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Abstract: A crucial method for adding new functions to current biomaterials for biomedical applica-
tions has been surface functionalization via molecular design. Mussel-inspired polydopamine (PDA)
has generated much attention as a facile method for the functionalization of biomaterials because of
its substantial independence in deposition, beneficial cell interactions, and significant responsiveness
aimed at secondary functionalization. Because of their porous structure, the bovine serum albumin
methacryloyl (BSAMA)-BM cryogels were functionalized with PDA (BM-PDA), which may repro-
duce the architecture and biological purpose of the natural extracellular environment. Excellent
antioxidative and antibacterial qualities, improved mineralization, and better cell responsiveness
were all demonstrated by BM-PDA. BM-PDA scaffolds maintained their linked and uniform pores
after functionalization, which can make it easier for nutrients to be transported during bone repair.
As a result, hydroxyapatite (HA)-coated BM* and BM-PDA* cryogels were created through successive
mineralization with the goal of mineralized bone tissue repair. The heterogeneous nucleation and
surface roughness contributed to rod-like apatite production in BM-PDA* cryogels whereas BM*
cryogels were made up of plate-like HA morphologies. Analysis results showed that after five cycles,
the mineral contents were around 57% and the HA units remained equally dispersed on the surface
of BM-PDA* with a Ca/P ratio of 1.63. Other natural polymer-based cryogels can be coated using
this general, rapid, and simple PDA coating technique and utilized as implants for bone tissue
engineering. Future clinical uses of albumin cryogels for bone tissue engineering will advance as a
result of additional in-vivo testing of such PDA-coated cryogels.

Keywords: cryogels; mussel-inspired; porous scaffolds; albumin; antibacterial; bone-like apatite

1. Introduction

The mineralization of periodontal alveolar bone and teeth, where calcium phosphate
crystals are deposited and developed within an extracellular matrix, is crucial to dental
function and has been thoroughly proven for the establishment of a functioning skele-
ton [1]. Mineralization flaws in periodontal cementum and tooth dentin inevitably cause a
weak dentition, which renders teeth loose, vulnerable to infection, and more likely to fall
out early [2]. Despite the enormous demand for dental biomaterials, no dental materials
exist that provide the optimum characteristics for any dental applications [1,3,4]. From a
historical perspective, a wide range of materials, both natural and synthetic, have been
applied to the treatment of numerous oral ailments. Regardless of stomatognathic system
atrophy, sickness, or injury, modern dentistry aims to return the patient to normal shape,
function, comfort, esthetics, speech, and health. Predictable success is now a reality for the
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rehabilitation of many challenging conditions as a consequence of ongoing research in treat-
ment planning, implant designs, materials, and methodologies. A major challenge in the
field of artificial tissue replacement and enhancement has always been the biocompatibility
profiles of synthetic materials [5]. Moreover, these materials should mimic the appearance
of a normal tooth (i.e., mineralized) and have characteristics of different dental sections [6].
Implant biomaterials must be adequate in terms of mechanical strength, biocompatibility,
and structural biostability in physiologic conditions to work at their best.

Albumin, a 66.4 kDa non-glycosylated protein with a roughly 19-day physiological
half-life, is prevalent in human serum [7]. It is a desired biomaterial because it stabilizes
important proteins, hormones, metal ions, nanoparticles, and pharmaceuticals in addition
to acting as a mild pH buffer [8,9]. Albumin hydrogels have gained increasing interest in
biomedical applications (Figure 1 and Table 1), particularly in treating numerous diseases,
and tissue engineering due to the excellent qualities of albumin such as sustainability,
non-immunogenicity, low cost, excellent biocompatibility, and biodegradability [7,10–14].
Hydrogels made from albumin can be created using a photo-triggered gelation process,
chemicals, heat, or pH. Cells cannot be integrated during the harsh gelation process, but
the pH-induced hydrogels displayed considerable breakdown and cellular infiltration after
being implanted in vivo [15]. In contrast, the heat-triggered gelation process is quick (a
few minutes to 30 min) and free of harmful chemical crosslinkers. However, cells cannot
survive the thermal gelation process, and albumin’s secondary structure is altered [16].
Although the photochemically crosslinked hydrogels had stable mechanical characteristics,
the production technique also involved extra processes and a cost [17–19].
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Figure 1. The number of publications of albumin-based hydrogels after 2011 using albumin hydro-
gels as a keyword to search in the PubMed database. 

Cryogelation was recently employed to gel methacrylated BSA (BSAMA) [20] be-
cause it is a simple method for creating porous scaffolds that can protect and contain cells, 
as well as function as grafts in a variety of biological applications [21]. Similarly, the crea-
tion of transparent and opaque gels by using albumin methacryloyl with enhanced stabil-
ity and customized porous topologies was demonstrated [22]. But according to both of 
these publications, cells adhered gradually over the first three days of culture and also 
multiplied slowly. It has been demonstrated that during the early stages of adhesion in 
serum-free conditions, cells exhibited better attachment and a stretched shape on GelMA 
than on BSAMA [23]. More than BSAMA alone, BSAMA-GelMA hybrid scaffolds seemed 
to be able to adapt to cells more quickly [20].  

Figure 1. The number of publications of albumin-based hydrogels after 2011 using albumin hydrogels
as a keyword to search in the PubMed database.

Cryogelation was recently employed to gel methacrylated BSA (BSAMA) [20] because
it is a simple method for creating porous scaffolds that can protect and contain cells, as
well as function as grafts in a variety of biological applications [21]. Similarly, the creation
of transparent and opaque gels by using albumin methacryloyl with enhanced stability
and customized porous topologies was demonstrated [22]. But according to both of these
publications, cells adhered gradually over the first three days of culture and also multiplied
slowly. It has been demonstrated that during the early stages of adhesion in serum-free
conditions, cells exhibited better attachment and a stretched shape on GelMA than on
BSAMA [23]. More than BSAMA alone, BSAMA-GelMA hybrid scaffolds seemed to be
able to adapt to cells more quickly [20].

Inspired by our previous work involving albumin cryogels coating via liver ECM [24],
and collagen cryogels coated with PDA [25], herein, the polydopamine (PDA) functional-
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ization of BSAMA cryogels (BM) is carried out (Scheme 1) to add improved functionalities
(to increase the adherence and proliferation of cells implanted, enhance mineralization,
and give antibacterial activity [26,27]) into albumin cryogel scaffolds for tissue engineering.
Mussel-inspired cryogels using PDA coating can encourage mineralization, cell response,
and mechanical, antibacterial, antioxidant, and anti-inflammatory qualities [28–32]. PDA
has been frequently used to change the surface of biomaterials and is recognized as a sur-
face modification because of its ability to bind to calcium ions [33–35]. Additionally, it has
been demonstrated that the occurrence of the catecholamine promotes the mineralization of
collagen milieu in dentine, which in turn speeds up hydroxyapatite (HA; Ca10(PO4)6(OH)2)
crystallization [36]. More significantly, a single-step surface functionalization technique
known as “one-pot” coating was suggested [37,38].
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Scheme 1. The preparation of BSAMA spongy scaffolds and functionalization with PDA to prepare
PDA-coated BM spongy scaffolds exhibiting rod-like apatite morphology along with antibacterial
and antioxidant activity.

The ability to build a coating with various or multiple bio-functionalities was sub-
stantially increased by the discovery that synchronously injected biopolymers put into
the PDA coating preserved their biological activity [25,39,40]. So, BSAMA scaffolds with
PDA functionalization are designed here and are named BM-PDA (Scheme 1). By using
cryogelation, porous scaffolds with improved mechanical characteristics have been created.
The outstanding antibacterial activities of PDA-functionalized BSAMA scaffolds aiming
against both the gram-positive and gram-negative microbes will aid scaffolds in preventing
infection during surgery or implantation. Furthermore, BM-PDA improved mineralization
with the development of rod-like apatite and showed good antioxidative characteristics,
as well as cell responsiveness. The PDA-functionalized albumin scaffolds with bone-like
apatite are anticipated to not only aid in bone regeneration but also control infections that
may develop after injury.

Table 1. The summary of different preparation methods of BSA-based hydrogels and their findings.

Gelation Findings Limitations Mineralization Refs.

pH-
triggered

Facile gelation of hydrogels with
good biodegradable properties.

Extreme pH conditions
limit the incorporation

of cells.
NA [41–43]
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Table 1. Cont.

Gelation Findings Limitations Mineralization Refs.

Heat-triggered Quick, easy, and harmful chemical
crosslinkers-free gelation.

Heat modifies the
secondary structure.
Cells cannot survive
under heat-triggered

gelation.

NA [43–45]

Photo-triggered

Methacrylate albumin (BSAMA)
hydrogels presented good cell
activities and mineralization,

similar to GelMA.

It entailed an
additional step and

expense.
Incorporated cells

might be damaged by
UV radiation.

Relatively high
concentrations

(15–25%) of polymer
solutions were used.

On GelMA, however,
there were almost twice

as many mineral
depositions as there were

on BSAMA [23].

[23,46–48]

Cryogelation

A combination of urea and
cysteine on BSA led to porous

cryogels.

Gelation-denatured
polypeptide chains. NA [49,50]

BSAMA cryogels displayed a
porous, interconnected spongy
network with shape recovery.

Compared to BSAMA
alone, the

BSAMA-GelMA hybrid
exhibited superior cell

adhesion.

NA [20]

Sequentially mineralizable
transparent and opaque porous

gels with improved stability.

They lack
multi-functionalities.

Cryogels exhibited a
larger mineral percentage

than their hydrogel
counterparts.

[22]

For the first time, multifunctional
porous albumin gels were

fabricated via surface
functionalization inspired by

mussels, exhibiting synergistic
antibacterial/antioxidant activity
and enhanced mineralization and

cell responses.

In vivo investigations
could be further

required.

Rod-like shaped
minerals, with a Ca/P
ratio of 1.63 (similar to

native HA 1.69) are
produced by the

sequential mineralization
of PDA-functionalized

BSAMA hydrogels.

Current
study

2. Results and Discussion

The fractional helicity and the amide bands of the pure BSA were preserved in the
BSAMA, as shown by the CD and FTIR peak data (Figure S1). To past findings [19,23],
BSAMA was synthesized, and according to Figure S1a, BSAMA showed the characteristic
globular configuration of BSA, which raises the possibility that the two molecules share a
comparable secondary structure overall. A positive peak at 193 nm and two characteristic
negative bands at 212 and 222 nm are attributable to α-helicity. FTIR absorption spectra
of BSA and BSAMA are displayed in Figure S1b. BSAMA maintained the characteristic
amide I and amide II peaks on 1651 cm−1 and 1546 cm−1, correspondingly, confirming the
secondary structure similar to the native BSA [22].

Since the reports of the star coating “PDA” catechol-assisted surface chemistry has
received much attention [27–29]. Additionally, both covalent and non-covalent interactions,
such as hydrogen guideline bonding, stacking between aromatic moieties, Michael-type
addition, or Schiff base reaction with amines, are essential in causing catechol to form
a surface coating [31,32]. Different coating features, such as varied surface wettability,
roughness, reactive group retention, antioxidant ability, etc., would be produced by altering
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the catechol reaction state. To examine the structure of PDA deposition on the silicon
wafers, FTIR was used (Figure 2).
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Figure 2. FTIR spectra of dopamine hydrochloride (DA) and polydopamine (PDA) coating were
obtained. The upper section of the figure represents the oxidation of dopamine to polydopamine
(from right to left and then bottom with black lines separating the different structures).

The main dopamine (DA) representative peaks include 3335 cm−1 (amine NH stretch-
ing), 3038 cm−1 (aromatic CH stretching), and 2961 cm−1 (alkyl CH stretching), as well as
several absorption peaks between 650 and 1700 cm−1, including 1618 cm−1 (amine NH
bending) and 1285 cm−1 (aromatic C=C stretching) [51]. There are three different ways
that the two OH groups in dopamine can vibrate: out-of-plane bending, in-plane bending,
and OH stretching [52]. Since dopamine FTIR spectra lack spectral lines in the area that
are typical of OH, the scale factor of NH2 stretching has been employed in the literature to
scale OH stretching for theoretical (Density Functional Theory (DFT)) computations. This
demonstrates that the frequencies between 1180 and 1235 cm−1 are produced by the vibra-
tions of the OH in-plane bending [53]. The DA small molecule can be recognized in FT-IR
spectra via the strong and narrow absorption peaks, which vanish following the oxidative
polymerization of DA, indicating the transformation of DA [54]. The stretching of O-H and
N-H bonds and the dihydroxyindole moiety (DHI—Figure 2, upper section) produce the
peaks of PDA at 3173 cm−1 and 1598 cm−1, respectively. A noticeable characteristic peak
of amine NH bending in the spectra of DA is replaced by a characteristic peak of DHI in
the spectrum of PDA [55]. The characteristic peaks of DA and PDA exhibit the successful
oxidative polymerization of DA [56].

Spongy and porous BSAMA cryogel scaffolds (BM) were prepared and then function-
alized by PDA (BM-PDA) as shown in Video S1. Both cryogel scaffolds (BM and BM-PDA)
showed sponginess; however, PDA-functionalized BM retained more water. The carboxyl
groups in cryogels are thought to be able to chelate calcium ions, supplying active particle
nucleating sites and triggering bio-inspired Ca/P mineralization [57]. The phosphate and
choline groups interact strongly with the catechol and amino groups in the PDA struc-
ture [58]. Notably, the PDA coating layer promoted the nucleation of HA biominerals in
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addition to playing an anchoring role in attaching Ca2+ ions to the substrate [59]. There-
fore, BM and BM-PDA mineralized scaffolds were prepared via sequential mineralization
(Figure 3c) [60]. Sponginess decreased with an increase in mineral content from day 1 to 5,
as can be seen from Video S2.
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and BM-PDA*. Insets in a and b represent the gross appearance of the as-prepared, functionalized,
and mineralized cryogels. (c) Proposed mechanisms of the plate- and rod-like morphology of the
mineralized scaffolds, respectively with c’ depicting the process of sequential mineralization (i–iv
represents one cycle or one day treatment, consisting of a 12-h incubation in the CaCl2 solution,
followed by a 12-h incubation in the Na2HPO4 solution, and a final 12-h rinse in deionized water).
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SEM/EDX was used to observe the microstructure of cross-sections of pristine and
mineralized scaffolds (Figures 3 and 4). The cross-sectional morphologies of the pristine
scaffolds (Figure 3a) exhibited interconnected pores. Before coating with PDA, the surface
of BM pores was smooth. However, after PDA functionalization, the PDA adhered to the
scaffold surface and the appearance of PDA microparticles was obvious (Figure 3a). The
BM-PDA demonstrated homogeneously dispersed PDA coating. PDA seemed attached
to the micro-sized apertures of BM. Compared with the micro surface of non-mineralized
frameworks, the micro surface of the scaffolds after five days of mineralization became
rough, HA microparticles were regularly attached to the scaffold surface, and the particles
had flocculent spherical structures (Figure 3b). The SEM images of the mineralized scaffolds
after day 5 (BM* and BM-PDA*) showed that PDA significantly affected the mineralization
of BM in terms of mineral content and morphology. Due to the great affinity of HA for PDA
moieties and the possibility of fast mineralization, the morphological alteration implies that
the production of HA biominerals onto the PDA-coated surface may be based on the layer-
by-layer growth paradigm. The catechol-containing PDA’s capacity to concentrate Ca2+ and
promote CaP crystallization was likely a contributing factor In the fast”Iin’ralization [11,22].
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bar = 100 µm.

Apatite particles that resemble flowers tightly adhered to the scaffold surface in both
BM* and BM-PDA*. The biological activity (mineralization) of the BM-PDA scaffolds was
boosted by increased surface area and roughness brought about by PDA. Apatite nodules
from the metastable solution were also somewhat precipitated on BM-PDA scaffolds, which
may have aided in the formation of rod-shaped crystals [61,62]. On the other hand, the BM
substrates’ carboxyl (COOH) groups seemed to facilitate mineralization [23,63]. Therefore,
heterogeneous nucleation by OH, NH, and COOH groups along with the surface roughness
can be responsible for the rod morphology of bone-like apatite formed by BM-PDA.
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EDX shows an increase in oxygen content for BM-PDA compared to native BM, which
can be due to the functionalization of PDA with many OH groups. Furthermore, EDX
confirmed the presence of calcium and phosphorus in mineralized BM* and BM-PDA*
(Figure 4, Table 2). Moreover, the atomic ratio of Ca/P in BM was found to be 1.49, and
that in BM-PDA was 1.63 (Table 2), indicating that PDA can provide more nucleation sites
for Ca during mineralization.

Table 2. Results of the EDX analysis.

Element
Symbol

BM BM-PDA BM* BM-PDA*

Atomic Conc.

C 36.45 30.04 8.62 8.94
O 34.10 45.37 59.16 57.53
N 29.44 24.59 4.82 4.64
Ca / / 16.39 17.93
P / / 11.00 11.00

Ca/P / / 1.49 1.63

Additionally, the Ca/P ratio of BM-PDA was closer to the stoichiometric Ca/P propor-
tion of 1.67 for HA, signifying that carbonated HA was formed on the BM-PDA scaffold’s
surfaces for 5 days [61]. A bone-like apatite layer was developed on the surfaces of the
BM-PDA scaffolds for 5 days, according to both SEM (Figure 3) and EDX (Figure 4) analysis.

As can be seen in Figure 5a, the typical amide I and amide II peaks of BSAMA cryogels
(BM) as well as an amide A band at 3270 cm−1 supported the original BSA’s secondary
structure [19]. All samples are identical to the BSA α-helix secondary structure and have
not been damaged, according to the general shape of the amide I and II bands [20,22].
Phosphate bands at 560 and 940 cm−1 in the FTIR spectra of the successively mineralized
cryogels indicated the production of HA.
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The distinctive XRD peaks (Figure 5b) showed up at angles of roughly 26◦ and 32◦,
which corresponded to the diffraction patterns (002) and (211) for HA found in the mineral-
ized scaffolds and commercial products [22,23]. Peaks from the diffraction patterns (002),
(211), (112), (300), and (004) were shared by the results for the mineralized cryogels and
commercial HA between the angles of 26◦ and 35◦. The pristine BM and BM-PDA samples
were devoid of these peaks. These findings demonstrate that the sequential mineralization
strategy (Figure 3c: c’) was successful in producing HA [60,64]. In addition, the effect
of coated PDA on mineral deposition was observed by XRD curves. At 2θ = 26.0◦ and
32.0◦ [65], calcium phosphate deposited on BM-PDA produces relatively strong peaks,
indicating that the mineral crystallinity on BM-PDA* is enhanced. This is in line with the
EDX findings (Figure 4 and Table 2).

PDA makes the cryogels spongier whereas mineralization has made the scaffolds
more brittle with a marked increase in mechanical strength. After mineralization, the
compressive strength increased more significantly [60,66]. The increase in stress at break
indicates that mineralized scaffolds have better mechanical qualities than the pristine, even
if the strain has dropped (Figure 5c and Table 3).

Table 3. The mechanical properties of BM and BM-PDA pristine and mineralized cryogels.

Sample Stress at Break (kPa) Strain at Break (%) Compressive
Modulus (kPa)

BM 6 ± 7.35 84.56 ± 1.03 0.26787 ± 0.01
BM* 44 ± 0.20 85.74 ± 2.37 2.06765 ± 0.06

BM-PDA 3 ± 4.72 95.70 ± 0.16 0.07683 ± 0.00
BM-PDA* 40 ± 0.80 71.43 ± 1.23 2.42127 ± 0.07

TGA measurements were also able to demonstrate the successful preparation and
mineralization of BM-PDA [57]. The moisture content of BM, BM-PDA, BM*, and BM-PDA*
was estimated using the weight loss before 100 ◦C, as shown in Figure 5d. Between 240
and 450 ◦C, there was a second falling curve that could be attributed to the breakdown of
BSAMA (BM). According to calculations, this period showed a weight drop of 17 wt.%. The
BM-PDA experienced the third weightlessness of around 14 wt.% when the temperature
was raised from 520 to 650 ◦C, which might lead to the disintegration of the PDA. According
to this finding, PDA might easily coat BSAMA through penetration [31,67]. With a mineral
content of roughly 57% and 50%, respectively, the mass loss of BM-PDA* (22.63%) was
smaller than BM* (28.23%) when the temperature reached 800 ◦C due to the presence of
PDA. Additionally, this outcome is entirely consistent with the findings of EDX and XRD
as shown in Figures 4 and 5b. These results suggest that PDA and HA can work together
to enhance the robustness and mechanical performance of cryogels.

It is known that moisture aids in wound healing; it lessens scarring and dressing
removal pain and does not obliterate newly produced tissue [68]. As a result, the produced
scaffolds’ outstanding hydrophilicity and wetting qualities may be useful for wound dress-
ing or other prospective biological applications. Herein, all scaffolds presented the spongi-
ness and water-triggered shape recovery behavior illustrated in Video S3 and Figure 6a.
It is obvious that in two seconds (Video S3), the pristine scaffolds (BM and BM-PDA)
absorbed a lot of water and showed water-triggered shape recovery, indicating that their
surface had excellent hydrophilicity.

Tissue development and infiltration into biomaterial constructs are significantly influ-
enced by the pore size, and structure. Better cell attachment and spreading are achieved
on bigger pores, and interconnected pores make it easier for cells to load into scaffolds. A
structure with an open network enables the flow of nutrients from the scaffold, allowing for
cell survival, and proliferation. A porous structure helps to promote host cell permeation
and, more significantly, the growth of vascular systems, which supply nutrients to grow-
ing tissue [69]. Therefore, the degree of pore interconnectivity (DI) was tested as shown
in Figure 6b, demonstrating that pristine scaffolds have a DI value of around 75 ± 3%
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which is quite reasonable for cryogel scaffolds. Mineralization led to a decrease in DI to
25 ± 5%. This decrease can be attributed to the fact of mineral deposition in the pores of
porous scaffolds, which is also evident in the SEM images (Figure 3). The chemical features
of the material, for example, hydrophilicity, mechanical strength, and degradability are
closely linked to the cell’s adherence to its surface [70]. Rapid cell attachment and high-
efficiency cell seeding are made possible by the hydrophilic scaffold [71]. The comparative
hydrophilicity of the prepared porous scaffolds was analyzed using a water contact angle
(WCA) assay (Figure 6c). The inclusion of HA particles caused the contact angle of BM*
and BM-PDA* to increase in comparison to BM and BM-PDA scaffolds, respectively whilst
PDA coating significantly decreased the WCA of BM-PDA, compared to that of BM. The
outcomes showed that the hydrophilicity of the biomaterials can be enhanced through
hydrophilic PDA coating [72] but reduced by HA mineralization [73].
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and (d) swelling ratio. * p value ≤ 0.0001.

This shows that the BM scaffolds have enhanced hydrophilicity and wettability fol-
lowing PDA functionalization, creating an interface for quick biological reactions and
biomolecule absorption. Both mineralized and pristine scaffolds had water contact angles
that were less than 90 degrees, indicating that they were overall hydrophilic and potentially
suitable for use as biomaterials. The swelling ability of the substance was examined for up
to 24 h using three different aqueous media (DW, PBS, and growth media-GM), as shown
in Figure 6d, to further explain the hydrophilicity [63]. Water-induced swelling is a sign of
a substance’s hydrophilicity. PBS is a phosphate salt-based solution that maintains a pH of
7.4 and an ionic strength of 0.14 M, which are characteristics of human blood. It is com-
mon practice to analyze materials with biomedical applications using a PBS solution. The
material’s behavior under physiological settings was tested at a temperature of 37 ◦C. The
decreased mass swelling ratio of mineralized scaffolds in comparison to pristine scaffolds
can be due to the relatively higher hydrophobicity of the deposited HA crystals, which
may decrease pore interconnectivity and consequently lower mass swelling. The swelling
ratio of BM in DW, PBS, and GM was found to be 1927%, 1617%, and 3000%, respectively
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in comparison to BM-PDA (2114% in DW 1727% in PBS, and 2933% in GM). There was no
significant difference in the swelling ratio between BM and BM-PDA in the media.

The goal of tissue engineering is to regenerate tissue while also causing the support
matrix to degrade at a rate that can keep up with the growth of new tissue [74]. During
the process of tissue regeneration, the matrix molecules produced by the cells unite to
form a new ECM while the scaffold deteriorates. For bone tissue engineering, a regulated
scaffold biodegradation rate that is comparable to a tissue regeneration rate is preferred [75].
Therefore, proteinase K, a broad-spectrum protease whose significant proteolytic activity in
native proteins can be demonstrated under mild neutral conditions, was used to test the
accelerated enzymatic degradation of the as-prepared pure and mineralized scaffolds [22].
Pristine and mineralized BM and BM-PDA scaffolds exhibited different times to degrade
completely (Figure 7a). It took 12 h for the complete degradation of BM whereas BM-
PDA degraded 85 ± 2 % for the same period. Strikingly, mineralized BM* and BM-PDA*
degraded up to 35% and 40% only over 12 h. This result can be explained by the reason that
HA reinforces the overall firmness of cryogels [76], thus providing more lasting support
for bone regeneration. On the other hand, all scaffolds-maintained stability (the remaining
mass percentage of each sample: 80 ± 1% for BM, 83 ± 3% for BM-PDA, 85 ± 1% for
BM*, and 90 ± 2% for BM-PDA*) in PBS over a period of 72 h (Figure 7b). The enzymatic
degradation results demonstrate that the mineralized scaffolds decomposed more slowly
than pure scaffolds. Figure 5c, Table 3 shows that adding HA to BM scaffolds enhances their
mechanical characteristics and lessens the capacity of the resulting mineralized matrixes to
absorb water (Figure 6d). As a result, the mineralized scaffolds deteriorated slower than
the pristine ones, which is consistent with the literature report [66].
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PDA functions as synthetic melanin because it can both receive and transport electrons
from the reducing agent to the oxidizer [77]. PDA will quench the free radical and demon-
strate free radical scavenging capabilities if the electron donor is a free radical; if the donor
is oxygen, it will cause the creation of hydrogen peroxide free radicals [78]. Moreover,
BSA alone has an antioxidant activity of about 30% for DPPH (a model free radical to test
the antioxidant ability of any material), [79] and it is reported that BSA helps improve
the antioxidant activity of polyphenols [80]. PDA has been reported to show antioxidant
characteristics in cryogels [81,82]. Inflammation is probably linked to the produced free
radical species [82]. Consequently, a DPPH assay was performed to confirm the free radical
scavenging activity (S.A.) of the as-prepared porous spongy scaffolds (Figure 8a). For exam-
ple, using 0.25 mM of DPPH as the free radical model, the BM cryogels were able to capture
33% of free radicals within 30 min. An estimated 85% of free radicals were scavenged
after 30 min of incubation with PDA-functionalized cryogels (Figure 8b,c). These findings
demonstrated the tremendous anti-inflammation potential of PDA-bearing cryogels.
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radical scavenging activity of BM and BM-PDA, (c) DPPH radical scavenging activity (%) as obtained
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and S. aureus after 24 h incubation. (e) The diameters of the E. coli and S. aureus inhibition zones in
the BM and BM-PDA groups (the bar is used to demonstrate the two groups separately).

Both Gram-positive and Gram-negative bacteria continuously adapt to their environ-
ment and develop medication resistance over time [83]. To overcome bacterial infection,
the ongoing development of antibacterial substances that can successfully stop bacterial
growth is vital. As a result, we used the agar plate well diffusion method to examine the
antibacterial activities of BM and BM-PDA scaffolds against S. aureus (Gram-positive) and
E. coli (Gram-negative) bacteria. The inhibition zones formed in a screening test after the
cryogel samples were placed in the wells of an agar plate. Excellent antibacterial activity
was demonstrated by the PDA-functionalized cryogels against both Gram-positive and
Gram-negative bacteria as shown in Figure 8d,e. Furthermore, there was no regeneration of
bacterial colonies in the inhibitory zone. However, no distinct inhibition zones were seen in
the E. coli and S. aureus groups exposed to the BM cryogel after 24 h. The outcomes demon-
strate that PDA coatings were the “release killing” model for antibacterial activity [30,84].
PDA ions from the cryogels may be released and stick to negatively charged bacterial cell
walls via electrostatic forces, destroying the cell walls, attaching to proteins and nucleic
acids of bacteria, and consequently leading to cellular deformation and the loss of viability.
Additionally, it was discovered that PDA was significantly more effective against E. coli
than S. aureus bacteria. This might be because the thicker Gram-positive S. aureus cell wall
is arguably better protected against PDA particle uptake than the thinner Gram-negative
cell wall [85].

By cultivating L929 fibroblasts, the interaction between the cell and scaffolds was in-
vestigated. Figure 9a show that adding PDA to the BM scaffold can promote cell adhesion
and migration [86]. Despite their biological adhesion, PDAs exhibit great interactions with
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cell receptors (e.g., integrin) and serum proteins such as fibronectin [87]. The introduction
of hydroxyl functional groups improves hydrophilicity and improves the absorption of
supplementary medium to nourish cells (higher swelling behavior in growth media as
exhibited in Figure 6d). The number of cells had no obvious difference for both the BM and
BM-PDA on days one to five (Figure S2). However, the proliferation of cells on BM-PDA
scaffolds was higher than that on BM scaffolds on day 5. In general, cells proliferated well
on both scaffolds, and there was essentially no cytotoxicity in both samples. To further
govern the cell response, chiral molecules can be incorporated into the cryogel system by
either co-assembly or a simple surface functionalization strategy. We are planning to inves-
tigate chirality-dependent cell adhesion and differentiation for creating bone tissue and
regenerative therapies in the future [88,89]. According to CLSM micrographs (Figure 9b),
fibroblasts adhered well to both scaffolds (BM, BM-PDA) while the spreading of fibroblasts
was more obvious in the BM-PDA scaffolds.
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3. Conclusions

Polydopamine (PDA) was used to functionalize the bovine serum albumin methacry-
loyl (BSAMA) cryogels, mimicking innate ECM and biological functions thanks to their
high-water content and porous structure. The scaffold’s interconnected and uniform
pores might make it easier for nutrients to be transported during bone repair. Excellent
antibacterial, anti-oxidative, and anti-inflammatory characteristics, as well as improved
mineralization and cell responsiveness, were all demonstrated by PDA-functionalized
BSAMA scaffolds. Additionally, hydroxyapatite (HA) covered scaffolds (BM* and BM-
PDA*) scaffolds were prepared by sequential mineralization. The rod-like apatite formation
in BM-PDA* attributed to heterogeneous nucleation and surface roughness was achieved,
whereas BM scaffolds presented plate-like morphologies. The Ca/P ratio of 1.63 and the
uniform distribution of the HA particles along with the 57% mineral content on the sur-
face of the BM-PDA* was also validated by analytical data showing the similarity to the
stoichiometric values for promising bone regeneration applications.

4. Materials and Methods
4.1. Materials

Deuterium oxide (D2O), dopamine hydrochloride, bovine serum albumin (BSA), and
methacrylic anhydride (MAA, 94%) were purchased from Sigma-Aldrich (Shanghai, China).
N, N, N’, N’-tetramethylethylenediamine (TEMED, 99.5%) and ammonium persulfate (APS,
>98%) were purchased from Shanghai Yi en chemical technology Co., Ltd. (Shanghai,
China). Penicillin/streptomycin (P/S), fetal bovine serum (FBS), Trypsin-EDTA, PBS,
Dulbecco’s modified Eagle’s medium (DMEM), and live/dead cell viability/cytotoxicity kit
were provided by Thermo Fisher Scientific Inc. (Waltham, MA, USA). We obtained a ready-
to-use DAPI staining solution from Phygene Life Sciences Co., Ltd. (Fuzhou, China). We
bought Fluorescence Mounting Medium from Agilent Technologies (Glostrup, Denmark).

4.2. Synthesis of BSAMA

BSAMA (DS-100) was synthesized by already reported methods [19,20,23]. The clear
solution of 5% (to get a porous scaffold as the lower the polymer concentration, the bigger
the pores) BSAMA in DI water, named BM, was stored at 4 ◦C until further use. The
structural integrity of BSAMA in comparison to BSA was evaluated by FTIR and CD.

4.3. Scaffold Preparation
4.3.1. Cryogelation

The previously stated method of dissolving the precursor solution in the presence of
an initiator and catalyst, followed by freezing and thawing, was used to make all of the
cryogels. Herein, 5% BSAMA subjected to DI water was incubated at 4 ◦C for complete
dissolution. The obtained clear solution of 5% BSAMA was subjected to 0.5% of a 10% APS
solution followed by the addition of 0.25% TEMED over an ice bath. After gentle mixing,
110 µL of the precursor solution was loaded onto each section of the silicone rubber mold
and incubated at −20 ◦C overnight [20]. The as-prepared BM cryogels were stored at 4 ◦C
or lyophilized until further tests.

4.3.2. Functionalization by PDA Coating

Dopamine hydrochloride (DA) solution (5 mg mL−1) was prepared in PBS (pH~8.5),
and the solution pH was maintained by using 1N NaOH. Each BM cryogel was subjected
to the DA solution and was incubated at 37 ◦C overnight to get an adequate PDA func-
tionalization. Before further testing, PDA-functionalized BM cryogels were lyophilized or
kept at 4 ◦C after being rinsed with DI water to eliminate any unattached PDA. The silicon
wafer was chosen as the model substrate to further assess the coatings’ post-deposition
properties because of its diverse adhesive ability on a variety of substrates.
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4.3.3. Mineralization

Mineralization for prepared scaffolds was conducted according to the already reported
method [1,60]. Calcium chloride (CaCl2) and disodium hydrogen phosphate (Na2HPO4)
solutions were produced in 0.1 M Tris buffer (pH = 7.4) at concentrations of 400 × 10−3 M
and 240 × 10−3 M, respectively, and were autoclaved for sterilization. Each cryogel disk
underwent one cycle treatment, consisting of a 12-h incubation in the CaCl2 solution,
followed by a 12-h incubation in the Na2HPO4 solution, and a final 12-h rinse in deionized
water (or one-day treatment). After five days, mineralized cryogels were produced. To
confirm the distribution of the Ca and P elements in the samples and the element ratio
between calcium and phosphorus (Ca/P), the pristine (without mineralization, day 0) and
mineralized cryogels were lyophilized and stored until further testing.

4.4. Morphology by SEM and EDX

The Field Emission Scanning Electron Microscopy (FE-SEM-SU8020, Hitachi, Japan)
was used for morphology experiments at a voltage of 5 KV. Representative cryogel samples
were lyophilized after being first frozen at −80 ◦C. In a high vacuum sputter coater, a thin
layer of platinum was applied to the samples before testing (LEICA, Wetzlar, Germany,
EM ACE600). Furthermore, to confirm the distribution of the Ca and P elements in the
samples and the element ratio between calcium and phosphorus (Ca/P) by SEM-coupled
EDX, the pristine (without functionalization and mineralization) and PDA-functionalized
and mineralized scaffolds (obtained after five days) lyophilized scaffolds were used.

4.5. FTIR/CD

Using a Vertex 70 FTIR spectrometer (Bruker, Billerica, MA, USA) outfitted with a
mercury cadmium telluride photodetector (Bruker) and a MIRacle ATR accessory module
with a three-reflection ZnSe ATR crystal, ATR-FTIR spectra of BSA and BSAMA precursor
solutions (10 mg mL−1) were acquired in triplicate (PIKE Technologies, Fitchburg, WI,
USA). Averaging 16 scans, spectra were collected from 4000 to 1000 cm−1 at a resolution
of 4 cm−1. The spectra of the blank air and water vapor were subtracted from those of
each sample to eliminate the water vapor contribution from the acquired spectra. The
same process was used for scaffolds (thin films made by using Mini Hydraulic Pellet Press
(GS01152 Mini Pellet Press Kit Asia, New Taipei City, Taiwan) for 7 mm Pellets.

To better understand the secondary structure of BSA and BSAMA, circular dichroism
(CD) studies were carried out using Chirascan Plus (Applied Photophysics, Leatherhead,
UK). DI water was used to dilute 10% BSA and BSAMA to a concentration of 0.1 mg mL−1.
Each solution was kept at 4 ◦C for two hours before measurement to provide a steady signal
of each protein. Then, a quartz cell with an optical path length of 1 mm was examined with
300 µL of each solution poured inside.

4.6. Mechanical Properties

To examine the mechanical qualities of the cryogels, compression tests at 95% strain
were performed. Using mechanical testing equipment, the prepared cylinder triplicate
samples of each cryogel scaffold were squeezed at a rate of 1 mm min−1 under equilibrium
swelling circumstances (UTM2102; Shenzhen, China).

4.7. TGA

By measuring the weight of the sample as a function of temperature, the Perkin Elmer
Pyris Dimond model TGA 4000 (Waltham, MA, USA) was used to determine the cryogels’
thermal stability (ASTM E1131). TGA results were obtained after heating 10 mg of each
sample (pure and mineralized, ground into powder after lyophilization) at a heating rate
of 10 ◦C per minute in the temperature range of 30–800 ◦C in a nitrogen environment (N2
flow: 50 cm3 per minute) [90].
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4.8. XRD

Pristine and mineralized lyophilized samples were crushed into powder for X-ray
diffraction (XRD) analysis. XRD tests were carried out with the Bruker D8 Advance
(Malvern Panalytical, Westborough, MA, USA). A nickel filter, 1/2-inch diverging slit,
vertical goniometer, and X-Celerator detector were employed with the apparatus. The
measurements were taken under CuKα (λ = 1.542) at 2θ = 5–60◦. For the aforementioned
tests, three duplicates were employed, and pure commercial HA served as a control. The
International Centre for Diffraction Data’s database for XRD analyses was then used to
examine the patterns.

4.9. Swelling Behavior

The lyophilized cryogels were weighted (Wd) and submerged in three different sol-
vents (DW, PBS, and growth medium) at various time intervals. Swollen samples were
weighted again (Wi) at each interval until they reached equilibrium swelling. The absorbed
water mass was divided by Wd to produce the swelling ratio by Equation (1).

Swelling Ratio (%) = (Wi − Wd)/Wd × 100% (1)

A similar procedure was followed for mineralized scaffolds.

4.10. Degree of Pore Interconnectivity (DI)

Using the water-wicking technique, the degree of pore interconnectivity (DI) of the
mineralized and pristine scaffolds was assessed. The interconnected porosity was deter-
mined as the interconnected void volume over the total volume. Cryogels were weighed
after 1 h of water soaking to establish total volume (Ws). Following the application of a
Kim wipe to remove any remaining free water from linked pores, the cryogels were once
again weighed (Ww). According to Equation (2), the values were utilized to determine the
degree of pore interconnectivity.

DI (%) = (WS − Ww)/WS × 100% (2)

4.11. Water Contact Angle (WCA)

Attention Theta Optical Tensiometer was used to measure the water contact angle
(WCA) of the pristine and mineralized scaffolds at room temperature, and OneAttention
software was used to image the results to show the degree of hydrophilicity [91].

4.12. Enzymatic Degradation

Cryogels in a disc form were submerged in PBS until they reached the equilibrium
swelling. Each cryogel had the liquid on its surface gently blotted off using KimWipes
before its initial mass was weighed (W0). Each disc-shaped gel was broken down at 37 ◦C
in a 2 mL PBS solution with 0.1 mg mL−1 Proteinase K. Every day, the enzyme solution
was changed. Each cryogel’s surface liquid was removed at predetermined intervals (1,
3, 5, 7, 9, 12 h, etc.), and the remaining mass was weighed (Wt). Using Equation (3), the
percentage of degradation was used to determine each gel’s biodegradation property, and
three parallel samples were examined.

Degradation (%) = (W0 − Wt)/W0 × 100% (3)

To check the stability of the cryogels, each sample was subjected to 2 mL PBS and the
weight change was recorded following a similar procedure.

4.13. Antibacterial Properties

An agar diffusion test was used to assess the scaffold’s antimicrobial properties
against S. aureus and E. coli. First, bacteria were suspended at a final concentration of
105–106 CFU mL−1 in a bacterium buffer with a pH of 7. Second, 100 µL of the bacterial
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suspension was introduced to the cryogel scaffolds after they had already been made. The
Zone of Inhibition (ZOI) test was used to qualitatively evaluate the antibacterial capabilities
of scaffolds. A fresh agar plate that had been seeded with 100 µL of the bacterial suspension
(106 CFU mL−1) was used for the ZOI test. Each cryogel disc was sterilized in an autoclave
before being placed on a new agar plate containing a bacterial suspension. To check for
ZOI, the plates were incubated at 37 ◦C for 24 h.

4.14. Antioxidant Activity of Scaffolds

According to published methodologies, the potential antioxidant activity of as-prepared
cryogels was assessed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging
assay [82,92]. Due to its insolubility in water, 0.1 mM of DPPH in ethanol was freshly pro-
duced before usage. The sample was incubated with a certain volume of the DPPH/ethanol
solution for some time in the dark. Using a spectrophotometer, the UV absorbance of DPPH
at 516 nm was measured (UV-2550; Shimadzu, Kyoto, Japan). Additionally, the following
equation was used to compute DPPH-radical scavenging activity (DPPH S.A.).

DPPH S.A. (%) = (Ac − As)/Ac × 100% (4)

where Ac is the absorbance of a pure DPPH solution in the absence of samples, and As is
the absorbance of the sample mixed with DPPH.

4.15. Biocompatibility
4.15.1. Cell Seeding

Cell seeding mouse fibroblast cells (L929) were cultured on sterile cryogels by the ISO
10993 biocompatibility testing standard for dental repair biomaterials, which was approved
by the FDA [93]. A 48-well plate has one well for each sample. Before cell seeding, cryogels
were mechanically compressed to remove part of the free water. A cell suspension was
applied to each sterile scaffold (10,000 cells mL−1). The cell suspension was evenly spread
across the top of the scaffold using the dropwise approach. First, 2 h at 37 ◦C and 5% CO2
were spent incubating cell-seeded scaffolds. Then, a 1 mL addition of enhanced DMEM
was made gradually and carefully. Up to five days were spent growing the constructs, with
media being changed every other day.

4.15.2. Live/Dead Assay

The cytotoxicity of the resultant scaffolds was evaluated via live/dead staining. Live
cells were labeled with 1.5 µM calcein-acetomethoxy (calcein-AM) and dead cells with
3 µM ethidium homodimer-1 (EthD-1). After spending 30 min in the incubator, samples
were gently washed with PBS. Using a confocal laser scanning microscope (CLSM), cells
were examined and captured on camera (Nikon, A1, Tokyo, Japan).

4.15.3. Cell Morphology

On day five, samples were fixed for 15 min in 4% paraformaldehyde before being
thrice washed in PBS for fluorescence staining. Following that, the cells were permeabilized
in PBS containing 0.1% Triton X-100 and 1% BSA for 30 min at 4 ◦C. After that, seeded
cells were stained with phalloidin for 40 min to visualize the actin cytoskeletons and ready-
to-use DAPI solution for 5 min to describe the nuclei. Cells were examined and captured
using CLSM.

4.16. Statistical Analysis

GraphPad prism5 and OriginPro 8.5.1 were used to analyze the data. Triplicate sam-
ples were used for each condition, unless otherwise specified, and data were given as
mean standard deviation (SD). The two-tailed t-test was used to determine the statistical
significance of the results after the data were checked for normality to access the nor-
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mal distribution. In statistical comparisons, p values lower than 0.05 were regarded as
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/gels8100679/s1, Figure S1: FTIR and CD spectra of BSA and BSAMA;
Figure S2: L929 fibroblasts cytocompatibility of BM and BM-PDA cryogels after cultivation for 1, 3,
and 5 days; Video S1: Sponginess of BM and BM-PDA cryogels; Video S2: Successive mineralization
of BM and BM-PDA cryogels, Video S3: Water triggered shape recovery of BM and BM-PDA cryogels.
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