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Abstract: Thermogels are also known as thermo-sensitive or thermo-responsive hydrogels and
can undergo a sol–gel transition as the temperature increases. This thermogelling behavior is the
result of combined action from multiscale thermo-responsive mechanisms. From micro to macro,
these mechanisms can be attributed to LCST behavior, micellization, and micelle aggregation of
thermogelling polymers. Due to its facile phase conversion properties, thermogels are injectable yet
can form an in situ gel in the human body. Thermogels act as a useful platform biomaterial that
operates at physiological body temperatures. The purpose of this review is to summarize the recent
progress in thermogel research, including investigations on the thermogel gelation mechanism and
its applications in drug delivery, 3D cell culture, and tissue engineering. The review also discusses
emerging directions in the study of thermogels.

Keywords: in situ hydrogel; thermogel; supramolecular hydrogel; LCST polymer; biomedical

1. Introduction

Hydrogels are generally a series of relatively hydrophilic polymers with the ability to
form a three-dimensional crosslinked network and preserve a large amount of water. Due
to their high water content, hydrogels show similar properties with human body tissue and
higher biocompatibility, which makes them suitable for biomedical applications [1–3]. Based
on the type of crosslinked bond, hydrogels can be classified into chemically crosslinked
hydrogels and physically crosslinked hydrogels. Chemically crosslinked hydrogels form
a permanent crosslink which is non-reversible. Within a physically crosslinked hydrogel,
supramolecular hydrogels are crosslinked via noncovalent bonds such as host–guest inter-
actions, ionic interactions, ligand coordination, and hydrogen bonding interactions [4,5].
Due to dynamic non-covalent interactions, supramolecular hydrogels show features such as
reversibility, repairability, responsiveness and other desirable properties [6,7]. This results
in the possibility to design ‘smart’ hydrogels which can sense environmental changes and
respond to the change, such as through pH response, photo-response, and temperature re-
sponse. In the history of biomedical materials, those of the first generation exhibit biological
inertness, while the second and third generation materials are bioactive and can stimulate
cellular response [8]. Supramolecular hydrogel are promising materials known as the fourth
generation of biomedical materials with the ability to mimic the extracellular matrix and
are smart materials which can respond to extracellular stimuli [9]. The great potential of
supramolecular hydrogels has attracted tremendous interest from researchers and they have
been used for numerous biomedical applications in the past decade.

Thermogels, or thermo-responsive hydrogels, are a subclass of the supramolecular hy-
drogels that gelate via hydrophobic interactions. Thermogels can undergo a sol–gel phase
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transition because they are constituted of amphiphilic polymers with both hydrophilic
parts and hydrophobic parts [10]. Thermogels typically refer to thermosensitive hydro-
gels which can form a gel at a higher temperature and return back to a liquid at a lower
temperature within a certain temperature range, which is contrary to the conventional
melt transition behavior [11]. This gelation procedure does not need any other assistance
or other triggers such as enzymes; thus, it is considered as a benign phase conversion
procedure. The lack of toxic crosslinking agents renders it more likely that thermogels
would show intrinsic biocompatibility as an injectable in situ hydrogel [12,13]. Considering
thermogel polymers used in biomedical application, two main categories can be identified
on the basis of biodegradability: Firstly, non-biodegradable thermogels, which include (1)
polyacrylates and (2) Pluronic®. Secondly, biodegradable thermogels, which include (1)
polyesters, (2) polypeptides, and (3) polysaccharides [11,14–16]. To undergo phase transi-
tion from room temperature to body temperature, thermogels that can undergo gelation
within the range of 25–37 ◦C are especially valuable in the biomedical field. Due to phase
transition at physiological temperatures, thermogels have been used in diverse biomedical
applications [17,18].

In this review, we summarize the recent progress of thermogel research. In particular,
we review investigations pertaining to thermogel gelation properties and the innovative
use of thermogelling systems for biomedical applications including drug delivery, 3D
cell culture, and tissue engineering. Finally, we provide a perspective on the future
development of thermogels.

2. Thermogelling Mechanism/Thermogelling Properties

The gelation mechanism of thermogels, or thermoresponsive hydrogels, depends
on many factors that affect its properties. In this section, we introduce some important
concepts in thermogelling systems and briefly review the recent progress focused on
thermogelling mechanism from the most fundamental polymer level all the way to the
more macro hydrogel level.

2.1. LCST

Lower critical solution temperature (LCST) and upper critical solution temperature
(UCST) behavior are important terms when describing thermoresponsive polymers; they
are also the underlying instructive concept for the design of thermogels. For polymers
with UCST, they are miscible in water above the UCST and immiscible below. Though
broadly speaking, polymers with UCST behavior can also be defined as thermogelling
polymers, there are fewer studies which reported their application as thermogels in the
biomedical field because they are only injectable at a higher temperature that may denature
some loaded drugs especially some polypeptides and proteins [19]. Some supramolecular
rotaxane hydrogels form a UCST type sol-to-gel transition and have been used in the
controlled release of drugs and constructing self-healing hydrogels, and we direct interested
readers to these systems [20,21]. UCST type thermogels will not be discussed further
in this review. In contrast, if a polymer shows a change from miscible to immiscible
in the water while heating, then LCST describes the minimum temperature required
for the polymer to form into a gel in the system [22]. As Figure 1 shows, the phase
transition temperature of LCST polymers changes with polymer concentration. Only
the lowest temperature can be called LCST, while other temperatures above LCST but
which also induce phase change are called the cloud point temperature (Tcp), which is
sometimes misused as LCST. Hoogenboom and colleagues clarified the definition and
recommended an optimized measurement condition of Tcp for LCST polymers [23]. As
there are increasing number of studies involving LCST, standardizing the characterization
condition is important for further study of LSCT polymers. To date, numerous polymers
with LCST behavior have been found [24], and Table 1 lists the LCST of some typical and
commonly used thermosensitive polymers.
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Table 1. Polymers with LCST that are commonly used in the biomedical field.

Polymer Abbreviation LCST (◦C) Reference

Poly(ethylene glycol) PEG/PEO 106~115 [25]
Poly(propylene glycol) PPG/PPO 10~40 [26]

Poly(vinylalcohol) PVA/PVAl 125 [27]
Poly(N-isopropylacrylamide) PNIPAM/PNIPAAM 32 [28]

Poly(methyl vinyl ether) PMVE 28~34 [29,30]
Poly(N-vinyl caprolactam) PNVCa/PVCL 30~50 [31,32]

Among the polymers listed above, poly(N-isopropylacrylamide) (PNIPAM) is the
most frequently studied thermogelling polymer with a LCST. PNIPAM is a homopolymer
that has a low cytotoxicity and a LCST around 32 ◦C, which makes it suitable for physi-
ological thermoresponsiveness, and the phase separation behavior has been extensively
investigated. Researchers know that PNIPAM undergoes a coil-to-globule transition via
shrinkage of polymer chain due to the hydrophobic effect and a net increase in entropy of
the system [33]. Even though the polymer undergoes a sol-to-gel transition from disorder
to order, the surrounding water molecules are able to move freely with the coil-to-globule
transition, thus increasing the overall entropy of the system. Recently, several studies have
revealed the interaction mechanism involving PNIPAM itself and PNIPAM/water. Ki-
noshita and colleagues used a statistical mechanical theory to investigate the energetics and
entropy changes in the reverse globule-to-coil transition, and found that the mechanism is
similar to the cold denaturation of proteins [34]. Paulo et al. found that the collapse of PNI-
PAM chain at high temperatures is related to the reduced coordination of both amide group
and isopropyl group with water, and is observed together with an increase in the monomer–
monomer hydrogen bond [35]. The thermodynamics of NIPAM monomer was investigated
by Heyda et al. [36], which could allow for better control of PNIPAM phase behavior. Nellas
and coworkers performed a molecular dynamics simulation of pentamer PNIPAM [37], and
they suggest a clathrate-like behavior in the coordinate shell might be responsible for the
LCST behavior of PNIPAM. Tang et al. directly observed the hydrophilicity–hydrophobicity
transformation of PNIPAM by the utilization of aggregation-induced emission lumino-
gens [38]. In that study, it was found that the hydrophobicity change of PNIPAM chains
was due to the formation of multiple interchain/intrachain hydrogen bonds. As we can
see, multiple advanced technologies have been used to investigate the mechanism of LCST
polymers. These studies give us a better understanding of thermogelling homopolymers
and inspire the design of composite thermoresponsive hydrogels. Furthermore, the LCST
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value of PNIPAM can be tuned by copolymerizing with other hydrophilic/hydrophobic
monomers together with PNIPAM. Adding more hydrophilic monomers such as hydroxyl
ethylacrylamide (HEAm) could make the LCST increase to 50 ◦C [39], while hydrophobic
monomers such as tertbutyl acrylamide (TBAM), N-tert-butylacrylamide (NT), or buty-
lacrylate (BA) could lower the LCST and lead to a stiffer gel [40,41]. Nonuniform shrinkage
caused by a specific spatial arrangement of PNIPAM-based polymers with different LCST
can lead to macroscopic bending, folding, twisting, and other shape transformations of
the hydrogel at different temperatures, with potential use as a smart soft actuator [42].
However, PNIPAM is non-biodegradable and there are still some conflicting viewpoints
about its biocompatibility [15,43]. Recent studies in the biomedical field are mainly focused
on PNIPAM copolymer or composites, which can partly solve the degradation problem
of PNIPAM, such as chitosan-grafted-PNIPAM [44,45] and peptide-grafted-PNIPAM [46].
PNIPAM is still a promising material for conferring thermoresponsiveness to a composite
hydrogel. Compared with homopolymers, due to its complexity and diversity, there are
few in-depth reports about LCST mechanism of block copolymers.

2.2. Polymer Configurations and Micelle Properties

Except for PNIPAM and some chitosan-based thermogels, thermogelling polymers
are generally amphiphilic block copolymers. Thermogelling amphiphilic block copolymers
can have varied configurations and may be classified according to block number into
diblock, triblock, and multiblock. For triblock copolymers, they can be further categorized
into ABA type, BAB type, ABC type, and BAC type, where ‘A’ represents the hydrophilic
block, and ‘B’ and ‘C’ represent the hydrophobic block. Triblock amphiphilic copolymers
are predominant in thermogelling systems nowadays, and the two most represented are
the Pluronic family (E.g. Pluronic F-127 [14]) and PLGA/PEG family (e.g., PLGA-PEG-
PLGA [47]). Additionally, multiblock copolymers can also be divided into linear [48],
star-shaped [49], and hyperbranched [50,51] (Figure 2). Star-shaped and hyperbranched
thermogels are less mentioned in literature. Early studies indicate these two configurations
may significantly reduce the gelation concentration and enhance the mechanical strength
of thermogel [52]. In contrast, recent research demonstrates that branched polyurethane
thermogels may result in an increase of CMC value due to branches sterically blocking the
necessary polymer chain interactions to form micelles [53]. More research still needs to be
conducted on hyperbranched copolymers as a thermogelling material.
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Micellization is the unique behavior of amphiphilic molecules in aqueous solution.
This behavior of self-assembly is thermodynamically favorable as long as the thermogelling
polymer solution achieves a critical concentration and a critical temperature. Critical
micelle concentration (CMC) and critical micelle temperature (CMT) describe the minimal
concentration and temperature when amphiphilic molecules convert from unimers to
micelles in water. In thermogelling polymer self-assembly behavior, insertion-expulsion
and fusion-fragmentation have pivotal roles in micelle equilibrium dynamics. Before
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reaching equilibrium, copolymer molecules undergo a fast process where the free unimers
quickly insert into existing micelles. Subsequently, slower insertion-expulsion and fusion-
fragmentation processes dominate micellization [54]. Molecular weight and polymer
configuration could also influence the micelle formation. Using Pluronic as an example,
short-chain Pluronics could further grow to worm-like micelles, while long-chain Pluronics
tend to form spherical micelles [55]. A subfamily of Pluronics, called Tetronic, has a
star-shaped configuration and a central diamine group. These polymers have similar
micellization behavior as linear Pluronics at normal pH, but micelles become smaller and
only form at higher temperatures at acidic pH, while gelation is fully suppressed at highly
acidic pH [56]. After micelles are formed, the stability of the micelles may be affected
by many factors. It is generally believed that the stability of micelles is directly related
to the hydrophobicity of copolymers, and copolymers with strong hydrophobicity tend
to have lower CMC. The more hydrophobic the blocks, the stronger the hydrophobicity
and the denser the accumulation of hydrophobic cores, leading to the higher stability of
micelles. At the same time, the ratio of hydrophilic and hydrophobic segments is also
important, if the hydrophilic corona cannot completely wrap the hydrophobic core, the
exposure of the hydrophobic core tends to destabilize the micelles [57]. Chain exchange
behavior also exists between micelles. In a chain exchange research of triblock copolymer
micelles, isotope label and time-resolved small-angle neutron scattering (TR-SANS) were
utilized to investigate chain exchange rate [58]. Their result suggests the chain exchange
in poly(ethylene-alt-propylene) (PEP) and poly(styrene) (PS)-based PEP-PS-PEP (ABA
type) copolymer is much quicker than PS-PEP-PS (BAB type) copolymer in dilute micelle
solutions. Another research work suggests that the chain exchange rate will slow down
as the molecular weight of the hydrophilic part increases [59]. These studies demonstrate
that chain length, block length, and copolymer configurations will affect micelle kinetics
and thermodynamics. Furthermore, a change in micelle formation could also influence
the gelling mechanism. Since micellization is a fundamental self-assembly behavior of
thermogels, in the next part, we will discuss the secondary self-assembly mechanisms that
trigger gelation.

2.3. Gelling Mechanism

The final gelling mechanism of thermogel polymer is attributed to micelle aggregation,
which is a more macroscopic thermoresponsive self-assembly behavior. Similar to CMC and
CMT above, which relates to micellization, the minimum concentration and temperature
required for conversion from micelles to hydrogels are denoted by the critical gelation
concentration (CGC) and critical gelation temperature (CGT). When both conditions are
reached, micelles begin to pack together tightly to form a three-dimensional network. The
porous network structure entraps water inside, and a sol-to-gel transition can be observed.
A slight difference of packing mechanism exists between different types of thermogel
polymer micelles: (1) individual micellar packing, (2) inter-micellar bridged packing, and
(3) micellar corona collapse packing (Figure 3). Individual micellar packing happens on
low molecular weight diblock and ABA triblock copolymers. When temperature increases,
the hydrophobic force simply drives micelles to aggregate with each other. Short-chain
Pluronic follows this aggregation, where the entanglement of the hydrophilic part forms
the physical crosslink [60]. Inter-micellar bridged packing may happen for BAB, BAC
triblock, and multiblock copolymers. In this case, hydrophobic segments of the polymer
chains are connected to two or more micelles, which could lead to a lower CGC and result
in a stronger association in thermogelation [61]. Micellar corona collapse packing could
happen on copolymer which use polymer with relatively lower LCST such as PNIPAM.
The micelles with collapsed corona tend to collide into each other, resulting in quick
aggregation [62]. For example, PNIPAM/PHB block copolymer showed outer PNIPAM
corona collapse-induced hydrophobicity increase which leads to micelle aggregation and
gelation [63].
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Although amphiphilic copolymer micellization is common, amphiphilic copolymer
thermogelation is rarer. The gelling mechanism is strictly restricted by factors such as polymer
molecular weight and segment composition. For the copolymer with long hydrophilic parts,
the micelle shows no thermogelling behavior. The loose corona blocks micelle aggregation and
only forms a viscous solution [64]. Fluorescence resonance energy transfer (FRET) imaging
is a fluorescence phenomenon that detects intermolecular distances in the nanoscale. Liu
et al. used this technique to track the assembly and shedding behavior of micelles from
thermogels in vitro and in vivo and suggested that it is feasible to track micelles at the
molecular level using FRET [65]. The crosslinking points between thermogel micelles are
previously unidentified, while recent research from Ding’s group presented a new mechanism
for poly(ethylene glycol)/poly(lactide-co-glycolide) (PEG/PLGA) diblock copolymers during
micelle aggregation via FRET and computer simulation method [66]. They suggest that
the outer PEG corona of copolymer micelle partially shrinks and folds together to form a
semi-bald model where the hydrophobic core is completely exposed in the bald area. We do
recognize that the third type of micellar packing by corona collapse shown in Figure 3 also
involves the exposing of hydrophobic regions and has similarities to the semi-bald model.
As the crosslinking point, the bald zone tightly connects adjacent micelles and forms the
hydrophobic channel, which also explained why thermogels could preserve their shape in
a large amount of water (Figure 4). The authors performed additional work which reveals
the mechanism of PEG/PLGA ABA and BAB triblock thermogel using a similar research
methodology [67]. The bridge packing of BAB PEG/PLGA thermogel endows two gel phases
with a clear boundary. The semi-bald and bridge crosslinks form the primary gel phase,
then as temperature increases the hydrophilic bridges shrink, and the hydrophobic channel
becomes the major crosslink point to form secondary stronger gel phase.
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3. Biomedical Applications

The phase transition from sol-to-gel inspired numerous applications of thermogels,
or thermoresponsive hydrogels, in the biomedical field. The range of drugs that could be
delivered via thermogels is wide: it has been shown that the loading and release of proteins,
DNA, and antibiotics are all compatible with thermogels [68–70]. In addition to injectability
and easy drug loading in sol phase, there are additional benefits of localized and sustained
release. While drug delivery is a common usage of an in situ depot, other applications
have also utilized the in situ depot forming capability of thermogels. The 3D crosslinked
network of thermogels with localized chemical moieties can satisfy the requirements for
3D cell culture, and bioactive interactions coupled with suitable mechanical properties
can render thermogels as an effective tissue engineering scaffold. In this section, recent
advances of thermogel in the aforementioned applications will be reviewed.

3.1. Drug Delivery

As more drugs are developed and discovered, cures of previously untreatable diseases
become possible. In addition to the drug itself, how the drug is delivered is also key to
therapeutic efficacy. Primary methods for drug delivery include oral and direct injection. To
reach the therapeutic effect, especially for local disease, maintaining the drug concentration
in the therapeutic window is essential. However, drug overdoses could happen. In addition,
the short half-life of some drugs limits their efficiency and leads to repeated doses and
issues with patient compliance. Table 2 shows a summary of thermogel systems used for
drug delivery. Eye drops are the primary method of non-invasive drug delivery to the
eye. However, the contact time of common eye drops with the eye is short, and the drug
delivery efficiency is low. Hanes and Ensign et al. extended ocular drug delivery time
via adding Pluronic F-127 into eye drops [71]. It forms a thin, uniform, clear gel on the
ocular surface that could slowly release hydrophilic, hydrophobic, and peptide drugs into
the eye. The thermosensitive eye drops could avoid repeated doses, thereby reducing
eye irritation and increasing patient compliance. Type 2 diabetes is a common disease
that could lead to cardiovascular and cerebrovascular dysfunction and even death [72].
Limited by cost and short half-life, the current peptide drugs show poor performance in
chronic clinical treatment. In contrast, liraglutide (an antidiabetic polypeptide) loaded into
poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic
acid) (PCGA-PEG-PCGA) thermogels prolong the effective time of one subcutaneous
injection [73]. In vivo testing shows the sustained release of liraglutide, which ensures the
glucose tolerance of mice was enhanced for a week. The highly flexible nature of PCGA-
PEG-PCGA copolymer enhanced mobility of liraglutide in the micelle which increased
release yield compared with PLGA-PEG-PLGA thermogels. Ha et al. developed a human
C-peptide-loaded elastin-like biopolymer-conjugated thermosensitive hydrogel to treat
diabetic complications [74]. The injectable thermogel depot system implements long-time
prevention of diabetes-induced inflammation and apoptosis.
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Protein and other bioactive factor drugs are considered to be environmentally sensitive
and easily denatured, so the delivery of those drugs needs to be precisely controlled with
the bioactivity retained. Lee et al. designed a thermal/pH dual sensitive poly (ethylene
glycol)-poly (sulfamethazine carbonate urethane) (PEG- PSMCU) copolymer for lysozyme
delivery [75]. The PEG-PSMCU hydrogel system shows very low cytotoxicity even in
a high copolymer concentration, and further in vivo trials demonstrated that thermogel
depot was successfully formed to release protein in rats. Vascular endothelial growth
factor (VEGF) is critical when inducing angiogenesis. A nanodiamond (ND)-based com-
posite gelatin chitosan thermogel was reported to provide the sustained release of VEGF
and prolonged its activity [76], which offers a potential strategy for growth factor ther-
apy. VEGF proliferation may also lead to dysfunction of normal immune reaction. In
a study of a poly(ε-caprolactone)-based polyurethane thermogel, anti-VEGF antibodies
were loaded and delivered in the eye to treat proliferative vascular diseases in a rabbit
model [77]. The delivery rate and initial burst release could be controlled by adjusting
the hydrophilic/lipophilic balance, and a linear continuous release was observed within
40 days after injection. Ding et al. applied the PLGA-PEG-PLGA thermogel to transdermal
5-aminole-vulinic acid(ALA) delivery [78]. The system automatically constructs an asym-
metrical structure which converts the skin-touching surface into sol to quickly deliver the
drug, and gelation in air to maintain shape, which leverages the advantages of both the
sol–gel and gel–sol phase transition properties.

Anticancer drugs such as doxorubicin (DOX), paclitaxel (PTX), etc., have been devel-
oped but are limited by their systematic toxicity or poor solubility [79,80]. DOX-loaded
alginate-g-PNIPAM thermogel encapsulates the drug within the micelle, and the release
profile showed enhanced cellular uptake and overcoming of cancer cell drug resistance [81].
A poly[(R)-3-hydroxybutyrate] (PHB)-based biodegradable polyester thermogel was de-
signed [82], where both DOX and PTX were easily loaded and released locally to treat
hepatocellular carcinoma. In vivo tests indicate that this delivery system effectively in-
hibits and shrinks tumor size. These gel depots can help to treat while minimizing side
effects for the tumors when surgery is insufficient. Photothermal therapy is also an effective
means of treating tumors [83]. Yu and coworkers designed a poly(d,l-lactide)-poly(ethylene
glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA)-based thermogel incorporated with black
phosphorus (BP) (Figure 5) [84]. Sprayable sol phase thermogel undergoes a quick phase
transition to form a solid phase gel film on the wound after tumor removal surgery and
shows excellent photothermal performance under NIR light to remove any residual cancer
cells. Anticancer therapy can be mediated by multiple different forms of thermogels and
plenty of remarkable progress have been made in the field. However, a human clinical trial
using an approved thermogel drug delivery system named “OncoGelTM”(BTG Interna-
tional Inc, Conshohocken, PA, United States) to treat esophageal cancer was terminated
due to the lack of significant improvement and unsatisfactory patient compliance [12,85].
This indicates that even in a well-studied experimental drug delivery system, there is still a
long way to go from laboratory to clinic.
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Table 2. Thermogel systems for drug delivery.

Polymer Name Drug Application Reference

Pluronic F-127
Brimonidine tartrate (BT),

brinzolamide (BRZ),
cyclosporine

Eye drop [71]

PCGA-PEG-PCGA Liraglutide Treat type 2 diabetes [73]
Elastin-like thermogel Human C-peptide Treat diabetic complications [74]

PEG- PSMCU lysozyme In situ protein delivery [75]
ND-based gelatin

chitosan VEGF Growth factor bases
therapies [76]

PCL-based
polyurethane

thermogel
Anti-VEGF Treat proliferative vascular

diseases [77]

PLGA-PEG-PLGA ALA Transdermal drug delivery [78]
Alginate-g-PNIPAM DOX Treat cancer [81]

PHB-based polyester DOX, PTX Treat Hepatocellular
carcinoma [82]

PDLLA-PEG-PDLLA BP Photothermal therapy [84]
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3.2. Three-Dimensional Cell/Stem Cell Culture

Traditional cell culture is based on the growth of cells on a 2D platform, which
generally cannot represent the real status of cells in their original body tissue. The 3D
crosslinked network constructs a porous structure in thermogels which endows it with
scaffold-like property and ECM-like nature. In the early years, chondrocytes were reported
to be cultured in 3D formed thermogels [86]. Compared with the spindle-like morphology
in 2D culture, the chondrocytes in the 3D thermogel culture system expressed more type 2
collagen and tended to form a spherical phenotype, which is important to avoid forming
fibrochondrocytes and for maintaining their cartilage regeneration function [87]. A similar
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situation occurs in stem cell culture, where culturing stem cells on a 2D platform or stiff
scaffold could lead to the permanent loss of their cellular differentiation ability [88]. Jeong
and colleagues have been working on thermogel 3D stem cell culture. A PEG-PPG-PEG
triblock copolymer connected with pyridine-dicarboxylate (PDC) was utilized to culture
tonsil-tissue-derived mesenchymal stem cells (TMSCs) by the group [89]. PDC in the gel
acts as a ligand to coordinate with metal ions, tune gel modulus, and allow cells to form a
suspended spheroid. In testing biomarkers of TMSCs, cell expression demonstrated more
stemness in the thermogel system as compared to a 2D system. In the last 5 years, they also
studied polypeptide thermogel poly (ethylene glycol)-poly (L-alanine) (PEG-PA) as a base
material for TMSCs, with additions such as hepatogenic differentiating factors [90], 2D
nanomaterials such as hexagonal layered double hydroxides (LDHs) [91] and graphene
and graphene oxide [92] in the system to control differentiation. This is an area that has not
been explored sufficiently, and there is potential for more types of thermogels to be tested
in this application.

3.3. Tissue Engineering

Developing smart scaffolds with the ability to guide tissue regeneration is the key
aspect in tissue engineering. Hydrogels with advanced properties have the ability to
mimic the structure and biological properties of the native ECM. These scaffolds provide
mechanical, spatial, and biological signals to regulate and direct cell adhesion, migration,
differentiation, and proliferation for tissue regeneration [93]. The injectability of thermogel
systems is an important advantage in designing scaffolds, which confers properties that
can conform to any shape, easily load stem cells or growth factors, and have adjustable
viscoelasticity. Thermogels as scaffolds have been used in the treatment of many different
tissues/organs, and a summary of thermogel systems for tissue engineering is shown in
Table 3. Aghdami and Baharvand et al. investigated the feasibility of an electro-conductive
gold nanoparticle (GNP)-loaded chitosan thermogel for cardiac repair [94]. Conductive
properties can be tuned by the concentration of GNPs and could induce stem cells to
differentiate towards adjacent cardiac cells by increasing their electrical coupling. In another
study, a PNIPAM thermogel containing PLGA-encapsulated PVP/H2O2 microspheres was
utilized to repair cardiac cells after myocardial infarction (MI) [95]. After 4 weeks of
injection in MI area, cardiac cells had reduced expression of transforming growth factor
beta (TGFβ) and TGFβRII primers and cardiac fibrosis was attenuated, which indicates
that myocardial cells were repaired due to oxygen uptake.

Nerve regeneration is relatively complicated and remains a challenge in tissue en-
gineering. The low regeneration rate and the irreversible nature of neuronal fracture
limits the efficiency of treatment for nerve injury [93]. The use of thermogel to induce
differentiation of stem cells into neuronal cells has been highly effective in treating nerve
injury. Heparin-poloxamer (HP) thermosensitive hydrogels were recently applied to nerve
regeneration. HP thermogel achieves peripheral nerve regeneration in the treatment of
crushed sciatic nerve injury in a diabetic rat model [96]. Basic fibroblast growth factor
(bFGF) and nerve growth factor (NGF) were loaded in the thermogel and released to induce
the regeneration of neurilemmal cells. This successfully recovered partial motor functions
of the rat. Another work reported the application of HP thermogel in spinal cord injury
(SCI) therapy [97], where glial cell-derived neurotrophic factor (GDNF) binding with HP
endows the thermogelling system with neuroprotection function to inhibit apoptosis and
proliferate neural stem cells.

Bone repair by stem cell-loaded thermogel scaffold is now one of the most promising
strategies. The main goal of injectable hydrogels for cartilage and bone tissue engineering
is to design bioactive scaffolds with high biocompatibility, biodegradability, stability, and
favorable three-dimensional cell culture [98]. Because thermogels are sensitive to temper-
ature stimuli, they can be easily injected and formed in situ, and the mild gel transition
conditions confer high biocompatibility, allowing them to be loaded with chondrocytes
and growth factors. A poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAM-AA))
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system was employed as the carrier of rabbit bone mesenchymal stem cells (BMSCs) for
osteochondral regeneration [99]. The thermogel system enhanced chondrogenesis-related
gene expression in BMSCs, and show a smooth, seamless cartilage repair result under
micro-CT scanning for in vivo test in rabbits. It was also reported that the PLGA-PEG-
PLGA system could repair full-thickness cartilage by loading BMSCs [100]. Biomechanical
test results suggest the newly regenerated cartilage by thermogel-BMSCs system reached
80% of expected Young’s modulus, which is significantly better than the control group
with only gel scaffold. In another study, Yu et al. used thermosensitive chitosan hydro-
gel (CSG)-encapsulated BMSCs and combined with 3D printed poly(caprolactone) (PCL)
scaffolds for bone tissue engineering [101]. Despite the many advantages of physically
injectable hydrogels, the disadvantages of lower mechanical strength and stability still
limit their further application. The addition of 3D printed PCL enhances the mechanical
strength of the hybrid scaffold system, where greater cell regeneration was demonstrated
by growth factor release and observed by confocal microscopy. Meanwhile, as a 3D print
ink, thermogel itself also was reported to be directly used as a 3D print scaffold [102,103].
As 3D printing technology matures, it becomes possible to precisely tune scaffold structures
at the nano- and micro-scale. Mimicking tissue anatomy can push thermogel application a
step forward in terms of in situ tissue engineering and the construction of in vitro tissue
models. However, thermogel with both good printability and biocompatibility are still not
yet developed, and new 3D printable thermogels are needed.

Vitreous humor fills the cavity in human eyes and is located between the lens and
retina. It is mainly composed of water and considered a natural hydrogel in the eyes to
support the retina. Aging could change the mechanical strength of vitreous humor and
lead to the loss of supporting function, and vitreous humor is also removed during eye
surgery to facilitate retinal detachment repair [104,105]. The challenge to utilize thermogels
as a vitreous tamponade is to exert a tamponading force that can allow for retina re-
adhesion and to ensure transparency within the vitreous space. In a new application,
the PCL-based thermogels with low CGC developed by our group were applied to the
treatment of retinal detachment (Figure 6) [106]. Biodegradable PEG/PPG/PCL multiblock
thermogels (EPC) with 7 wt% of copolymer show long-term biocompatibility in rabbits
and can effectively function as a tamponading agent in a non-human primate model of
surgical detachment. Proteomics analysis indicates that majority of the top ten proteins
in natural vitreous humor were present in EPC-7wt% thermogel, suggesting that the
vitreous could be regenerated. EPC thermogel tested at a significantly higher polymer
concentration of 12 wt% led to inflammation in the rabbit eye and increased intra-ocular
pressure (IOP), which could be due to osmotic pressure. Another study used ultralow
content of tetra-PEG hydrogel as vitreous tamponade which would eliminate the potential
problem caused by osmotic pressure and swelling [107]. We studied the influence of EPC
copolymer molecular weight and demonstrated the optimal molecular range for function as
an endotamponade [108]. Furthermore, a PHA-based thermogel system was also developed
and investigated, and shown to form a highly transparent vitreous substitute [109]. Our
work shows that thermogels have great advantages and potential to be an ideal vitreous
endotamponade in the future.
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Table 3. Thermogel systems for tissue engineering.

Base Thermogel Additional
Functionalities Polymer Effect Application Reference

Chitosan GNPs Electro-conductive Cardiac repair [94]

PNIPAM PLGA,
PVP/H2O2

Release oxygen Cardiac repair [95]

Poloxamer Heparin Release bFGF, NGF
Neurilemmal

cells
regeneration

[96]

Poloxamer Heparin Release GDNF Spinal cord
injury [97]

P(NIPAAM-AA) BMSCs Scaffold for BMSCs Osteochondral
regeneration [99]

PLGA-PEG-PLGA BMSCs Scaffold for BMSCs Full-thickness
cartilage repair [100]

Chitosan-
β-glycerophosphate PCL Scaffold for BMSCs Bone tissue

engineering [101]

PCL-based
thermogel None Vitreous tamponade Retinal

detachment [106]

PHA-based
thermogel None Vitreous tamponade Retinal

detachment [109]

4. Conclusions and Perspectives

As a stimuli-responsive material, thermogels with a remarkable reverse phase transi-
tion feature at physiological temperatures have led to the emergence of several applications
in the biomedical field. Numerous impressive works in recent years were cited and dis-
cussed in this review, ranging from a matrix for photothermal therapy to its use as a
vitreous replacement. For the thermogelling mechanism, studies in different scales remind
us that understanding thermogel properties is still a complex question that cannot be
explained by any single mechanism at any single scale. Fortunately, as technology evolves,
more new characterization and simulation techniques are available to help us understand
these mechanisms more fully.

It has already been decades since the earliest batch of thermogel systems were de-
veloped. New thermogelling systems are still being discovered while currently existing
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thermogels are constantly being repurposed for new applications such as sprayable sys-
tems. The limitation of most thermogels today is that they can only respond to changes
in temperature. The development of hydrogels that combine more sensing functions
(e.g., hydrogels that combine pH-sensitivity, thermosensitivity, and photosensitivity with
tunable parameters) and incorporate other bioactive moieties could allow for composite
thermogel systems which are useful for more complex biological applications. Another
inherent disadvantage of thermogels is their low mechanical strength due to the use of
relatively weak physical crosslinking. The use of dual-network interpenetration may be
able to impart higher mechanical strength to the thermogel, but it remains a challenge to
form a highly biocompatible, high mechanical strength in situ gel while maintaining its
original injectable properties. In the future, thermogels could have a greater impact in
the growing field of tissue engineering. Novel techniques such as 3D printing can help to
control the structure of thermogels at a more macroscopic level, enabling more accurate
mimicry of tissue structure.

Although a number of experimental thermogels are developed, few have been com-
mercialized so far. One reason could be the relatively high polymer concentration required
for earlier generations of thermogels to gelate and release drug in a sustained manner,
which could become an issue with frequent administration for chronic diseases. While
there is a diversity of newer thermogels now, more effort is still needed to initiate and
accelerate the long-term biocompatibility evaluation of thermogel polymers. The lessons
from Oncogel™ tell us that we must be cautious when evaluating biomedical materials.
Extensive biocompatibility and efficacy testing is still necessary for any thermogel that is
actually moving into the clinical phase.

Thermogels are still amongst the most effective and useful in situ formed hydrogels
due to the universality of tapping on physiological temperatures for biomedical applica-
tions. When the base thermogel material is combined with the latest new functionalities,
we believe that it can add tremendous value to a range of biomedical applications. With the
emergence of supramolecular hydrogels as promising materials, it will also be important
to look beyond purely the depot forming property of thermogels and unearth other use
cases that tap upon the dynamic and reversible nature of thermogelling polymers.
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