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Abstract: Photothermal therapy (PTT) is a promising local therapy playing an increasingly important
role in tumor treatment. To maximize PTT efficacy, various near-infrared photoabsorbers have been
developed. Among them, metal sulfides have attracted considerable interest due to the advantages
of good stability and high photothermal conversion efficiency. However, the existing synthesis
methods of metal-sulfide-based photoabsorbers suffer from the drawbacks of complicated procedures,
low raw material utilization, and poor universality. Herein, we proposed a flexible, adjustable
strategy capable of transforming commercial metal sulfides into injectable hydrogels for local PTT.
We took copper sulfide (CuS) as a typical example, which has intense second-window near-infrared
absorption (1064 nm), to systematically investigate its in vitro and in vivo characteristics. CuS
hydrogel with good syringeability was synthesized by simply dispersing commercial CuS powders
as photoabsorbers in alginate-Ca2+ hydrogel. This synthesis strategy exhibits the unique merits
of an ultra-simple synthesizing process, 100% loading efficiency, good biocompatibility, low cost,
outstanding photothermal capacity, and good universality. The in vitro experiments indicated that
the hydrogel exhibits favorable photothermal heating ability, and it obviously destroyed tumor cells
under 1064 nm laser irradiation. After intratumoral administration in vivo, large-sized CuS particles
in the hydrogel highly efficiently accumulated in tumor tissues, and robust local PTT was realized
under mild laser irradiation (0.3 W/cm2). The developed strategy for the synthesis of CuS hydrogel
provides a novel way to utilize commercial metal sulfides for diverse biological applications.

Keywords: commercial copper sulfide (CuS); alginate; hydrogel; photothermal therapy (PTT);
near-infrared II windows

1. Introduction

Local therapy has recently attracted an increasing amount of attention in tumor
treatment due to the advantages of solid selectivity, controllability, and minor systemic
side effects [1,2]. Local therapy mainly includes local ablation (radiofrequency abla-
tion [3–5], irreversible electroporation [6–8], high-intensity focused ultrasound [9], local
laser ablation [10], cryoablation [11–13], and chemical ablation [14,15]), local phototherapy
(PTT [16,17] and photodynamic therapy [16,18,19]), local radioisotope therapy [20,21], local
radiotherapy [22–24], and local chemotherapy [25]. An increasing number of studies have
shown that local therapy can be applied to many clinical situations, such as in the preser-
vation of tissue and function [26], situations without medical indication for surgery [27],
the local treatment of metastatic tumors [28,29], and the salvage treatment of recurrent
tumors [30]. Thus, local therapy is sometimes essential to improve the quality of life of
patients with tumors, as well as survival time. At the same time, some studies have re-
ported the success of the combination of local therapy and other treatment methods, such
as immunotherapy [31,32], which further illustrates the broad prospect of local therapy.
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As a kind of burgeoning local therapy, PTT uses photoabsorbers to transform near-
infrared (NIR) light energy to heat energy, which induces tumor cell necrosis [16,33].
NIR-based PTT is mainly conducted in two biological windows: the first NIR window
(NIR-I) and the second NIR window (NIR-II). The wavelength range of NIR-I is from
750 nm to 1000 nm, and the range of NIR-II is from 1000 nm to 1350 nm [34]. Compared
with the widely studied NIR-I light, NIR-II light has a stronger penetrating ability and a
higher thermal safe power because of its low absorption and scattering in tissue, which
has a substantial superiority in curing deeper tumor tissues [34–37]. In addition to the
flourishing development of PTT in fundamental studies [38,39], it is very encouraging
that PTT based on local administration has also successfully entered a clinical trial for the
treatment of prostate cancer [1], which demonstrates the great potential of PTT-based local
therapy in clinical transformation.

To date, plenty of biomaterials have been developed as photoabsorbers, such as
organic dyes [40–42], organic nanoparticles [43–45], noble metal materials [46–48], carbon
materials [49,50], black phosphorus [51,52], and metal oxide and sulfides [53,54]. Among
them, metal sulfides, such as CuS, Bi2S3, WS2, CoS, NiS, and FeS, have high photothermal
conversion efficiency because of the surface plasmon resonance effect [55,56], and they have
been widely used in PTT in recent years [57–62]. In particular, CuS, which possesses strong
absorption in the NIR-II bio-window, has been extensively used in NIR-II PTT [63,64].
The current photoabsorbers are mainly obtained using either bottom-up methods or top-
down methods, such as coupling thermal oxidation etching and liquid exfoliation to form a
solvent-dispersible system [65,66]. However, these methods face several common problems,
such as complex steps, high time and energy costs, low raw material utilization, and lacking
universal strategy [67].

To avoid the use of metal sulfides using complex synthesis methods, commercial metal
sulfides are an excellent choice. The advantage of commercial metal sulfides is that they
are mature industrial products with reasonable quality control and low cost, but their
disadvantages lie in the raw materials having large particles, being insoluble in water,
and not being able to be used for biological applications. Recently, our group proposed a
smart “turning solid into gel” strategy [68] by dispersing solid materials in alginate–Ca2+

hydrogel (ACH), which can transform solid materials into an injectable hydrogel, making
the solid materials bioavailable. Therefore, it is fascinating to develop versatile commercial
metal-sulfide-based hydrogels as novel photoabsorbers without complex synthesis.

Herein, we introduced a simple and powerful ACH platform to load commercial CuS
as a representative sample for local tumor NIR-II PTT (Figure 1). The ultra-simple synthesis,
100% loading efficiency, good biocompatibility, low cost, outstanding photothermal capacity,
and extreme flexibility allow this platform to provide more options for highly efficient PTT.
The CuS hydrogel (CSH) can be simply obtained through mixing and stirring steps. In vitro
experiments indicated that CSH exhibits good syringeability and intense NIR-II absorption
(1064 nm). Then, CSH was employed for in vivo PTT studies. The results confirm that this
hydrogel not only performs well in killing tumor cells under mild laser irradiation but that
it also shows low toxicity in vitro and in vivo. To the best of our knowledge, this is the first
time that commercial CuS was elegantly employed for highly efficient PTT in vivo.
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Figure 1. Schematic representation of the synthesis of CSH as a PTT agent for local NIR-II PTT in 
vivo. 

2. Results and Discussion 
2.1. Synthesis and Characterization of CSH 

Firstly, alginate solution and Ca2+ were mixed to produce ACH within 1 min based 
on their strong coordination interaction (Figure S1). Then, CSH was obtained by dispers-
ing commercial CuS powder into ACH. To investigate the loading capacity of ACH, in-
creasing concentrations of CSH were employed. The maximum loading capacity was 480 
mg CuS/mL (Figure 2A). The long-term stability of CSH was also monitored (Table S1 and 
Figure S2). All concentrations of CSH were stable for more than 4 days, and concentrations 
of 90 mg CuS/mL and below were still stable after 14 days. Considering that excellent 
syringeability is essential to potential biological applications, we investigated the maxi-
mum loading capacity of CSH capable of fluently being injected with different diameters 
of syringe needles. The results showed that the maximum injectable concentrations for 
0.45, 0.5, 0.6, and 1.2 mm syringe needles were 120, 240, 480, and 480 mg CuS/mL, respec-
tively, and a “TMU” pattern could be written by a 0.45 mm syringe with 20 mg CuS/mL 
CSH (Figure 2B), which proved its excellent syringeability due to the shear-dependent 
and reversible gel–sol transition (Figure S3) [69]. 

Rheological experiments showed that the storage moduli (G’) of ACH and CSH were 
higher than their loss moduli (G’’), demonstrating that ACH and CSH were in a gel state 
with a relatively weak mechanical strength and flexible shape, which made them easily 
injectable (Figure S4). As the essential components of CSH, the swelling ratio and degra-
dation behavior of ACH were further investigated. The swelling test showed that ACH 
could reach swelling equilibrium in 10 min in PBS (pH = 7.4). The swelling ratio of ACH 
was as high as 13,342.6% (Figure S5), which suggested that the internal cross-linking 
points of ACH were relatively few, the cross-linking density was low, and the water 

Figure 1. Schematic representation of the synthesis of CSH as a PTT agent for local NIR-II PTT
in vivo.

2. Results and Discussion
2.1. Synthesis and Characterization of CSH

Firstly, alginate solution and Ca2+ were mixed to produce ACH within 1 min based on
their strong coordination interaction (Figure S1). Then, CSH was obtained by dispersing
commercial CuS powder into ACH. To investigate the loading capacity of ACH, increasing
concentrations of CSH were employed. The maximum loading capacity was 480 mg
CuS/mL (Figure 2A). The long-term stability of CSH was also monitored (Table S1 and
Figure S2). All concentrations of CSH were stable for more than 4 days, and concentrations
of 90 mg CuS/mL and below were still stable after 14 days. Considering that excellent
syringeability is essential to potential biological applications, we investigated the maximum
loading capacity of CSH capable of fluently being injected with different diameters of
syringe needles. The results showed that the maximum injectable concentrations for 0.45,
0.5, 0.6, and 1.2 mm syringe needles were 120, 240, 480, and 480 mg CuS/mL, respectively,
and a “TMU” pattern could be written by a 0.45 mm syringe with 20 mg CuS/mL CSH
(Figure 2B), which proved its excellent syringeability due to the shear-dependent and
reversible gel–sol transition (Figure S3) [69].

Rheological experiments showed that the storage moduli (G’) of ACH and CSH
were higher than their loss moduli (G”), demonstrating that ACH and CSH were in a gel
state with a relatively weak mechanical strength and flexible shape, which made them
easily injectable (Figure S4). As the essential components of CSH, the swelling ratio and
degradation behavior of ACH were further investigated. The swelling test showed that
ACH could reach swelling equilibrium in 10 min in PBS (pH = 7.4). The swelling ratio
of ACH was as high as 13,342.6% (Figure S5), which suggested that the internal cross-
linking points of ACH were relatively few, the cross-linking density was low, and the water
absorption capacity was strong. According to the ACH degradation curve (Figure S6),



Gels 2022, 8, 319 4 of 15

the degradation rate of ACH in PBS (pH = 7.4) was 51% after 7 days, which showed its
excellent degradability.
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Figure 2. (A) Standing and oblique photos of different concentrations of CSH taken immediately after
the preparation. (B) “TMU” formed by CSH (20 mg CuS/mL) through a 0.45 mm syringe needle.
(C) SEM images of ACH, CuS particles, and CSH (20 mg CuS/mL).

The scanning electron microscope (SEM) images of ACH, CSH, and commercial CuS
powder were characterized, and they indicated that the CuS particles were dispersed in the
ACH with a porous structure (Figure 2C).

2.2. Photothermal Performance of CSH In Vitro

To evaluate the photothermal efficiency of CSH in vitro, different concentrations of
CSH were treated with NIR-II laser irradiation (1064 nm, 1 W/cm2) for 5 min, and an
infrared thermal camera was used to record the temperature elevations. Under NIR-II
laser irradiation, CSH showed good photothermal capacity (Figure 3A). The temperature
enhancement of CSH with different concentrations increased from 17.3 ◦C to 38.1 ◦C,
while the temperature increase of ACH and PBS was just 6.4 ◦C. The thermal images also
demonstrate the outstanding photothermal ability of CSH (Figure 3B). After undergoing
the heating–cooling process three times, the heating capacity of CSH did not significantly
change (Figure 3C), which indicates that CSH has good photothermal stability under NIR-II
laser irradiation. Therefore, not only can the prepared CSH efficiently transform NIR laser
energy to heat energy, but it can also remain stable after repeated laser illumination.

2.3. Cytotoxicity and Cellular Uptake of CSH

CSH, which had a great photothermal efficacy under 1064 nm irradiation, super-large
loading capacity, and excellent stability, was capable of being used for further studies. To eval-
uate its cytotoxicity, different concentrations of CSH were added to 4T1 cells in 96-well plates,
and the cells were continued to be cultured for 24 h. Then, the cell viabilities were calculated
through a standard MTT assay [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,
MTT]. The cell viability was as high as 88.8% after incubation with a high concentration of
CSH (1 mg CuS/mL), which indicated the low cytotoxicity of CSH (Figure 4A). The cellular
uptake experiment proved that CuS particles in CSH could not be uptaken by cells due to their
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big size (Figure S7), which illustrates that the mechanism of PTT based on CHS is deduced
heat conduction instead of the direct interaction of cell and CSH.
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Figure 4. (A) Cytotoxicity of 4T1 cells incubated with different concentrations of CSH or PBS.
(B) Viability of 4T1 cells incubated with PBS or CSH (0.5, 0.8 mg CuS/mL) and irradiated by NIR-II
laser (1064 nm: 0, 2, or 3 W/cm2) (* p < 0.05, ** p < 0.01). (C) Dead/live cell staining test of 4T1 cells
treated with PBS or CSH (0.5, 0.8 mg CuS/mL) and irradiated by NIR-II laser (1064 nm: 0, 2, or
3 W/cm2).
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2.4. In Vitro PTT of CSH

Due to the low cytotoxicity of CSH, PTT of 4T1 cells using the hydrogel was investi-
gated with an MTT assay and live and dead cell staining. As the standard procedure, 4T1
cells were cultured in a 96-well plate at 37 ◦C for 24 h, and different concentrations of CSH
(0.5 and 0.8 mg CuS/mL) or PBS were added and incubated with the cells at 37 ◦C. After
1 h, the cells were irradiated by a 1064 nm laser (0, 2, or 3 W/cm2) for 5 min. The 4T1 cell
viabilities showed CSH-concentration- and laser-power density-dependent deceases. After
being treated with both 0.8 mg CuS/mL of CSH and 1064 nm laser irradiation (3 W/cm2),
4T1 cell viability dropped to less than 4%. However, the viability of 4T1 cells treated with
only CSH or laser irradiation remained approximately 100% (Figure 4B). The fluorescent
images of live and dead cells, which were stained by calcein acetoxymethyl ester (calcein
AM) and propidium iodide (PI), respectively, also showed that the 4T1 cells were signifi-
cantly destructed after the combined treatments (Figure 4C). These results prove that CSH
has an excellent photothermal effect on tumor cells with 1064 nm laser irradiation.

2.5. Intratumoral Retention Test of CSH

In order to assess the intratumoral retention ability of CSH, computer tomography
(CT) scans were carried out in vitro and in vivo under a voltage of 120 kV (clinical use).
Although CSH was considered to have a weak CT value attenuation (Figure 5A,B), after
intratumoral injection, it could still be found at the tumor site with CT scans. During the
2 days of CT monitoring that followed, no significant change was found in the CT value or
in the morphology of CSH (Figure 5C,D), proving its good retention ability at tumor sites.
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of BALB/c mice before and 0, 24, and 48 h after being intratumorally injected with 20 mg CuS/mL of
CSH (n = 3). (D) CT value (Hounsfield, HU) changing curves on the tumor site of BALB/c mice.

2.6. In Vivo PTT of CSH

To minimize the damage to surrounding tissues, a mild laser power (0.3 W/cm2)
was employed for in vivo PTT. CSH with a concentration of 20 mg CuS/mL, which can
cause a significant temperature rise in vitro, was used to guarantee effective tumor ablation
(Figure S8). To evaluate the in vivo photothermal tumor therapy efficacy of CSH in the NIR-
II bio-window (1064 nm), BALB/c mice were grouped according to different treatments
(n = 5) as follows: (1) only PBS; (2) only CSH; (3) PBS + laser; and (4) CSH + laser. In
comparison with the control, there was a noticeable temperature increase at the tumor
site after being injected with CSH and irradiated with a 1064 nm laser (Figure 6A,B).
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Tumor sizes were measured every 2 days to evaluate the anti-tumor capacity. The results
showed that the tumor growth of mice treated with both CSH and laser irradiation was
effectively inhibited, and the tumors were eliminated after PTT (Figure 6C). There was
tumor recurrence in only one mouse in the combined treatment group, and the recurred
tumor was significantly smaller than that in the other groups. In contrast, the tumors in
the other groups multiplied, and the final tumor volumes after 15 days of growth were
about 12.9, 14.1, and 12.5 times larger than the initial tumor volume in groups 1, 2, and 3,
respectively (Figure 6D). The tumors were dissected and photographed on the 15th day
(Figure 6E). The dissected tumors were weighed, and the ratio of tumor weight to mouse
body weight in each group was calculated (Figure 6F), which further revealed that the
tumors were obviously suppressed by CSH-based PTT. These results illustrate that CSH
can wreck tumors entirely due to its high thermal efficiency in vivo.
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Figure 6. (A) Thermal images of tumor-bearing mice treated with only PBS or both CSH and NIR-II
laser irradiation. (B) Photothermal heating curves of tumor sites taken with an infrared thermal
camera. (C) Tumor-monitoring photography of mice in various groups. (D) Relative tumor volume
curves of mice in different groups (n = 5 in each group, ** p < 0.01). (E) Excised tumors from the mice
on the 15th day of the observation period. (F) Ratio of final tumor weight to final body weight of
mice in different groups (** p < 0.01).
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2.7. In Vivo Toxicity of CSH

To assess the systemic toxicity of CSH in vivo, the weight monitoring, blood biochem-
istry analysis, and H&E staining of major organs of the mice were accomplished. The
weight monitoring results displayed no noticeable difference in body weight among the
mice with various treatments (Figure 7A). The blood biochemistry analysis indicated that
the liver and kidney function indexes of the mice were entirely within the normal range
(Figure 7B), and no evident inflammatory lesion or organ damage was found in all major
organs of the mice (Figure 7C). All of the above results confirm that CSH has good biocom-
patibility, which makes it a promising PTT agent with good biosafety and photothermal
efficacy in vivo.
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Figure 7. (A) Weight-changing curves of mice after being subcutaneously injected with PBS and
20 mg CuS/mL of CSH (n = 5 in each group). (B) Blood biochemical indexes of mice measured after
being treated with PBS for 15 days and CSH (20 mg CuS/mL) for 1, 7, and 15 days (n = 5 in each
group). (C) H&E-stained images of major organs of Kunming mice acquired after being treated with
PBS for 15 days and CSH (20 mg CuS/mL) for 1, 7, and 15 days.

3. Conclusions

In conclusion, according to the “turning solid into gel” strategy, a robust metal sulfide
hydrogel system was established to load commercial metal sulfide powders for high-
efficiency tumor PTT. As a representative metal sulfide, commercial CuS powder was
studied in depth. The obtained CSH was verified to have good stability, favorable syringe-
ability, potent photothermal efficacy, and excellent retention capability at the injection site.
Due to the deeper tissue penetration of NIR-II light, further studies were investigated using
1064 nm laser irradiation. The follow-up experimentations in vitro and in vivo showed the
CSH to have negligible toxicity and a high photothermal killing effect on tumor cells under
the irradiation of the 1064 nm laser. Therefore, as a new method of photothermal agent
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preparation, transforming commercial sulfides into injectable hydrogels can help to save
costs, improve accuracy, and raise efficiency without worrying about toxicity, all of which
give it great hope for clinical transformation.

4. Materials and Methods
4.1. Materials

CaCl2 and sodium alginate (200 ± 20 mPa s) were obtained from Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). CuS was purchased from Sigma-Aldrich trade
Co., Ltd. (Shanghai, China). Fetal Bovine Serum (FBS) was provided by Lanzhou Minhai
Bio-Engineering Co., Ltd. Dulbecco’s Modified Eagle Medium (DMEM) was obtained
from ThermoFisher Instrument Co., Ltd. (Suzhou, China). MTT was bought from Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). Calcein AM and PI were provided
by Dojindo Chemical L.L.C. (Shanghai, China). DMSO was purchased from Concord
Technology Co., Ltd. (Tianjin, China). Ultrapure water was bought from Wahaha Group
Co., Ltd. (Hangzhou, China).

4.2. Synthesis of ACH and CSH

Typically, 0.5 mL of sodium alginate (10 mg/mL) and 0.05 mL of CaCl2 (10 mg/mL)
were mixed with 0.45 mL H2O to prepare ACH. Then, commercial CuS powder was added
to ACH, and the system was stirred for 15 min to obtain CSH.

4.3. Stability Assessment of CSH

The homogeneous stability of CSH was evaluated for 2 weeks. Briefly, different
concentrations of CSH (15, 30, 60, 90, 120, 240, 480 mg CuS/mL) were placed in vials,
respectively. If the stability time was less than 10 min or the sulfide could not be dispersed
in ACH, the mixture was regarded as overloaded. The stable concentrations of CSH were
monitored for 14 days and photographed at different time points (10 min, 20 min, 30 min,
1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h, 16 h, 18 h, 20 h, 24 h, and then every day).
During the monitoring period, if the hydrogel was found to be layered, it was regarded
as precipitation.

4.4. Syringeability of CSH

The syringeability of CSH was evaluated using four sizes of syringe needles (26 G,
0.45 mm; 25 G, 0.5 mm; 23 G, 0.6 mm; 18 G, 1.2 mm). Different concentrations of CSH
were extruded through the various sizes of syringe needles. For every size of syringe, the
maximum injectable concentration was recorded, and a “TMU” (an abbreviation of “Tianjin
Medical University”) was written by its maximum injectable concentration. Then, a “TMU”
was formed by CSH (20 mg CuS/mL) through a 0.45 mm syringe needle, which was used
for in vivo PTT.

4.5. Characterization

Rheology experiments of ACH and CSH (20 mg CuS/mL) were conducted on a DHR-2
rheometer (TA Instruments), with a strain amplitude of 1% and an angular frequency of
10 rad/s for dynamic oscillatory time sweep measurements.

The swelling ratio and degradation behavior of ACH were investigated according
to a previous study [70]. To calculate the swelling ratio, lyophilized ACH was weighed
(recorded as M0), immersed in PBS (pH = 7.4), and incubated in an incubator shaker at a
shaking speed of 100 rpm at 37 ◦C. The swelled ACH was removed, and the surface water
was wiped out. Then, the collected ACH was weighed at a specific time interval (recorded
as Mt). The swelling ratio (%, w/w) was calculated using the equation (Mt − M0)/M0 × 100.
The experiments were carried out in triplicate to obtain an average value. The degradation
behavior of ACH was assessed in PBS (pH = 7.4). The lyophilized ACH was weighed
(recorded as Mi) and completely immersed in PBS, and then it was degraded in an incubator
shaker at 37 ◦C and 100 rpm. After different time intervals (1, 3, or 7 days), ACH was
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washed with ultrapure water to remove PBS, freeze-dried, and weighed (recorded as Mf).
The degradation rate (%, w/w) was calculated using the equation (Mi − Mf)/Mi × 100.

Field-emission scanning electron microscopy (FE-SEM) images of ACH, CuS powder,
and CSH (20 mg CuS/mL) were acquired under a 2 kV accelerating voltage on a Gemini
SEM 300 (ZEISS, Germany) microscope.

4.6. Photothermal Performance In Vitro

In order to evaluate the photothermal efficacy of CSH in vitro, PBS or different con-
centrations of CSH (0, 1, 2.5, and 5 mg CuS/mL) with a volume of 1 cm3 were placed in
cuvettes with a base area of 1 cm2. Then, cuvettes were irradiated with a 1064 nm laser
(1 W/cm2) for 5 min, and temperature elevations were recorded using an infrared thermal
camera. In order to test its photothermal stability, CSH (5 mg CuS/mL, 1 mL) was put into
a cuvette and irradiated using NIR-II (1064 nm) laser with a power density of 1 W/cm2 for
5 min, and then the system was cooled for 10 min to bring the temperature close to room
temperature; the process was repeated three times.

4.7. Cell Culture and Animals

The growth and metastasis of 4T1 cells in BALB/c mice are similar to those of human
breast cancer, making the cells a relatively classical and widely used cell line to test the ther-
apeutic effects on tumors [71]. Therefore, the 4T1 cell line was used to study CSH in vitro
and in vivo. 4T1 cells were cultured in a culture medium with 90% DMEM and 10% FBS.
Cells were cultured in a humidified incubator (5% CO2 and 37 ◦C), and the culture medium
was refreshed at 1–2 day intervals. Kunming mice and BALB/c mice were purchased from
Beijing HFK Bioscience Co., Ltd. (Beijing, China). All animal experiments were performed
according to the protocols established by the Animal Care and Use Committee of Tianjin
Medical University, and all experimental operations were approved by the Animal Care
and Use Committee.

4.8. Cytotoxicity and Cellular Uptake Assay

To determine the potential cytotoxic effects of CSH, 4T1 cells (1 × 104 per well) were
cultured in 96-well plates with 200 µL of cell culture medium per well for 24 h. Then, after
the exchange of the cell medium, PBS or different concentrations of CSH (0, 0.05, 0.1, 0.2,
0.4, 0.6, 0.8, 1 mg CuS/mL) were added to the wells. After 24 h incubation, cell viabilities
were evaluated via a standard MTT test. After the cells were washed with PBS, new cell
medium and MTT (10 µL, 5 mg/mL) were added and incubated with the cells for 4 h; then,
the supernatant was discarded, and 120 µL of DMSO per well was added. Finally, the wells’
absorptions at 490 nm were measured using a microplate reader.

The cellular uptake mechanism of CSH was also investigated. In brief, 4T1 cells
(1 × 104 per well) were cultured in 96-well plates. After 24 h, PBS or different concentrations
of CSH (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1 mg CuS/mL) were added and co-incubated with the
cells for another 24 h. Then, the cells were washed with PBS, and 120 µL of PBS per well
was added. Finally, the cells were observed under a microscope.

4.9. In Vitro Photothermal Cytotoxicity Study

The photothermal cell killing ability of CSH under 1064 nm laser irradiation was
evaluated using the MTT assay. 4T1 cells (1.4 × 104 per well) were incubated in a 96-
well plate for 24 h. After being washed with PBS, the 4T1 cells were treated with PBS or
different concentrations of CSH (0.5 or 0.8 mg CuS/mL) for 1 h, and they were irradiated
with varying densities of power of 1064 nm laser (0, 2, or 3 W/cm2) for 5 min. Then, cell
viabilities were measured using the MTT assay, and the absorption of each well at 490 nm
was recorded using a microplate reader.
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4.10. Live/Dead Cells Staining Test

To further investigate the PTT efficacy in vitro, 4T1 cells (1.4 × 104 per well) were
incubated in 96-well plates for 24 h, and CSH (0.5, 0.8 mg CuS/mL) or PBS was added and
co-incubated with 4T1 cells for 1 h. Then, 4T1 cells were exposed to NIR-II laser (1064 nm,
0, 2, or 3 W/cm2) for 5 min, thoroughly washed with PBS twice, and stained with calcein
AM and PI. Fluorescent images were recorded with an inverted luminescence microscope.

4.11. Intratumoral Retention Test of CSH

In vitro and in vivo CT scans were carried out via a clinical X-ray CT (SOMATOM
Force, Siemens healthineers, Erlangen, Germany) under a clinical voltage (120 kV) [72].
CSHs with different concentrations (0, 1, 2.5, 5, 10, 15, 30 mg CuS/mL) were prepared,
and then CT images of CSH were collected. For in vivo CT imaging, 50 µL of CSH
(20 mg CuS/mL) was intratumorally injected into BALB/c mice (n = 3). Then, the mice
were scanned pre-injection and after injection at different time points (0 h, 24 h, and 48 h).
CT values were measured using Radiant DICOM Viewer software.

4.12. Anti-Tumor Assessment In Vivo

To ensure biosafety, a mild laser power (0.3 W/cm2) and CSH with a concentration
of 20 mg CuS/mL were used for in vivo PTT. To verify the in vitro heating effect, CSH
(20 mg CuS/mL) or PBS was made into 50 µL droplets, and they were irradiated using a
1064 nm laser (0.3 W/cm2) for 5 min. Thermal images of them were taken, and photothermal
heating curves were obtained. Then, to explore the anti-tumor ability of CSH with 1064 nm
laser irradiation, tumor-bearing BALB/c mice were divided into 4 groups (n = 5) as follows:
(1) only PBS, (2) only CSH, (3) PBS + laser, and (4) CSH + laser. Mice in Group 1 were
intratumorally injected with PBS (50 µL). Mice in Group 2 were intratumorally injected
with CSH (20 mg CuS/mL, 50 µL). Mice in Group 3 were intratumorally injected with PBS
and exposed to 1064 nm laser irradiation (0.3 W/cm2) for 10 min. Mice in Group 4 were
intratumorally injected with CSH (20 mg CuS/mL, 50 µL) and exposed to 1064 nm laser
irradiation (0.3 W/cm2) for 10 min. The hyperthermia effect on tumor site was carefully
recorded using an infrared thermal camera. Then, tumor sizes were measured and recorded
every 2 days. Tumor volume was calculated using the following formula: V = a × b2/2,
where a and b mean the longest and shortest diameters, respectively. The relative volume
of the tumors was the ratio of the day’s volume to the initial volume. Photos of tumors in
all groups were taken every 2 days, and the tumors were removed and weighed on day 15
after the treatment.

4.13. Statistics

The differences between groups were studied using one-way ANOVA, and “p” value < 0.05
was considered as statistically significant. All analyses were conducted using GraphPad Prism
8.0.2 software.

4.14. In Vivo Biosafety Analysis

To evaluate the biosafety of CSH in vivo, weight monitoring, blood biochemistry
analysis, and H&E staining were conducted on Kunming mice. To monitor the body weight
change, CSH (50 µL, 20 mg CuS/mL) or PBS was subcutaneously injected into Kunming
mice (n = 5, respectively), and their body weights were recorded every two days until
the 15th day. For blood biochemistry analysis and H&E staining, Kunming mice were
subcutaneously injected with PBS (n = 5) or CSH (50 µL, 20 mg CuS/mL) (n = 15). Mice in
the hydrogel-injected group were dissected on the 1st, 7th, and 15th days (n = 5 every time),
and mice in the PBS group were dissected on the 15th day. After the mice were dissected,
their major organs (i.e., heart, lung, spleen, liver, and kidney) were removed and stained
with hematoxylin and eosin, and blood samples were collected. The blood samples were
centrifugated at 3000 rpm for 10 min to separate and collect the supernatant serum. Then,
the blood biochemistry biomarkers were analyzed, which included albumin (ALB), total
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bile acid (TBA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and
alkaline phosphatase (ALP) for liver function assessment, and uric acid (UA), urea nitrogen
(BUN), and serum creatinine (Cr) for kidney function evaluation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels8050319/s1, Figure S1: Photos of ACH stirred for
different times after mixing alginate solution and Ca2+ solution; Figure S2: Standing and oblique
photos of different concentrations of CSH taken on day 7 and day 14; Figure S3: The maximum in-
jectable concentration of CSH through various size of syringes and “TMU” written by them; Figure S4:
Rheological properties of ACH and CSH (20 mg CuS/mL); Figure S5: Curve of swelling ratio of
ACH in PBS (pH = 7.4); Figure S6: Degradation curve of ACH in PBS (pH = 7.4); Figure S7: Photos of
4T1 cells incubated with different concentrations of CSH or PBS for 24 h; Figure S8: Thermal images
and photothermal heating curves of CSH (20 mg CuS/mL) and PBS under 1064 nm laser irradiation
in vitro; Table S1: The stability of different concentrations of CSH.
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