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Abstract: Cardiovascular diseases (CVDs) are the number one cause of mortality among non-
communicable diseases worldwide. Expanded polytetrafluoroethylene (ePTFE) is a widely used
material for making artificial vascular grafts to treat CVDs; however, its application in small-diameter
vascular grafts is limited by the issues of thrombosis formation and intimal hyperplasia. This paper
presents a novel approach that integrates a hydrogel layer on the lumen of ePTFE vascular grafts
through mechanical interlocking to efficiently facilitate endothelialization and alleviate thrombosis
and restenosis problems. This study investigated how various gel synthesis variables, including
N,N’-Methylenebisacrylamide (MBAA), sodium alginate, and calcium sulfate (CaSO4), influence the
mechanical and rheological properties of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels intended
for vascular graft applications. The findings obtained can provide valuable guidance for crafting
hydrogels suitable for artificial vascular graft fabrication. The increased sodium alginate content
leads to increased equilibrium swelling ratios, greater viscosity in hydrogel precursor solutions,
and reduced transparency. Adding more CaSO4 decreases the swelling ratio of a hydrogel system,
which offsets the increased swelling ratio caused by alginate. Increased MBAA in the hydrogel
system enhances both the shear modulus and Young’s modulus while reducing the transparency
of the hydrogel system and the pore size of freeze-dried samples. Overall, Hydrogel (6A12M) with
2.58 mg/mL CaSO4 was the optimal candidate for ePTFE–hydrogel vascular graft applications due
to its smallest pore size, highest shear storage modulus and Young’s modulus, smallest swelling ratio,
and a desirable precursor solution viscosity that facilitates fabrication.

Keywords: hydrogel; vascular graft; PNaAMPS; PAAm; mechanical and rheological properties

1. Introduction

Cardiovascular diseases (CVDs) are the foremost cause of mortality among non-
communicable diseases globally [1], with CVDs accounting for 19.05 million deaths world-
wide in 2020 [2,3]. The anticipated rise in fatalities due to CVDs in the future renders it an
urgent global issue to be addressed [4].

Bypass surgeries and vascular graft replacement are common surgical approaches
for treating CVDs [2,5]. FDA-approved expanded polytetrafluoroethylene (ePTFE) with a
porous structure is a type of widely used synthetic material in vascular graft replacement [6–8].
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However, because of the poor biocompatibility and super-hydrophobic nature of ePTFE,
endothelial cells (EC) are hard to adhere to its surface. This limitation can lead to various
complications, such as thrombus formation, mechanical property mismatches, and inti-
mal hyperplasia, rendering ePTFE unsuitable for small-diameter vascular grafts (SDVGs)
applications [9–12].

There are several physical and chemical modification methods available to address
the thrombosis issue of ePTFE vascular grafts. Physical modification methods involve dip-
coating or soaking the grafts in biomacromolecules to enhance biocompatibility or reduce
thrombogenicity [13–15]. However, the dip-coating method can result in easy detachment
of biomacromolecules due to blood flow, making it less suitable for long-term vascular
graft replacement.

Chemical modification methods entail altering the chemical structure of ePTFE by in-
troducing new functional groups or molecules onto its surface. These methods include the
plasma treatment approach to introduce reactive functional groups [16,17], and the covalent
bonding modification approach to permanently alter the carbon–fluorine bonds [18–20].
However, due to the chemical inertness of ePTFE, the plasma treatment approach is not
highly efficient. Additionally, covalent bonding modification requires a challenging modifi-
cation process using corrosive or chemically active substances to change the carbon–fluorine
bond. Moreover, this method can involve toxic chemical reagents, posing potential risks to
human health [13].

To compensate for the limitations of ePTFE regarding thrombosis formation, hydrogel
with good biocompatibility and endothelialization capabilities can be integrated into the
porous ePTFE graft, so that the ePTFE outer layer offers mechanical support while the
hydrogel inner layer provides the needed biological function. However, due to the high
hydrophobicity and chemically inert nature of ePTFE, achieving a seamless connection of a
continuous hydrogel layer to ePTFE without any delamination is challenging.

Currently, there are two existing methods for attaching hydrogel to ePTFE. One
method involves employing plasma treatment to alter the ePTFE outer surface or a flat
ePTFE surface, generating functional groups like hydroxyl groups, to facilitate bonding
with the hydrogel [21,22]. Although this method enables the attachment of a hydrogel
to the outer surface of an ePTFE graft or a flat ePTFE film, achieving functionalization of
the luminal surface of an ePTFE vascular graft through plasma treatment remains highly
challenging. The plasma induced by a common plasma etch system poses a significant
obstacle in reaching the lumen of an ePTFE vascular graft, often resulting in unsuccessful
functionalization attempts.

Another method to incorporate a hydrogel layer onto ePTFE is the mechanical in-
terlocking method. It has been reported that the mechanical interlocking method could
improve the attachment between a hydrogel and an elastomer [23,24]. To the best of our
knowledge, this approach has not yet been utilized in connecting a hydrogel system with
ePTFE for the fabrication of an artificial vascular graft. In previous research, we proposed
this novel method of attaching a hydrogel layer to the lumen of an ePTFE vascular graft [25].
In this study, we introduce an improved hydrogel formulation that further facilitates the
fabrication process and enhances the material’s performance. By mechanically interlocking
the well-designed hydrogel to the porous ePTFE vascular graft, a continuous hydrogel
layer was connected to the lumen of the ePTFE vascular graft. Through this synergistic
approach, the advantages of both the ePTFE’s mechanical stability and the hydrogel’s
cytocompatibility and hemocompatibility were realized.

The respective advantages and disadvantages of ePTFE and hydrogel and the synergy
of combining them in vascular graft applications are shown in Figure 1. The benefits of a
well-designed hydrogel include excellent biocompatibility, enhanced endothelialization,
anti-thrombosis properties, capacity for drug loading, and hydrophilicity [25]. Furthermore,
FDA-approved ePTFE offers advantages such as wide commercial availability, large-scale
supply, shelf stability, and provision of mechanical support. By introducing a hydrogel
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layer on the surface of ePTFE, a vascular graft possessing both robust mechanical properties
and favorable biological attributes can be fabricated.
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Figure 1. The respective strengths and weaknesses of employing hydrogel and ePTFE in vascular
graft applications and the potential synergy of combining them.

The endothelium, comprising a monolayer of endothelial cells (ECs) within the inner
tunica, can release and regulate key molecules, playing an important role in achieving
anti-thrombogenic properties in blood vessels [10,26–28]. Thus, endothelialization is crucial
for preventing thrombosis and restenosis in vascular grafts, ultimately facilitating long-
term lumen patency. Our previous study suggests that interpenetrating hydrogels with
favorable rheological properties and endothelialization functions are promising candidates
for mechanical interlocking with porous and super-hydrophobic ePTFE [25]. This method
allows the hydrogels to connect with ePTFE, facilitating the endothelialization process
within ePTFE vascular grafts and effectively resolving thrombosis issues associated with
plain ePTFE grafts.

Polyacrylamide (PAAm) is renowned for its favorable rheo-mechanical properties [29–31],
while poly(2-Acrylamido-2-methyl-1-propanesulfonic acid sodium) (PNaAMPS) offers en-
dothelialization functionality due to its sulfonate groups [25,32–34]. Both can be used in the hy-
drogel system. Based on our prior study, the optimal monomer ratio is AAm/NaAMPS = 40:60,
which provided the best endothelialization function, excellent hemocompatibility, a pro-
longed activated partial thromboplastin time, and desirable rheological properties [25]. In
addition to the impact of monomer ratios, the amount of crosslinker also plays a significant
role in providing the rheological and biological properties of hydrogels.

To introduce a hydrogel layer on the ePTFE surface, an appropriate range of viscosities
of the hydrogel precursor solutions is needed to ensure that the solution can remain in
position within the ePTFE porous structure until crosslinking is complete. Insufficient
viscosity of the precursor solution could lead to the liquid draining out before the hydrogel
is fully crosslinked. Conversely, excessively high viscosity could hamper the injection
of the hydrogel precursor solution into the ePTFE porous structure. Hence, considering
the proper viscosity of hydrogel precursor solutions is crucial when designing a hydrogel
system that is to be attached to the ePTFE vascular graft for endothelialization and anti-
thrombosis purposes. Xanthan gum is a polysaccharide with excellent biocompatibility,
and it exhibits the ability to offer elevated solution viscosity and maintain gel stability
even at very low concentrations [35]. Moreover, it can undergo ionic crosslinking with
calcium sulfate [36,37]. Similarly, sodium alginate, another type of natural polysaccharide,
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can increase the viscosity of hydrogel precursor solutions and provide mechanical energy
dissipation function for a hydrogel system through ironic crosslinking [30,38–40].

In this study, P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different com-
positions of crosslinkers and thickeners were synthesized, and the viscosities of different
hydrogel precursor solutions were studied. The impact of each composition on the proper-
ties of hydrogels in terms of swelling ratio, transparency, pore size, shear storage modulus,
and Young’s modulus of hydrogels was investigated to provide guidance for synthesizing
hydrogels suitable for vascular graft applications.

2. Results and Discussion
2.1. Physical Appearance and Microstructure of Hydrogels

The physical appearance of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels con-
taining varying amounts of MBAA crosslinker and sodium alginate is shown in Figure 2.
From bottom to top, there is an increase in sodium alginate concentration in the hydrogel
system, and from left to right, the MBAA crosslinker concentration increases. Overall, with
an increase in either sodium alginate concentration or MBAA crosslinker concentration, the
transparency of the hydrogel decreases. The hydrogel with 10 mol% MBAA and 6 mol%
sodium alginate is the exception with the opaquest appearance. The opaqueness of the
Hydrogel (6A10M) sample is likely due to the presence of uneven crystallization spots, as
shown in its microstructure to be discussed below.
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Figure 2. The physical appearance of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different
amounts of MBAA crosslinker and sodium alginate.

The microstructures of the hydrogels with different amounts of MBAA crosslinker
and sodium alginate and after freeze-drying are shown in Figure 3. Same as in Figure 2,
the sodium alginate concentration in the hydrogel system increases from bottom to top,
and the MBAA crosslinker concentration increases from left to right.
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Figure 3. The microstructure of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different
amounts of MBAA and sodium alginate captured through SEM. (a1–a4) The microstructure of
the Hydrogel (6A6M), Hydrogel (6A8M), Hydrogel (6A10M), and Hydrogel (6A12M) hydrogel
systems with 6 mg/mL sodium alginate, respectively. (b1–b4) The microstructure of the Hydrogel
(4A6M), Hydrogel (4A8M), Hydrogel (4A10M), and Hydrogel (4A12M) hydrogel systems with
4 mg/mL sodium alginate, respectively. (c1–c4) The microstructure of the Hydrogel (2A6M), Hydrogel
(2A8M), Hydrogel (2A10M), and Hydrogel (2A12M) hydrogel systems with 2 mg/mL sodium
alginate, respectively.

The average pore size for each hydrogel composition was analyzed by selecting nine
random pores within an SEM image, and the results are summarized in Table 1. As the
MBAA concentration increases from 6 mol% MBAA to 12 mol% MBAA in Figure 3, there
is an overall decreasing trend in pore size. However, Hydrogel (6A10M) is again an
exception, displaying less consistent pore sizes and some uneven crystallization spots,
which presumably leads to an opaque appearance (cf. Figure 2).

Table 1. The average pore size of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels.

Pore Diameter (µm)

6 mol% MBAA 8 mol% MBAA 10 mol% MBAA 12 mol% MBAA

6 mg/mL Alginate 316.81 ± 70.09 189.58 ± 44.93 235.49 ± 63.47 139.78 ± 24.85
4 mg/mL Alginate 352.04 ± 86.36 261.03 ± 74.33 242.92 ± 42.37 205.08 ± 69.42
2 mg/mL Alginate 330.47 ± 71.75 241.28 ± 58.92 203.95 ± 64.43 155.97 ± 20.13

The average pore sizes and the corresponding standard deviations of P(AAm-co-
NaAMPS)-alginate-xanthan hydrogels are shown in Table 1. As MBAA concentration
increases, there is a general reduction in pore size, except for hydrogels with less than
10 mol% MBAA and with 6 mg/mL sodium alginate. Hydrogel (6A12M), with the highest
concentrations of both MBAA and sodium alginate, exhibits the smallest pore size. In
comparison, Hydrogel (2A6M), with the lowest concentrations of both MBAA and sodium
alginate, has the largest pore size. The amount of MBAA plays an important role in
controlling the pore size of hydrogels as it enhances the crosslinking density of P(AAm-
co-NaAMPS) with more MBAA crosslinkers added to the hydrogel system. When MBAA
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increases, the number of covalent bonds connecting polymer chains within the hydrogel
network also increases, resulting in smaller pore sizes within a hydrogel network [41].

2.2. Physical Appearance and Microstructure of ePTFE–Hydrogel (6A12M) Vascular Graft

The physical appearance of the ePTFE–Hydrogel (6A12M) vascular graft is shown in
Figure 4a. This photo demonstrates that a continuous thin layer of hydrogel that was well
connected to the super-hydrophobic ePTFE graft through mechanical interlocking without
any delamination.
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Figure 4. (a) Physical appearance of mechanically interlocked ePTFE–Hydrogel (6A12M) vascular
graft. (b) SEM images showing the cross-section and microstructure of ePTFE–Hydrogel (6A12M)
vascular graft.

The ePTFE outer layer has an inner diameter of 6 mm and a thickness of 1 mm. The
hydrogel inner layer in Figure 4a, with an average thickness of approximately 0.4 mm, is
significantly thinner than in our prior work [25]. A thinner and continuous hydrogel layer
not only serves as the substrate for endothelial cell attachment but allows for a larger cross-
sectional area for blood flow. However, achieving a uniform thickness for the hydrogel
inner layer presents a greater challenge with thinner hydrogels than with thicker ones.

The microstructure of the mechanically interlocked ePTFE–Hydrogel (6A12M) vas-
cular graft taken by SEM is shown in Figure 4b. This SEM image illustrates the seamless
integration of the crosslinked hydrogel with the porous ePTFE.

2.3. FTIR Investigation of Hydrogels

Figure 5 illustrates the FTIR spectra representing different functional groups found
in hydrogels with varied MBAA and alginate contents. In Figure 5a,b, the strong, wide
peak from 3700 cm−1 to 3100 cm−1 in the blue region indicates the stretching of O-H bonds
in carboxyl and hydroxyl groups present in xanthan and alginate. The peaks observed
between 3000 cm−1 and 2800 cm−1 in the green region correspond to the vibrations of
asymmetrical and symmetrical stretching of CH3-, CH2-, and CH- groups present in both
PAAm and PNaAMPS. The two peaks ranging from 1710 cm−1 to 1520 cm−1 in the yellow
region in Figure 5b are caused by the amide I band with the C=O stretching vibration as
well as the amide II bands associated with the N-H bending vibration. The two strong peaks
from 1260 cm−1 to 1020 cm−1 in the red region in Figure 5a indicate the S=O stretching due
to the sulfonate group in the hydrogel system. The FTIR results confirm the success of the
hydrogel synthesis process.
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tions. The blue region represents the stretching of O-H bonds in carboxyl and hydroxyl groups found
in xanthan and alginate. The green region corresponds to the vibrations of asymmetrical and symmet-
rical stretching of CH3-, CH2-, and CH- groups present in both PAAm and PNaAMPS. (a) FTIR results
of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different amounts of sodium alginate (algi-
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(b) FTIR results of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different concentrations of
MBAA. The yellow region is caused by the amide I band with the C=O stretching vibration as well as
the amide II bands associated with the N-H bending vibration.

2.4. Equilibrium Swelling Ratio of Hydrogels

For hydrogels employed in vascular graft applications, a smaller equilibrium swelling
ratio is preferable. The impact of alginate, CaSO4, and MBAA on equilibrium swelling
ratios of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels was investigated. Figure 6
illustrates the equilibrium swelling ratios of these different types of hydrogels with vari-
ous compositions.

The red group (first group on the left) in Figure 6 shows that, when maintaining
the other components constant, increasing the sodium alginate content from 2 mg/mL to
6 mg/mL led to an increase in the equilibrium swelling ratio of the hydrogels from 0.35 to
0.71. Therefore, with more sodium alginate introduced to the hydrogel system, the swelling
ratio of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels also increases.
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Figure 6. The equilibrium swelling ratio of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with
different amounts of alginate, CaSO4, and MBAA. The equilibrium swelling ratio outcome depicted by
the dashed lines corresponds to the same hydrogel composition: Hydrogel (6A10M) with 2.18 mg/mL
CaSO4. The equilibrium swelling ratio result marked with the meshed pattern also corresponds to
the same hydrogel composition: Hydrogel (6A12M) with 2.58 mg/mL CaSO4.

Furthermore, as indicated by the brown (and second) group in Figure 6, the swelling
ratio decreased from 0.71 to 0.38 with the increase in CaSO4 concentration from 2.18 mg/mL
to 2.58 mg/mL. Hence, increasing the amount of CaSO4 leads to a reduction in the swelling
ratio of the hydrogel systems. The addition of more CaSO4 contributes to counterbalancing
the swelling ratio elevation induced by the addition of sodium alginate. This is because a
higher amount of CaSO4 enhances the ionic crosslinking of sodium alginate in the hydrogel
system, decreases the molecular mobility, and restricts the movement of polymer chains,
thereby elevating the stability of the hydrogels when immersed in a DPBS solution. The
results can also be generalized and applied to other ionically crosslinked hydrogel systems
beyond sodium alginate and xanthan.

Moreover, as shown in the green (third) group in Figure 6, the equilibrium swelling ra-
tio of hydrogels remains approximately at 0.71 with the CaSO4 concentration of 2.18 mg/mL,
exhibiting minimal change despite the increase in the MBAA crosslinker from 10 mol% to
12 mol%. This indicates that although the concentration of MBAA affects the pore size of
the hydrogels in their microstructure as indicated in Figure 3, it has a minimal impact on
the equilibrium swelling ratio of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels.

Finally, the blue (and last) group of hydrogel samples have varying MBAA concen-
trations while maintaining a constant CaSO4 content of 2.58 mg/mL. Despite the 2 mol%
difference in MBAA content among the hydrogels, a consistent average swelling ratio of
around 0.39 persists. These results reaffirm the minimal influence of MBAA on the swelling
ratio of hydrogels.

2.5. Mechanical Properties of Hydrogels
2.5.1. Rheology Test Results of Hydrogel Precursor Solutions

The viscosities of P(AAm-co-NaAMPS)-alginate-xanthan hydrogel precursor solutions
with different compositions are presented in Figure 7. The MBAA concentrations are 6 mol%,
8 mol%, 10 mol%, and 12 mol% for Figure 7a, Figure 7b, Figure 7c, and Figure 7d, respectively.
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different compositions. The viscosities of hydrogel precursor solutions containing (a) 6 mol% MBAA,
(b) 8 mol% MBAA, (c) 10 mol% MBAA, and (d) 12 mol% MBAA, respectively.

Specifically, in Figure 7a, at a 6 mol% MBAA concentration, the viscosity of the
hydrogel precursor solution is increased when the alginate content is increased from
2 mg/mL to 6 mg/mL. Figure 7b,c demonstrate a consistent trend with Figure 7a as the
MBAA concentration increases. However, the extent of viscosity increase diminishes from
Figure 7a–d. This indicates that with the increase in MBAA, the influence of alginate on
the viscosity change of hydrogel precursor solutions becomes smaller, and the effect of
alginate concentration on the viscosity of hydrogel precursor solutions becomes minimal
when MBAA reaches 12 mol%.

To prevent the drainage of the hydrogel precursor solution from the porous ePTFE
vascular graft before polymerization and crosslinking, a precursor solution with a higher
viscosity is preferable. This more viscous precursor solution ensures better retention of the
solution within the porous structure of the ePTFE, thereby avoiding drainage before the
polymerization and crosslinking processes take place in the oven. Therefore, the hydrogel
systems with the maximum alginate concentration of 6 mg/mL are the preferred choice for
vascular graft applications.

2.5.2. Rheology Test Results of Crosslinked Hydrogels

The shear storage moduli of P(AAm-co-NaAMPS)-alginate-xanthan hydrogel samples
tested through frequency sweep, parallel-plate rheological tests are shown in Figure 8. As
shown in Figure 8a–c, with the increase in MBAA, the shear storage modulus (G’) of hydrogels
also increases at frequencies greater than 10 Hz, and the maximum shear storage modulus
was attained with a 12 mol% MBAA concentration across all alginate concentrations.

While the swelling ratio remains relatively unchanged with increasing MBAA content,
as shown in Figure 6, the impact of MBAA content on the pore size and shear storage
modulus of a hydrogel should not be disregarded. Increased MBAA content leads to
greater crosslinking density as well as smaller pore size within a hydrogel system. When
the crosslinking density increases, the polymer chains have less freedom to move and slide
past each other, resulting in higher resistance to deformation and higher shear storage
modulus [42]. The larger crosslinking density and smaller pore size observed in the
hydrogels are responsible for the greater shear storage modulus, according to Figure 8.
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Figure 8. The shear storage modulus of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with differ-
ent compositions: (a) The shear storage modulus of hydrogels with 2 mg/mL alginate concentration.
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of hydrogels with 6 mg/mL alginate.

The detailed rheological results of the hydrogels with different compositions are shown
in Figures 9–11, including the information on shear storage modulus, shear loss modulus,
tan delta, and torque.
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Figure 9 demonstrates that the shear storage modulus (G’) of hydrogels with a
2 mg/mL alginate concentration increases as the concentration of the MBAA crosslinker is
raised from 6 mol% to 12 mol%. This trend is similarly observed in the storage modulus
of hydrogels with 4 mg/mL concentrations, as illustrated in Figure 10. However, as the
alginate concentration is further increased to 6 mg/mL, the difference in shear storage
modulus of hydrogels becomes less significant, as shown in Figure 11.

Thus, the energy storage capacity of the P(AAm-co-NaAMPS)-alginate-xanthan hy-
drogels under shear increases with the augmentation of MBAA. This trend becomes less
significant when the alginate is raised to a higher concentration at 12 mg/mL.
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Figure 11. The rheological results of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with 6 mg/mL
alginate concentration. The blue, green, yellow, and red curves represent shear storage modulus,
shear loss modulus, torque, and tangent delta, respectively. The detailed MBAA concentrations in
the hydrogel system are (a) 6 mol%, (b) 8 mol%, (c) 10 mol%, and (d) 12 mol%, respectively.

2.5.3. Cyclic Tensile Test Results of Hydrogels

The Young’s modulus of different P(AAm-co-NaAMPS)-alginate-xanthan hydrogels
tested through cyclic tensile tests are shown in Figure 12. Within the red (first from the
left) group, Young’s modulus doubles when the MBAA concentration reaches 8 mol%,
and it even triples as the MBAA concentration continues to increase until it reaches twice
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the initial concentration. A similar trend can be observed in the brown (second) and blue
(third) groups, where Young’s modulus of hydrogels increases significantly with higher
MBAA content.
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Figure 12. The Young’s modulus of the P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with
various compositions. The red, brown, and blue groups represent 2 mg/mL, 4 mg/mL, and 6 mg/mL
of alginate, respectively.

As per Figure 12, MBAA plays an important role in increasing Young’s modulus of
hydrogels. Across all alginate concentrations, the highest Young’s modulus was achieved
at a 12 mol% concentration of MBAA. The increased crosslinking density and reduced pore
size found in the hydrogels featuring 12 mol% MBAA contribute to the higher Young’s
modulus exhibited by these hydrogels. As the MBAA crosslinker concentration rises,
polymer chains in a hydrogel system become more extensively intra- and inter-molecular
crosslinked, this increased interconnection in the hydrogel system restricts the movement
of the polymer chains. Consequently, when a specific load is applied, the limited molecular
mobility leads to reduced displacement within the hydrogel system and increased Young’s
modulus of the hydrogels. The results can also be generalized and applied to other covalent-
crosslinked hydrogel systems.

3. Conclusions

In this work, the effects of different factors—including MBAA, sodium alginate, and
CaSO4—affect the properties of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels were
investigated. The obtained results can guide the synthesis of the hydrogels that are suitable
for vascular graft applications as well as other tissue engineering applications.

The increased sodium alginate content leads to increased equilibrium swelling ratios,
greater viscosity in hydrogel precursor solutions, and reduced transparency. Introducing
additional CaSO4 decreases the swelling ratio of a hydrogel system, which offsets the
increased swelling ratio caused by the addition of more alginate. Increased MBAA in the
hydrogel system enhances both the shear modulus and Young’s modulus while reducing
the pore size and transparency of a hydrogel system. Overall, Hydrogel (6A12M) with
2.58 mg/mL CaSO4 was found to be the optimal candidate to use for the novel ePTFE–
hydrogel vascular grafts that benefit from the reliable properties of ePTFE vascular grafts
and favorable biological attributes of hydrogels, collectively.
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4. Materials and Methods
4.1. Materials

In the chemically crosslinked copolymer system, two kinds of monomers, namely,
acrylamide (AAm, CAS No. 79-06-1) and 2-acrylamido-2-methyl-1-propanesulfonic acid
sodium salt solution (NaAMPS, CAS No. 5165-97-9), were purchased from Calbiochem
(San Diego, CA, USA) and Sigma-Aldrich (St. Louis, MO, USA), respectively. The initiator
of the copolymer hydrogel system is ammonium persulfonate (APS, CAS No. 7727-54-0),
the crosslinker is N,N’-methylenebisacrylamide (MBAA, CAS No. 110-26-9), and the
crosslinking accelerator in the hydrogel system is N,N,N’,N’-Tetramethylethylenediamine
(TEMED, CAS No. 110-18-9), all purchased from Sigma-Aldrich.

In the ionically crosslinked copolymer system, xanthan gum (XG, CAS No. 11138-66-2)
was purchased from TCI America (Portland, OR, USA), sodium alginate (CAS No. 9005-38-3)
was bought from Sigma-Aldrich, and calcium sulfate (CaSO4, CAS No. 7778-18-9) was
purchased from Thermo Fisher Scientific (Waltham, MA, USA).

4.2. Methods

To synthesize P(AAm-co-NaAMPS)-alginate-xanthan hydrogels, the method described
in the previous research was employed [25]. First, aqueous precursor solutions of 0.5 mol%
APS, 0.6 mol/L AAm, 0.4 mol/L NaAMPS, 8 mg/mL xanthan, along with varying amounts
of MBAA and sodium alginate were prepared, thoroughly mixed, and degassed. The
naming labels of various hydrogel samples and their corresponding MBAA and sodium
alginate compositions are provided in Table 2. Next, a slurry of calcium sulfate and TEMED
was prepared and injected into an annular mold defined by the ePTFE graft and a PTFE
rod insert. Subsequently, the precursor solution was poured into the mold to be thoroughly
mixed with the calcium sulfate slurry without introducing bubbles.

Table 2. Naming labels and the corresponding MBAA and alginate compositions of P(AAm-co-
NaAMPS)-alginate-xanthan hydrogels.

Hydrogel Type Alginate (mg/mL) MBAA (mol%)

Hydrogel (2A6M)

2

6

Hydrogel (2A8M) 8

Hydrogel (2A10M) 10

Hydrogel (2A12M) 12

Hydrogel (4A6M)

4

6

Hydrogel (4A8M) 8

Hydrogel (4A10M) 10

Hydrogel (4A12M) 12

Hydrogel (6A6M)

6

6

Hydrogel (6A8M) 8

Hydrogel (6A10M) 10

Hydrogel (6A12M) 12

To thermally initiate the polymerization process, the molds with hydrogel precursor
solutions were placed in an oven set at 65 ◦C for a duration of 2 h. Following this, the
samples were left at room temperature overnight to ensure complete polymerization. Con-
sequently, P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with different compositions
were successfully synthesized, as illustrated in Figure 1.

Two crosslinking methods were employed simultaneously to create the hydrogels:
covalent crosslinking and ionic crosslinking. The ionic crosslinking hydrogels were formed
through the combination of xanthan and alginate together with CaSO4, while the cova-



Gels 2024, 10, 319 14 of 17

lent crosslinking hydrogels were achieved through the synthesis of P(AAm-co-NaAMPS)
copolymer. The P(AAm-co-NaAMPS) copolymer hydrogel synthesis reaction diagram
presented in Figure 13 includes the initiation, propagation, and termination processes.
While this study employs different material compositions of crosslinker and thickeners,
detailed synthesis and fabrication procedures of the crosslinked ePTFE–hydrogel vascular
graft systems can be found in references [25,43].
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the movement of electrons.

4.3. Characterizations
4.3.1. Fourier Transform Infrared (FTIR) Analysis

P(AAm-co-NaAMPS)-alginate-xanthan hydrogels with various compositions were
initially frozen in the −70 ◦C freezer, then freeze-dried and subsequently pulverized into
their respective powders for the analysis of functional groups in different hydrogels. These
freeze-dried hydrogel powders were then finely ground and thoroughly mixed with 2.5%
potassium bromide (KBr). Following this, the resulting ground freeze-dried hydrogel-KBr
powders were compacted into circular discs to facilitate Fourier transform infrared (FTIR)
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testing using the transmission mode. FTIR spectra for these freeze-dried hydrogel powders
were collected using a Nicolet iS50R Research FTIR Spectrometer within the 4000–400 cm−1

wavelength range.

4.3.2. Scanning Electron Microscopy (SEM) Analysis

To investigate the microstructure of the hydrogels, the cross-section of the freeze-
dried P(AAm-co-NaAMPS)-alginate-xanthan hydrogel samples were sputter-coated with a
10 nm gold layer using a Prep-Leica ACE600 sputter coater. Following sputter coating, the
morphology and microstructure of the hydrogels were observed using a scanning electron
microscope (SEM, JEOL NeoScope JCM-5000, Tokyo, Japan) operated at an accelerating
voltage of 3 kV.

4.3.3. Equilibrium Swelling Ratios

The hydrogel samples, each with a diameter of 12.45 mm and varying compositions,
were immersed in Petri dishes filled with Dulbecco’s phosphate-buffered saline (DPBS)
and left at room temperature for a week. After this immersion period, the hydrogels were
removed from the Petri dishes, and any residual water droplets were gently removed using
Kimwipes [44]. The swelling ratios (SR) of the hydrogels were calculated by

SR = Wt−W0
W0

× 100% (1)

where W0 and Wt correspond to the initial weight and the weight after soaking in DPBS of
the hydrogels, respectively. Three samples were tested for each hydrogel composition.

4.3.4. Mechanical Properties
Cyclic Tensile Test

To determine the Young’s modulus of the hydrogel systems, cyclic tensile tests were
conducted using the Instron machine (Model 5967) to measure the Young’s modulus of
the hydrogel samples with different compositions. The hydrogel samples were prepared
following the ASTM D638-22 guideline for cyclic tensile tests [45], with three samples tested
for each composition. The testing was carried out using a triangular waveform, ramping to
the maximum strain of 2% and then returning to the initial displacement, all at a strain rate
of 0.80 mm/mm-min for 5 cycles.

Rheological Test

To investigate the viscosity of hydrogel precursor solutions and the rheological prop-
erties of hydrogel samples under shear, an ARES Rheometer from TA Instruments (New
Castle, DE, USA) was employed, using a 25 mm parallel plate configuration for hydrogel
testing and a cone-and-plate configuration for hydrogel precursor solution testing.

The parallel-plate hydrogel samples for parallel plate configuration were carefully
prepared, each possessing a diameter of 25 mm and a thickness of 2 mm. The rheological
tests were performed at room temperature, with a 2 mm gap between the plates. The
hydrogel precursor solutions were thoroughly mixed and degassed. Subsequently, the
solution was poured onto the bottom plate, ensuring full coverage before conducting the
rheology test using the cone-and-plate configuration.

The tests employed the frequency sweep method, with the frequency range from
0.1 Hz to 100 Hz for hydrogel testing and from 0.01 to 100 Hz for hydrogel precursor
testing, maintaining a constant 1% strain. Three parallel experiments were conducted for
each individual sample.

4.4. Statistical Analysis

One-way analysis of variance (ANOVA) was used for statistical analysis, where p-
values less than 0.05 were considered statistically significant.
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