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Abstract: The gels of cellulose and its derivatives have a broad and deep application in pharmaceutics;
however, limited attention has been paid to the influences of other additives on the gelation processes
and their functional performances. In this study, a new type of electrospun core–shell nanohybrid
was fabricated using modified, coaxial electrospinning which contained composites of hydroxypropyl
methyl cellulose (HPMC) and acetaminophen (AAP) in the core sections and composites of PVP and
sucralose in the shell sections. A series of characterizations demonstrated that the core–shell hybrids
had linear morphology with clear core–shell nanostructures, and AAP and sucralose distributed in
the core and shell section in an amorphous state separately due to favorable secondary interactions
such as hydrogen bonding. Compared with the electrospun HPMC–AAP nanocomposites from
single-fluid electrospinning of the core fluid, the core–shell nanohybrids were able to promote the
water absorbance and HMPC gelation formation processes, which, in turn, ensured a faster release of
AAP for potential orodispersible drug delivery applications. The mechanisms of the drug released
from these nanofibers were demonstrated to be a combination of erosion and diffusion mechanisms.
The presented protocols pave a way to adjust the properties of electrospun, cellulose-based, fibrous
gels for better functional applications.

Keywords: HPMC; coaxial electrospinning; core–shell nanohybrids; orodispersible drug delivery;
fast dissolution; poorly water-soluble drug

1. Introduction

Cellulose, as one of the most abundant natural resources, has been exploited in the
field of drug delivery for many years [1–6]. Particularly, it has a wide variety of derivatives,
which have different chemical and physical properties for different drug controlled-release
performances [7–11]. For example, acetate cellulose, an insoluble derivative, is frequently
utilized to provide a sustained drug release profile [12–14]. In sharp contrast, HPMC, as
a water-soluble drug, is a popular drug carrier for ensuring the fast dissolution of poorly
water-soluble drugs [15–18]. Meanwhile, these derivatives can be combined with other
synthetic polymers to offer multiple-phase drug controlled-release profiles, such as the
typical double-phase release that includes an initial, immediate release for easing patient
symptoms and a later, sustained release for the sake of reduced administration time [19].

However, cellulose’s functional applications have not yet been fully expanded [20–26].
On the one hand, advanced techniques in science and engineering have been able to
improve the functional performances of cellulose and its derivatives [27–33]. On the other
hand, most cellulose derivatives are insert materials, where the active ingredients and other
additives need to be encapsulated into the cellulose matrices to gain advantages such as
biocompatibility, stability and ease of use [34,35].
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Electrospinning, as an electrohydrodynamic technique, is broadly exploited to treat
cellulose and its derivatives for biomedical and other applications [36–38]. There are
numerous research publications and many review articles about this topic [39,40]. The
popularity of this interdisciplinary field is due to the usefulness of cellulose derivatives
and the ease of the preparation of nanofibers using electrospinning [41–46]. A single-step
and straightforward operation of electrospinning on a co-dissolving solution of a cellulose
derivative and a drug can bring out medicated nanoproducts with unique properties for
targeted applications, which have been demonstrated in many investigations [47–51]. What
is more, the fast developments of electrospinning in the following three directions have
further produced more and more cellulose-based, medicated products in the forms of com-
posites or hybrids. These three directions are: (1) the double-fluid coaxial, side-by-side and
tri-fluid complex processes, by which core–shell, Janus and their combined nanostructures
of cellulose can be easily prepared directly and robustly [52–55]; (2) approaching nanofibers
on a large scale using the non-needle processes or multiple-needle processes [56,57]; (3) the
reasonable combinations of electrospinning and other traditional pharmaceutical methods
and, also, the combinations of cellulose derivatives and other excipients [58–61].

In this study, with a common cellulose derivative, i.e., hydroxypropyl methyl cellu-
lose (HPMC) as the filament-forming matrix and also the drug carrier, its homogeneous
electrospun nanocomposite (containing APP from a single-fluid blending process) and its
heterogeneous core–shell nanohybrids (having an additional PVP–sucralose shell from a
modified, coaxial process) were fabricated and characterized in parallel. A well-known
poorly water-soluble drug, acetaminophen (AAP), was explored as the model’s active
ingredient [62,63]. The results show that an additional PVP–sucralose shell effectively
promotes the fast gelation of HMPC and also the dissolution of AAP, as well as masking
the poor taste of AAP for potential oral administration.

2. Results and Discussion
2.1. The Two Different Working Processes from the Same Apparatus

In an electrospinning system, the spinneret is the most vital component [64–66]. This
is not only because the electrohydrodynamic process happens around the working fluids
and high voltage convergent here, but also because its macrostructures directly determine
the nanostructures of the final products and, often, the categories of the electrospinning
processes. Figure 1a is a diagram of the elements of a typical, coaxial electrospinning
apparatus. The power supply is utilized to provide the electrical energy, the two pumps are
exploited to drive the shell and core working fluids quantitatively, the collector is used to
collect nanofibers and the spinneret is used to guide the two working fluids in the electrical
field in an organized manner. For safety, all the elements must be grounded.
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In the traditional sense, the concentric spinneret is utilized to prepare the core–shell
nanofibers [67,68]. However, in the coaxial system, when the shell fluid flow rate (f s)
is adjusted to 0 mL/h, the process is degraded to a single-fluid blending process of the
core fluid, and the final products are, correspondingly, homogeneous nanocomposites. In
contrast, when f s is larger than 0 mL/h, the final products are core–shell nanohybrids
(Figure 1b). The real implementations of the electrospinning processes are presented in
Figure 2. Figure 2a is a whole view of the coaxial electrospinning apparatus which was
used for preparing the nanohybrids F2. The collected film showed a slightly pink color. In
contrast, the film in the upper-right corner showed a purplish red. Figure 2b shows that
the spinneret was easy to connect with two pumps, one by a syringe containing the shell
fluid and the other by a highly elastic silicon tubing. An alligator clip was used to transfer
the electrical energy to the working fluids. Figure 2c–f shows digital photos of the typical
working processes. Figure 2c,d shows the processes of single-fluid and coaxial blending,
respectively. The Taylor cone was observed using a camera under a magnification of 12×.
For the single-fluid electrospinning of the core fluid, the Taylor cone, which showed a
purplish red color, was as shown in Figure 2e. The typical compound Taylor cone when the
shell fluid was pumped was as shown in Figure 2f; the purplish core fluid was surrounded
by transparent shell fluid. Within the compound Taylor cone, the shell and core fluids
were clearly separated into their own colors. However, the collected films of core–shell
nanofibers still showed a pink color, as in Figure 2a. Although this color was significantly
paler than that of nanofibers F1 from the single-fluid of core liquid shown in the upper-right
inset of Figure 2a, it gives a hint that some basic fuchsin in the core solutions might escape
to the shell section during the fast drying processes of electrospinning. In the present
experiments, both the solutes in the core and shell layers dissolved in the other layers.
This means that very small interfacial tensions existed between the shell and core working
fluids, which benefit a stable and robust continuous preparation of core–shell nanofibers,
although a little diffusion may occur during the bending and whipping processes.
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Figure 2. Digital photos exhibiting the preparation processes: (a) a whole image of the electrospinning
apparatus, the upper-right inset showing the collected nanofibers films prepared by the single-fluid
blending process of the core fluid; (b) the connection of the spinneret with the two working fluids and
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2.2. The Morphologies and Inner Structure of the Nanofibers

The SEM images of the electrospun nanocomposites F1 and the core–shell nanohybrids
are included in Figure 3. Figure 3a,b shows the surface and cross-section morphology of
the nanocomposites F1 from the single-fluid electrospinning, respectively. It is obvious
that these nanofibers were linear without any discerned beads or spindles, suggesting the
fine electrospinnability of the core HPMC working fluid [69,70]. These nanofibers had an
average diameter of 680 ± 120 nm, which was estimated by calculating the mean values of
over 50 points in the SEM images. The upper-right inset of Figure 3b shows an enlarged
image of the cross-section of the homogeneous composites F1. No phase separations were
observed for either the cross-sections or the surfaces of the nanofibers, giving a hint that
the drug AAP presented in the composites F1 in a homogeneous manner with HPMC, most
probably on a molecular level.
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Figure 3. SEM images of the generated nanofibers: (a,b) the surface and cross-section morphology of
the nanocomposites from the single-fluid electrospinning, respectively, the upper-right inset showing
an enlarged image for the homogeneous composites; (c,d) the surface and cross-section morphology
of the core–shell nanohybrids from the coaxial electrospinning, respectively, the upper-right inset
showing an enlarged image for the heterogeneous hybrids.

Figure 3c,d are the SEM images of the surface and cross-section of the core–shell
nanohybrids F2 from the coaxial electrospinning, respectively. Although the shell fluid
PVP solution had no electrospinnability, straight linear nanofibers could still be robustly
prepared. They had an average diameter of 730 ± 80 nm by estimation. The upper-right
inset of the figure shows an enlarged image of the heterogeneous hybrids, in which a core–
shell structure was observed. This is closely related to the different mechanical properties
of the shell and core sections. There were no spindles or beads on the surface of the hybrids
or their cross-sections.

The inner structures of the nanocomposites F1 and the nanohybrids F2 were detected
using TEM. The images are exhibited in Figure 4. The nanocomposites F1 showed a
gradually reduced gray level from the center of the nanofiber to its boundaries (Figure 4a).
It was the thicknesses that made this difference, giving a hint that the different parts of
nanofibers F1 had no differences in their elements and density and also no solid phase
separation, demonstrating that it was a homogeneous nanocomposite. In sharp contrast,
the core–shell hybrids F2 had a significant difference between the core section and the
shell section, as shown by the two parallel nanofibers in Figure 4b. By estimation, the core
section had a diameter of 540 ± 110 nm and a shell thickness of about 90 nm.
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2.3. The Physical Forms of Components and Their Compatibility

The measured XRD patterns of the starting raw materials, HPMC, ATP, PVP and
sucralose, and their electrospun nanocomposites F1 and core–shell nanohybrids are shown
in Figure 5. Just as anticipated, the drug AAP and sucralose had many sharp peaks in their
patterns, suggesting that they were crystalline materials originally. HPMC and PVP had no
sharp peaks but halos, indicating that they were amorphous polymers. Both the nanocom-
posites F1 and core–shell nanohybrids had no sharp peaks of the AAP and sucralose,
demonstrating that they were converted into amorphous, polymer-based composites. The
nanofibers F1 were homogeneous composites containing HMPC and AAP. The core and
shell sections of the core–shell nanofibers F2 were composed of homogeneous core com-
posites of HMPC and AAP and a homogeneous shell composite of PVP and sucralose, in
general, a hybrid of the core section and shell section.
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The ATR-FTIR spectra of the starting raw materials (HPMC, ATP, PVP and sucralose)
and their different electrospun products are included in Figure 6. The comparisons of
sucralose and AAP spectra with their composites F1 and nanohybrids F2 showed that
almost all the sharp peaks in the spectra of the raw materials greatly decreased their
intensities or totally disappeared from the spectra of the electrospun products. For example,
the characteristic peaks at 1655 cm−1 for –C=O and at 1611, 1565 and 1507 cm−1 for the
benzene ring in the spectra of AAP could not be discerned in the spectra of either the
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nanocomposites F1 or nanohybrids F2. This showed the close relationship between the
secondary interactions of the host polymeric carrier and the guest active ingredient. As
shown by their molecular formulae, a sucralose molecule has five –OH groups, whereas, a
PVP molecule has many –C=O groups; thus, hydrogen bonding is easy between them and
favors the stability of the composites in the shell sections. Similarly, an HPMC molecule
has many –OH group, whereas an AAP molecule has a –C=O group, suggesting that the
possible hydrogen bonding between them could benefit the stability of nanocomposites F1
and the core section of the core–shell nanohybrids. However, the spectra of nanohybrids
F2 had sharp peaks of 1655 cm−1 and 957 cm−1, which are characteristic peaks of PVP
and HPMC. This phenomenon clearly suggests that PVP and HPMC were organized in
the core–shell nanofibers in a separate manner, with each having their own region, i.e., a
typical hybrid material.
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2.4. The Hydrophilic Properties

Both HPMC and PVP are water-soluble, polymeric excipients broadly utilized in the
pharmaceutical industry [71,72]. However, their dissolution behaviors have differences.
PVP is very hygroscopic and can be dissolved in water all at once and, thus, is reported
to promote the dissolution of nearly 200 poorly water-soluble drugs [73,74]. In contrast,
HPMC is a hydrophilic polysaccharide, which contains partly O-(2-hydroxypropylated)
and partly O-methylated cellulose. HPMC shows adjustable solubility based on the degree
of substitution [75,76]. In this study, the HPMC was able to dissolve in water by forming a
viscous, colloidal solution.

Shown in Figure 7 are the performances of nanocomposites F1 and core–shell nanofibers
F2. When a drop of water (3 µL) was placed on their surfaces, the recession processes
showed significant differences. In 1 s, the water contact angles for F1 (Figure 7a) and
F2 (Figure 7b) were 11 and 6 degrees, respectively. After 3 s, the water droplet totally
disappeared from the surface of F2, but the angle for the HPMC–AAP nanocomposites still
remained at 8 degrees. The PVP–sucralose shell layer increased the hydrophilicity of the
fibrous films.
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(b) electrospun nanocomposites.

A punch pin with an inner hole of 10 mm, as shown in the upper-right inset of Figure 2a,
was utilized to cut circles from the electrospun films. These films were placed on the
surface of wet paper (mimicking the tongue). The behaviors of the cut circles caused by the
electrospun nanocomposites F1 and core–shell nanohybrids F2 are shown in Figure 8. The
nanocomposites F1 showed typical water absorbance and gradual gelation processes. The
purplish color was deepened, but the circle showed no significant enlargement. Meanwhile,
the purplish color was always within the residues of circle, suggesting that the HPMC gels
were able to hold the basic fuchsin well.
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The core–shell nanohybrids F2 exhibited different behaviors to nanocomposites F1
in the following aspects: (1) the circle was slightly enlarged, but the pink color was light,
which was attributed to the diffusion of basic fuchsin dissolved from the PVP–sucralose
shell sections; (2) the colors at different regions were different—some showed a slightly pink
color and some showed a deep purplish color, which was closely related to the core–shell
nanostructures; (3) the deep purplish color section self-assembled into a strange shape,
which was attributed to the movement and aggregation of the core HPMC molecules
during the gelation processes and further indicated that the HMPC molecules had a strong
capability of holding the basic fuchsin.

2.5. The In Vitro Drug Release Profiles and the Mechanisms

The in vitro drug release profiles of the electrospun nanocomposites F1 and the core–
shell nanohybrids F2 are included in Figure 9. In general, the core–shell nanohybrids F2
were able to provide a faster release effect than the nanocomposites F1. This judgement
was made based on the following aspects: (1) after five minutes, nanofibers F1 and F2
released 28.3 ± 4.3% and 34.8 ± 3.5% of the loaded AAP, respectively; and (2) 35.6 and
23.9 min were needed to release 90% of the loaded AAP for nanocomposites F1 and
nanohybrids, respectively.
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HPMC is frequently utilized both in the pharmaceutical industry and in scientific
research as a film coating agent, thickening agent, drug release modifier, drug stabilizer,
table binder and suspending ingredient in some liquid dosage forms for oral adminis-
tration [77,78]. It is well known that the drug release mechanisms of HPMC-based drug
delivery systems are often complicated. Various dynamic processes are active during
the course of the gelation, diffusion and dissolution processes. These processes are often
closely related to the viscosity of HPMC. Higher HPMC often means less erosion and
corresponding, longer time period of sustained release. In this study, the drug release data
were treated using the famous Peppas equation (Equation (1)) [79]:

P = Qt/Q0 = k × tn (1)

in which Qt and Q0 represent the drug released into the dissolution media from its carriers
at time point (t), k and n are two constants and P represents accumulative drug release
percentage. The drug release mechanisms can be judged by the value of n. It is common
knowledge that an n value smaller than 0.45 indicates a diffusion mechanism, a value larger
than 0.90 indicates an erosion mechanism and a value between 0.45 and 0.90 represents a
complex mechanism involving both diffusion and erosion.
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The regressed equation for the electrospun nanofibers is included in Figure 10. For the
electrospun nanocomposites F1, the equation is:

log(P) = 1.23 + 0.48 log(t)or P = 16.98 t0.48(R = 0.9925) (2)
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For the electrospun core–shell nanohybrids F2, the equation is:

log(P) = 1.04 + 0.68 log(t)or P = 10.96 t0.68(R = 0.9655) (3)

Thus, it is clear that AAP from the electrospun nanocomposites F1 and the core–shell
nanohybrids are all a combination of erosion and diffusion mechanisms because of an n
value between 0.45 and 0.90.

2.6. The Mechanism of the Influence of Shell PVP on the Gelatin of Core-Medicated HPMC

Although the drug release behaviors from the two types of electrospun nanoproduct
involved both diffusion and erosion mechanisms, it is obvious that the core–shell nanohy-
brids F2 were more closed to the erosion mechanism due to a value of 0.68 compared
to 0.48 for the nanocomposites F1. A schematic showing the different behaviors of the
monolithic nanocomposites F1 and core–shell nanohybrids F2 is given in Figure 11. The
replacement of a surface PVP coating in the core–shell nanohybrids F2 adds the benefit of
faster initial absorbance of water than monolithic HPMC–AAP nanofibers because of the
highly solubility and strong hygroscopicity [73,74]. This case further highlights the easier
swelling, gelation and dissolution of HPMC molecules from the core sections. Certainly,
the relatively small diameter of the core section in the core–shell nanohybrids F2 compared
to the nanocomposites F1 played a role in promoting the faster release of AAP from the
nanofibers F2. For potential orodispersible drug delivery, the faster release of the drug,
the better it is for the patients. Thus, a shell coating of PVP and sucralose makes the
electrospun core–shell hybrids a more welcome product than the electrospun nanocom-
posites F1. Incidentally, HPMC and PVP are both tasteless and odorless excipients, and,
thus, they have broad applications in traditional compressed tablets and medicated films.
However, the drug AAP has a bitter taste, which reduces the patients’ compliance. The
addition of sucralose with PVP in the shell section endows the core–shell nanohybrids with
a favorable taste, and, in turn, could improve the patients’ compliance when exploited as
oral, disintegrating films. Using the concept demonstrated here, many new, medicated
materials can be further developed through the combination of cellulose-based gels and
other types of polymer, e.g., biodegradable PLGA [80]. Particularly, those soluble polymers
with a natural source will be able to play a more and more important role in developing
new orodispersible drug delivery systems. This is because these polymers often have fine
biocompatibility, are non-toxic and have easy processability, and some of them are currently
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popular in traditional orodispersible tablets [81,82]. Certainly, the coaxial electrospinning,
side-by-side electrospinning and also the single-fluid blending processes can be combined
with traditional methods (such as casting films) for treating cellulose-based gels to offer
sustained release and multiple-phase release profiles [83–85].
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3. Conclusions

With HPMC as a key filament-forming polymeric matrix, both single-fluid blending
electrospinning and modified, coaxial electrospinning were implemented to preparing
HPMC–AAP monolithic nanocomposites F1 and core (HPMC–AAP)–shell (PVP–sucralose)
heterogeneous nanohybrids F2. Both F1 and F2 had linear morphologies without any
discerned beads of spindles on them, as demonstrated by the SEM images. TEM images
verified that F1 were homogeneous nanocomposites, and F2 were core–shell nanohybrids
containing two layers of composites. XRD results suggested that AAP presented in F1 and
F2 in an amorphous state. This was attributed to the favorable interactions between APP
and HPMC, which were demonstrated by ATR-FTIR measurements. Water contact angle
experiments and tongue-mimicking tests clearly demonstrated the differences between
F1 and F2 in their hydrophilicity and gelation processes. In vitro dissolution tests demon-
strated that the core–shell hybrids F2 were able to offer a faster release of the loaded AAP.
The drug release was demonstrated to be controlled by a complex combination mechanism
involving both diffusion and erosion. The present study shows a new way of adjusting the
properties of electrospun, cellulose-based nanofibers for better drug delivery applications.

4. Materials and Methods
4.1. Materials

Acetaminophen AAP (white powders, purity 99.8%) was obtained from Hua-Shi Big
Pharmacy (Shanghai, China). Hydroxypropyl methyl cellulose (HPMC, white powders,
2910, 5 cps, Mn = 428,000 g/mol, methoxy content 28.0–30.0%, hydroxypropoxy content
7.5–12.0%) was purchased from Shandong Fine Chemical Co., Ltd. (Jinan, China). Sucralose,
polyvinylpyrrolidone (PVP K10, Mw = 8000) dichloromethane (DCM), anhydrous ethanol
and basic fuchsin were bought from Shanghai Chemical Regents Co., Ltd. (Shanghai, China).
All other chemicals were analytical reagents. Water was doubly distilled before usage.

4.2. Preparations

The electrospinning instrument was homemade and comprised four typical parts:
one power supply, two fluid drivers, one collector and one spinneret. After some pre-
experiments, the working fluids and experimental conditions were fixed as follows. The
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core fluid contained 8.0 g HPMC and 2.0 g AAP in a mixture of DCM and anhydrous
ethanol with a volume ratio of 1:1. A 10−3 mg/mL amount of basic fuchsin was added
into the core fluids for optimizing the working processes and also exhibiting the disin-
tegrating measurement. The shell fluid contained 10.0 g PVP K30 and 2.0 g sucralose in
anhydrous ethanol.

Two types of electrospun nanofiber were fabricated. One was the monolithic, fibrous
nanocomposite (denoted as F1) from single-fluid electrospinning of the core liquid; the
other was the core–shell fibrous nanohybrid (denoted as F2) from modified, coaxial elec-
trospinning. The applied voltages were adjusted to ensure continuous spinning and that,
meanwhile, no droplets were dropped during the working processes; the values were
between 11 and 14 kV. The core fluid flow rate (f c) was fixed at 2.0 mL/h. The sheath
fluid flow rate (f s) was 0.0 mL/h and 0.5 mL/h for generating F1 and F2, respectively. The
ambient conditions were a temperature of 21 ± 4 ◦C and a relatively humidity of 52 ± 5%.

4.3. Characterizations
4.3.1. Morphologies and Inner Structures

The morphologies of electrospun nanofibers were assessed using scanning electron
microscope (SEM, Quanta FEG450, FEI Corporation, Hillsboro, OR, USA). The cross-
sections of fibers were prepared by manually breaking the fibrous strip after immersion in
liquid nitrogen for about 20 min. The inner structures were evaluated using transmission
electron microscope (TEM, JEM2200F, JEOL, Tokyo, Japan) under an applied electron
voltage of 300 kV.

4.3.2. Physical Forms and Compatibility

All the raw materials (HPMC, PVP, sucralose and AAP) and their electrospun products
F1 and F2 experienced X-ray diffraction (XRD, Bruker-AXS, Karlsruhe, Germany) tests.
Attenuated total reflectance Fourier-transform infrared (ATR-FTIR, PerkinElmer, Billerica,
MA, USA) was exploited to investigate the compatibility between the polymeric carriers
and active ingredients.

4.3.3. Properties

Water contact angle measurements and a homemade experiment on wet paper were
conducted to evaluate the fast disintegrating properties of the electrospun nanocomposites
F1 and core–shell nanohybrids F2, and the gelation processes were recorded using a camera
(PowerShot SX50 HS, Canon, Tokyo, Japan).

4.3.4. Functional Performances

In vitro dissolution tests were carried out using paddle methods according to the
Chinese Pharmacopoeia (Ed. 2020). An RCZ-8A dissolution apparatus (Tianjin University
Radio Factory, Tianjin, China) was used. Samples equivalent to 20 mg AAP were placed into
the dissolution vessels in which 600 mL physiological saline (PS) was kept at a temperature
of 37 ± 1 ◦C. The paddle rotation rate was 50 rpm. A UV–vis spectrophotometer (UV-
2102PC, Unico Instrument Co., Ltd., Shanghai, China) was used to measure the AAP
concentration at a λmax = 243 nm. All the measurements were repeated 6 times.
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