1
(n−m)− + Xk−1H3−kCCO2

− + X− + H+ (3)

(X = Cl or Br; k = 3 or 2 or 1)
(ZVI-NP)-Hn+m

(n−m)− + XkH3−kCCO2
− → (ZVI-NP)-Hn+m

(n−m−1)− + Xk−1H3-kCCO2
− + X− (4)

{(ZVI-NP)-Hn+m−1}(n−m)− + Xk−1H3−kCCO2
− → {(ZVI-NP)-Hn+m−1}-CXk−1H3−kCO2

(n−m+1)− (5)

{(ZVI-NP)-Hn+m−1}-CXk−1H3-kCO2
(n−m+1)− → {(ZVI-NP)-Hn+m−2}(n−m)− + CXk−1H4−kCO2

− (6)
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{(ZVI-NP)-Hn+m−1}-CXk−1H3-kCO2
(n−m+1)− + H2O → {(ZVI-NP)-Hn+m−1}(n−m−1)− + CXk−1H4−kCO2

− + OH− (7)

Reaction (1) is commonly accepted for the M0-NPs catalyzed hydrolysis of BH4
− [28].

However, recent DFT studies on BH3
− hydrolysis on Ag0-NPs [39,40] suggest a more

complex hydrolysis mechanism. The detailed mechanism for the ZVI catalyzed hydrolysis
of BH4

− is not known. This might affect Reactions (1)–(4). The schematic representation of
the mechanism is illustrated in Scheme 1.
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As waste streams frequently consist of multiple components, we conducted additional
assessments of the catalyst’s efficacy in reducing substrate mixtures like MBAA+TBAA,
MCAA+TCAA, and MCAA+TCAA+ MBAA+TBAA using NaBH4 as the reducing agent in a
total reaction volume of 20 mL (Figure 8). The ZVI@ORMOSIL catalyzed de-halogenation
reaction of both individual substrates, and their mixtures exhibited complete de-halogenation,
resulting in the production of acetic acid (AA) as the final product. The reusability of the
catalyst was also evaluated, and it demonstrated stability for at least six reaction cycles,
achieving complete dehalogenation.

The first stage reactions of substrate mixtures were conducted at a total substrate concen-
tration of 0.4 M (0.2 M of each substrate) in the case of MBAA+TBAA and MCAA+TCAA
and 0.4 M (0.1 M of each substrate) for MCAA+TCAA+MBAA+TBAA. The MBAA+TBAA
mixture was completely reduced within 1 h at a substrate to BH4

− molar ratio of 1:6. The
reduction of MCAA+TCAA mixtures to complete acetic acid was achieved at a substrate to
BH4

− molar ratio of 1:11. However, the de-chlorination of the MCAA+TCAA+MBAA+TBAA
mixture required a higher substrate to BH4

− molar ratio of 1:15. The de-chlorination
reaction required approximately 16 h to reach completion.

To create an environmentally friendly process, it was decided to explore the possibility
of decreasing the volume of solvents and reducing agents utilized in the procedure. As a
second stage of the reaction, solid MBAA (0.2 M) was subsequently introduced following
the completion of de-halogenation reactions of all three mixtures. The results obtained
are provided in Figure 9. The complete de-halogenation was obtained in 1 h for all the
above-mentioned reactions without introducing additional NaBH4 into the mixture. The
total substrate to BH4

− molar ratios required to reduce each substrate mixture (first and
second stages) are depicted in Scheme 2.
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2.3. De-Halogenation of Industrial Waste Containing Bromoacetic Acids

The de-halogenation of industrial waste containing bromoacetic acids was performed
using a total concentration of 0.80 M waste solution containing MBAA (70%) and DBAA
(30%) mixture. From the high-performance liquid chromatography (HPLC) analysis, the
concentrations of bromoacetic acids present in the bulk solution of the industrial waste
were [MBAA] = 7.52 M and [DBAA] = 3.2 M. The de-bromination reaction was carried out
using a [substrate] to [NaBH4] ratio of 1:4. The reaction conditions are provided in Table 1.

Table 1. Conditions of complete debromination of BAA waste solution in the presence
ZVI@ORMOSIL. Total volume = 100 mL.

[Substrates]
(M)

[MBAA]
ppm

[DBAA]
ppm

[Substrate]/
[NaBH4] Product

[MBAA]+
[DBAA] = 0.80 M 77,812 52,281 1:4 Acetic acid (AA)

Complete de-bromination was achieved at this concentration of bromoacetic acids
mixture. Reusability tests were also conducted to ensure the stability of the catalyst
(Figure 10A). The chromatogram obtained is provided in Figure 10B.
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3. Conclusions

The catalytic degradation of halo-organic compounds using a ZVI-entrapped silica sol-
gel matrix displayed a complete de-halogenation of all the substrates and substrate mixtures
into acetic acid (AA) as the final product. It should be pointed out that the presence of BH4

−

inhibits the formation of the oxide/hydroxide protecting layer of the ZVI. The complete
degradation of highly concentrated halo-organic compounds is a significant advancement
in waste remediation and environmental protection. The transformation of halo-organic
compounds into acetic acid (AA) as the final product is not only an environmentally friendly
process but also potentially economically valuable. Furthermore, a 100% de-bromination
was attained in the reduction of a waste solution obtained from the bromoacetic acid
(BAA) production industry. It indicates that the ZVI-entrapped silica matrix method can
be applied directly to address specific industrial waste streams, making it a practical and
potentially lucrative solution for industrial waste management.

4. Materials and Methods
4.1. Materials

All commercial chemicals were of A.R. grade. Iron nano-powder (50 nm, 99.9%) was
purchased from Glentham-Life Sciences (Corsham, UK). Mono-bromo-acetic acid (MBAA)
(99%), tribromo-acetic acid (TBAA) (97%), tetraethyl ortho-silicate (99%) (TEOS), and tri-
methoxy-methyl-silane (98%) (MTMOS) were purchased from Sigma-Aldrich, and Mono-
chloro-acetic acid (MCAA) (99%) and tri-chloro-acetic acid (TCAA) (99%) from Alfa Aesar.
Sodium borohydride (NaBH4) (98%) was purchased from Thermo Scientific. NH3 solution
(30%) was purchased from Carlo Erba, ethanol and hydrochloric acid (37%) from Bio-Lab
Ltd., Jerusalem, Israel. An industrial waste solution containing concentrated bromoacetic
acid was obtained from one of the industrial plants. All chemicals were used without
further purification. Water purified with a Milli-Q system with a resistivity > 15 MΩ·cm−1

was used throughout the experiments.

4.2. Instrumentation

Powder X-ray diffraction (PXRD) measurements of the matrices were carried out
using a Rigaku SmartLab SE X-ray diffractometer (Akishima, Japan) using Cu-Kα (1.54 Å)
radiation operated at 40 kV and 30 mA. X-ray fluorescence (XRF) was measured using a
Portable X-ray Fluorescence (pXRF), Niton XL3t GOLD + analyzer instrument (Thermo
Fisher Scientific, Waltham, MA, USA). SEM analysis was performed using 3FE-Tescan ultra-
high-resolution MAIA microscope with an AZTEC microanalysis EDX detector, Oxford
Instruments, Concord, MA, USA. HPLC analysis was performed using a Dionex Ultimate
3000 equipped with a diode array detector (Thermo Scientific, Germering, Germany) .
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4.3. Synthesis of ZVI@ORMOSIL Catalyst

The catalyst was synthesized through a two-step acid/base sol–gel process [35]. To
a 100 mL beaker containing 8.8 mL of ethanol, 6.0 mL TEOS was added with stirring,
followed by the addition of 1.6 mL MTMOS. The stirring continued for 15 min from the
time of the addition of MTMOS. Later, 2.7 mL HCl (0.277 M) was added dropwise and
stirred for another 15 min. Thereafter, 2.0 mL NH3 solution (2.5%, 0.513 M) was added
dropwise, followed by the addition of ZVI NP suspension (1.0 M in ethanol) to give 30%
mol of ZVI@ORMOSIL. The solution was stirred for several minutes until the gelation
occurred. After aging and drying the solid gel for 14 days, the resulting solid matrix was
washed multiple times with de-aerated water. The matrix was subsequently dried, crushed
into a powder using a mortar and pestle, and used as a catalyst for the experiments.

4.4. De-Halogenation Reactions Using the ZVI@ORMOSIL Catalyst

The de-halogenation of halo-organic compounds was performed using a 30% mole
ZVI@ORMOSIL catalyst. In a typical catalytic reaction, solid substrates and their mixtures
were accurately weighed and transferred into a 100 mL reaction bottle containing ca. 0.25 g
of ZVI@ORMOSIL catalyst. Subsequently, 15 mL of water was added, followed by the
addition of 5.0 mL NaOH solution to the mixture. The substrate and substrate mixture
concentrations were 0.4 M for each batch process. The NaOH solution was introduced
before each reaction to avoid excess H2 evolution during the addition of NaBH4 into the
acidic substrate solutions. The concentration of total substrate and NaOH was kept equal in
the final solution. The solution was then stirred for several minutes. The de-halogenation
reaction was initiated by adding the necessary amount of solid NaBH4 in portions as the
reducing agent. The suspensions containing MBAA and TBAA were stirred for 1 h, while
those containing MCAA and TCAA were stirred overnight.

Furthermore, substrate combinations were subjected to de-halogenation. The first
stage of the reaction was the reduction of the mixtures: MBAA+TBAA, MCAA+TCAA,
and MCAA+TCAA+MBAA+TBAA. A second stage reaction was performed after the
completion of de-halogenation reactions within the mixtures. Solid MBAA (0.2 M) was sub-
sequently introduced into each of the reaction mixtures. The addition process is illustrated
in Scheme 3.
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Product analysis was carried out using HPLC after the completion of the reaction.
The solutions were diluted and adjusted to pH 2.0 using H3PO4. All the solutions were
filtered through a 0.22 µm PES filter membrane before analysis. HPLC analysis was
carried out using a Dionex Ultimate 3000 equipped with a diode array detector (Thermo
Scientific), Hypersil GOLD (C18, dim. (mm)—150 × 4.6, particle size—3 µm) column. The
substrates were eluted using 0.2% H3PO4/CH3CN = 98:2, UV detection wavelength of
200 nm, temperature 25 ◦C, injection volume 30 µL, and a flow rate of 1.0 mL/min.

4.5. Reduction of Bromoacetic Acids in Industrial Wastewater

Waste solutions obtained from industry after the bromoacetic acid (BAA) production
process were used in this study. A 100 mL sample of the required concentration of the
bromoacetic acids waste containing an equal concentration of NaOH was mixed with 1.25 g
of ZVI@ORMOSIL in a 500 mL beaker. Thereafter, the de-bromination was carried out by
adding four portions of the required amount of solid NaBH4 as the reducing agent.
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