Supplementary Materials:

Polymer Networks Synthesized from Poly(sorbitol adipate) and Functionalized Poly(ethylene glycol)

Haroon Rashid^{1,2}, Yury Golitsyn³, Muhammad Humayun Bilal¹, Karsten Mäder², Detlef Reichert³, Jörg Kressler^{1,*}

- ¹ Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; haroon.rashid@student.uni-halle.de (H.R.); muhammad.bilal@chemie.uni-halle.de (M.H.B.)
- ² Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; karsten.maeder@pharmazie.uni-halle.de (K.M.)
- ³ Department of Physics, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;

yury.golitsyn@physik.uni-halle.de (Y.G.); detlef.reichert@physik.uni-halle.de (D.R.)

* Correspondence: joerg.kressler@chemie.uni-halle.de (J.K.); Tel.: +49-345-552-5800

Figure S1. ¹³C NMR spectrum of poly(sorbitol adipate) measured at 27°C using DMSO-d₆ as solvent.

Figure S2. ¹³C CP (top) and SP (bottom) MAS spectra of poly(sorbitol adipate). PSA is a highly viscous substance with low mobility. The SP experiment, therefore, does not provide spectral resolution. The CP experiment shows a well resolved spectrum.

Succinic anhydride

Suc-mPEG₁₂

Figure S3. ¹H NMR spectrum of mPEG₁₂-Suc measured at 27°C using CDCl₃ as solvent.

Figure S4. ¹H NMR spectrum of PSA-g-mPEG₁₂ measured at 27°C using CDCl₃ as solvent.

Figure S5. GPC traces of PSA before and after modification with mPEG₁₂-Suc.

Figure S6. ¹³C SP spectra of PSA and PSA-*g*-mPEG₁₂ networks with a Suc-PEG₉-Suc cross-linker. Both spectra show incorporation of identical cross-linker's succinyl peaks at 30 ppm while carbon peaks from ethylene glycol part are appearing around 70 ppm. Difference between both type of networks is that PSA-*g*-mPEG₁₂ network shows a carbon peak of methyl at 58 ppm from mPEG₁₂ which is absent in the PSA network. Furthermore, from PSA-*g*-mPEG₁₂ network spectra, carbon peaks at around 30 ppm and 173 ppm shows greater intensity due to the grafted chains of mPEG₁₂-Suc. There are two unknown extra carbon peaks appearing around 15 ppm and 45 ppm, marked by an asterisk. One possible reason can be peak splitting of PEG based cross-linker after formation of the network.

Figure S7. Determination of the tail fraction through ¹H DQ NMR for (a-c) PSA networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45) and (d-f) PSA-*g*-mPEG₁₂ networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45).

Figure S8. Normalized double quantum curves nDQ through ¹H DQ NMR for (a-c) PSA networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45) and (d-f) PSA-*g*-mPEG₁₂ networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45).

Figure S9. Simultaneous fitting to the sum intensity I_{Σ} and DQ intensity I_{DQ} through ¹H DQ NMR after tail correction for (a-c) PSA networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45) and (d-f) PSA-*g*-mPEG₁₂ networks cross-linked with the Suc-PEG_n-Suc (where n = 9, 23, 45).

Figure S10. ¹H NMR spectra measured with PFG NMR spectroscopy of PSA-*g*-mPEG₁₂ network (Suc-PEG₉-Suc) with Q = 6.2 and D₂O as solvent by varying field gradient strength at T = 30°C. The spectrum was referenced to the center of the right peak.

Figure S11. Fit example for the network sample cross-linked with Suc-PEG₄₅-Suc according to eq.2. Different fit strategies for estimation of the diffusion coefficient were tested. The red line: fit with constant offset of 46 % provides $D_{\text{HDO}} = (1.92 \pm 0.03) \cdot 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$. The green line: fit of the initial decay (linear part of the decay) without offset, which provides $D_{\text{HDO}} = (0.84 \pm 0.01) \cdot 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$. This value is about 50% lower and corresponds to the arithmetic average of the first value and the offset ($D_{\text{offset}} = 0$).

Poly(ethylene glycol) where n = 9, 23, 45

Succinic anhydride

Suc-PEG_n-Suc where n = 9, 23, 45

Scheme S2. Synthesis scheme of Suc-PEG_n-Suc.

Figure S12. ¹H NMR spectrum of Suc-PEG₉-Suc measured at 27°C using CDCl₃ as solvent.

Figure S13. ¹H NMR spectrum of Suc-PEG₂₃-Suc measured at 27°C using CDCl₃ as solvent.

Figure S14. ¹H NMR spectrum of Suc-PEG₄₅-Suc measured at 27°C using CDCl₃ as solvent.