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Abstract: Any thermoset resin’s processing properties and end-use performance are heavily influ-
enced by the gel time. The complicated viscosity of resin as a function of temperature is investigated
in this work, with a particular emphasis on identifying the gel point and comprehending polymeriza-
tion. Rheology studies carried out using a plate-plate controlled stress rheometer under isothermal
conditions were used to compare three experimental techniques for figuring out an epoxy resin’s gel
point. We also look at the basic modifications that take place during polymerization. We verify the
reliability of the three strategies by including Principal Component Analysis (PCA), an unsupervised
machine learning methodology. PCA assists in uncovering hidden connections between these meth-
ods and various affecting factors. PCA serves a dual role in our study, confirming method validity and
identifying patterns. It sheds light on the intricate relationships between experimental techniques and
material properties. This concise study expands our understanding of resin behavior and provides
insights that are essential for optimizing resin-based processes in a variety of industrial applications.

Keywords: epoxy; rheology; gel point; thermoset; principal component analysis (PCA)

1. Introduction

Due to their exceptional mechanical, electrical, and thermal properties, as well as their
one-of-a-kind combination of high strength and toughness, strong adhesion to a variety
of substrates, and chemical resistance, epoxy resins have undergone extensive research
and are frequently used in a variety of industries [1]. They also exhibit good dimensional
stability and minimal shrinkage throughout the curing process [2]. Additionally, a suitable
curing agent can be added, together with various fillers and reinforcements, to change the
characteristics of epoxy resins [3].

When combined with different reinforcements like fiberglass, carbon fiber, or Kevlar,
epoxy resins are frequently used as a matrix material in the field of composite materials to
create polymer matrix composites (PMCs) with superior mechanical qualities [4,5]. Epoxy
resins are used in the electronics industry to encapsulate and protect electronic components
because of their electrical-insulating qualities [5]. Epoxy resins are employed as adhesives,
varnishes, and sealants in the construction sector due to their high bonding ability and
longevity [1].

The duration of time it takes in an epoxy resin system for the resin to transition
from a liquid to a semi-solid state is referred to as the gel time [3]. This period is critical
in setting the epoxy resin’s processing parameters and may affect the final attributes
of the cured material [6]. While a shorter gel time may result in faster curing and less
processing time, it may also limit the material’s ability to be worked [4]. A longer gel time
allows for more processing and tooling time before the resin begins to cure. Many factors,
including the type and amount of curing agent used, temperature, and the presence of
accelerators or inhibitors, can influence the gel time of an epoxy resin system [7]. Increasing
the temperature or using a more reactive curing agent, for example, can shorten the gel
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duration, whilst adding inhibitors can increase the gel period [1]. The type and amount of
fillers or reinforcement elements used in the resin can also alter the gel time [2].

The gel point of epoxy resins has been determined using a variety of experimental
methods [8]. Thermal Scanning Rheometry (TSR) has been shown to be an excellent
approach for assessing gelation time [8–11]. The following rheological procedures for
determining the gel point can be classified:

i. Determination of the crossover point of the elastic modulus (G′) and viscous modu-
lus (G

′′
), or point where the loss tangent tan δ = 1 [12–14];

ii. Maximum of the tan δ curve [15–19];
iii. The point at which tan δ becomes independent of the frequency (ω) [20,21];
iv. The moment when the viscosity of the reacting system becomes infinite [22];
v. The dependence of the relaxation modulus on a power-law relationship [23].

Additionally, methods based on dynamic mechanical analysis (DMA), where the
viscoelastic nature of the material is a key property, are frequently used to measure gela-
tion time. The maximum energy loss tangent or the modulus of elasticity increase are
extrapolated to determine the gelation period [24,25].

Dielectric Analysis (DEA) measures the polarization of a resin in an alternating electric
field, with its constraints being the sample’s restricted thickness and polar nature [8,26].
Differential Scanning Calorimetry (DSC) is another popular method for determining gela-
tion time, in which two samples of resin are measured, fresh resin after mixing with the
hardener and resin quenched immediately after gelation, and the reaction heats (∆H) are
compared to obtain the degree of conversion (α) versus time plot. The gelation time is the
moment when the quenched sample of freshly prepared resin reaches ϕ [27–29]. Lastly, ul-
trasonic methods, which measure gelation time based on high-frequency (above 20,000 Hz)
mechanical vibration damping, are also often described in the literature [30–32].

In recent years, Acebo et al. [33] used small-amplitude oscillatory shear (SAOS) meth-
ods to measure the gel time of epoxy/anhydride thermosets. Their results showed that G′,
G
′′
, and tan δ values changed over time for a sample processed at 100 ◦C with a 5 Hz fre-

quency. A notable change is observed between G′ and G
′′

at 30 min, indicating a shift from
a liquid state to a more solid form. This change, denoting gel time, is frequency-dependent.
It is more suitable to track the tan δ crossover, which can be deduced by comparing tan
δ against time across various frequencies. Whenever graphs from different frequencies
merge, it signifies a set gel time, regardless of the initial frequency. Utilizing this approach,
Acebo et al. determined the gel times for multiple samples. They also pinpointed the
vitrification or glass-transition temperature, which neared the reaction temperature.

In their research work about thermosets embedded with conductive nanoparticles [34–36],
Chapartegui et al. focused on the rheological study of nanocomposites made by dispers-
ing conductive carbon nanotubes, or CNT, within thermosetting epoxy resin bases. They
measured the viscosity prior to curing to determine the amount of CNT required to form
a continuous network and to assess the processability of the nanocomposite [34]. Within this
framework, the creation conditions for multiwall carbon nanotubes (MWCNT)/benzoxazine
buckypapers were explored [35]. Their work underscores the importance of rheology in
buckypapers and provides insights into the optimal time and temperature for a resin to per-
meate a nanoparticle network. Using SAOS evaluations, they discerned that the inclusion
of MWCNT expedited the curing time to reach the gel stage, though this acceleration dimin-
ished for higher concentrations surpassing the percolation threshold. Their comprehensive
research, heavily grounded in rheological observations, culminated in the development of
thermosets with exceptional electrical characteristics [35].

Recently, Chaloupka et al. [37] examined the simultaneous relationship between
rheological and dielectrical measurements (DEA) on Hexcel RTM6, employing a unified
system for both methods. A reusable in-mold sensor was utilized for dielectric evaluations,
and calibration was conducted considering the cable’s response. When simultaneously
analyzing dielectrical and rheological measurements during the curing process of the
epoxy resin, it was observed that the identified values for glass-transition temperature,



Gels 2023, 9, 828 3 of 15

gel point, and viscosity aligned well. This congruence can be attributed to the fluctuation-
dissipation theorem, which ties molecular dynamics to overarching mechanical properties
of macromolecules. This study indicates that the metrics obtained from both DEA and
rheology are driven by the same microscopic activities, particularly the dynamics linked
to α-relaxation modes. As a result, both methods can be employed to detect similar
phenomena, including glass transition and gel point.

In a research paper by Bekhta et al. [38], the viscosimetric and rheological behaviors
of a new epoxy resin, Tetraglycidyl ether urea of bisphenol A (TGEBUA), and its com-
posite were studied. The viscosity of the TGEBUA/Methanol system was determined
using a VB-1423 Ubbelohd capillary viscometer. Furthermore, the study explored the
rheological properties of the epoxy resin TGEBUA crosslinked with methylene dianiline
(TGEBUA/MDA). Different composites of TGEBUA/MDA/TGEMDA + TSP were also
formulated using two charges, tetraglycidyl ether of methylene dianiline (TGEMDA) and
trisodium phosphate (TSP), at varying percentages (0%, 10%, and 15%). These proper-
ties were assessed using a RHM01-RD HAAKE rheometer. The study found that various
formulated composites exhibited distinct rheological behaviors, largely influenced by the
interaction between the epoxy resin and the fillers, which affected the mobility of the
TGEBUA macromolecular chains.

HexPly® M21 (Hexcel), an epoxy resin commonly used in aeronautics, was chosen for
this study because it is a high-performance material with superior mechanical, thermal, and
chemical resistance qualities that is employed in a variety of industrial applications [29]. It is
a two-part epoxy system composed of a resin and a hardener that must be combined before
use [30]. This resin cures to generate a robust, durable composite material that is resistant
to moisture, chemicals, and extreme temperatures [31]. Its great mechanical strength is one
of its key features, making it a perfect material for use in high-stress applications such as
airplane structures and wind turbine blades [39,40].

This study aims to investigate how the complex viscosity of the resin varies with
temperature. The best method for identifying the gel point will be attempted, and after
that, we will try to comprehend the state of the matter and how polymerization works.

In addition, an unsupervised machine learning technique, the so-called Principal
Component Analysis (PCA), will be applied to confirm or infirm the reliability of the three
methods. Additionally, PCA will be used to look for patterns in order to reveal any hidden
connections between the investigated methods from one side, and the different factors
involved from another side.

2. Results and Discussion
2.1. Complex Viscosity

The complex viscosity, often denoted as η∗, is a measure used in rheology to describe
the viscous and elastic behavior of complex fluids, such as polymer melts and solutions,
when subjected to oscillatory shear deformation [41]. The loss modulus (G′) and storage
modulus (G

′′
) of a material can be used to describe its complex viscosity. The loss modulus

represents the energy lost as heat as a result of viscous dissipation, whereas the storage
modulus denotes the energy stored elastically. The complex viscosity-loss-storage moduli
relationship is a measure of the material’s viscoelastic behavior [42,43].

Figure 1 illustrates the viscosity change in the epoxy resin during isothermal curing at
a dynamic frequency of 1 rad/s. At each isothermal curing temperature, a steep rise in the
complex viscosity value is observed, indicating a phase transition from liquid to solid. The
rise in complex viscosity is guided by a Maxwell-like behavior [44]. The equation given
below models the exponential progression of viscosity across varying temperatures:

η∗(t) = η∗0 + A0exp
(

t
τn

)
, (1)

where, η∗(t) represents the complex viscosity, A0 stands as a defining parameter, while τn
signifies the relaxation of viscosity.
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The effect of shear rate in the non-linear viscoelastic regime on the epoxy resin is shown
in Figure 2. These results were obtained via an isothermal time-test rotation rheological
experiment in which the shear rate was imposed on the sample by rotation of the moving
plate of the rheometer. The isothermal temperature was set at 160 ◦C. As illustrated in
this figure, during the initial stages of the reaction, the shear-viscosity curves at various
constant shear rates exhibit minimal variation, indicating a lack of significant dependence
on shear rate for the reactive mixture. This behavior can be attributed to the Newtonian
characteristics of the low-molecular-weight precursors, which lack the capability to elongate
under shear conditions. As the reaction progresses, the formation of molecular chains
occurs. The application of shear rates induces the alignment of these molecular chains,
resulting in a shear-thinning phenomenon and a dilution effect on viscosity caused by shear
rate (referred to as shear-thinning behavior). Consequently, the viscosity of the reactive
formulation at higher shear rates is lower than that observed at lower shear rates.
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2.2. Gel Point

Several methods for calculating gel time have already been addressed. These methods
do not always generate the same outcomes and must, therefore, be compared. Three
methods are used in this section to establish the gel point of the epoxy resin. The first
method involves determining the gel point by crossing the elastic modulus G′ and the
viscous modulus G

′′
. The second is based on the crossing of tan(δ) with time for various

frequencies. The final one is based on the concept of infinite viscosity.

2.2.1. Method 1: The CrossOver Point of the Elastic Modulus (G′) and Viscous
Modulus (G

′′
)

Dynamic oscillatory measurements provide a reliable means of precisely determining
the gel time of thermosetting systems. These experiments involve monitoring the changes in
both the storage modulus (G′) and the loss modulus (G

′′
) over time using small-amplitude

oscillatory shear while maintaining a constant frequency. Figure 3 illustrates an example of
the temporal evolution of G′ and G

′′
at 160 ◦C, demonstrating their relationship with respect

to cross-linking time. The trends in storage and loss moduli changes at different isothermal
temperatures are the same. Rheological properties like G′ and G

′′
are extremely sensitive

to changes in molecular structure and phase transitions in thermosetting polymer sys-
tems [45,46]. Thermosetting polymer cross-linking can be modeled as a cluster-formation
process [47]. Micro-gels are formed during the initial phase of the reaction with branched
and partially cross-linked colloidal molecules [48]. The polymer continues to react, forming
larger clusters of varying sizes that are distributed randomly throughout the system [49].
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Figure 3. Loss modulus (G
′′
) and storage modulus (G′) at 160 ◦C and ω = 1 rad/s.

Rheologically, the thermosetting resin is in a liquid state during the early stages of
curing, and viscous behavior dominates the first part of the curing process, followed by
G
′′

> G′. Both dynamic moduli increase as the cross-link density and molecular weight
of the curing polymer system increase. An infinitely large cluster extends throughout the
system at the gel point, forming a three-dimensional continuous network and causing a
crossover of the G′ and G

′′
curves [46].

The gel point has been defined as the crossover point of G′ and G
′′

during thermoset
curing as a criterion for elasticity dominance in a reactive system [45,46,50,51].
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Figure 4 depicts gel times obtained from the crossover points of G′ and G
′′

plotted
against isothermal temperature. As shown in the graph, increasing the temperature of the
measurement causes a decrease in gel time. This is due to higher reaction rates at higher
temperatures. As expected, the gel time decreased as the rate of the crosslinking reaction
increased with temperature.
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Based on the dynamics near the critical point of gelation, predictions for the frequency
dependence of the components of the complex modulus G∗(ω) = G′(ω) + i G

′′
(ω) have

been made. At the gel point, the frequency dependence of the G′ and G
′′

can be represented
by a power law over a wide angular frequency range: G′ ∼ G

′′ ∼ ω∆ where, ∆ = 0.385,
the loss factor (tan δ = G
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/G′) becomes frequency independent. The crossover of the

loss-factor curves versus time at various frequencies can be used to determine the gel
time [20,21].

2.2.2. Method 2: The Point at Which tan (δ) Becomes Independent of the Frequency (ω)

In this part, the loss factors intersection method, which is considered a multiple-frequency
experiment, is used to validate the accuracy of gel-time calculations based on single-frequency
experiments (the G′-G

′′
crossover method). Figure 5 shows the time evolution of the tan (δ)

curves obtained at various frequencies at 160◦ C in a coincidence domain.
The loss factor starts to increase at the start of the reaction due to an increase in

dynamic viscosity. After the initial scatter and loss-factor increase, tan δ begins to decrease
at a later reaction stage as the elastic part of the complex modulus (G′) operates due to the
formation of elastically active cross-links before the gel point [46]. According to the results
of the loss factors intersection method, gelation times at 160 ◦C are localized at 59 min.
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2.2.3. Method 3: The Moment When the Viscosity of the Reacting System Becomes Infinite

To determine the gel time, time-test oscillation measurements were performed at
isothermal conditions in a temperature range from 160 ◦C to 220 ◦C. During the measure-
ment, the viscosity initially increases slowly as the cross-linking reaction begins. However,
as the reaction proceeds and the network formation accelerates, the viscosity increases
more rapidly. Eventually, it reaches a point where it becomes practically infinite, indicating
the gelation of the epoxy polymer.

The gel time is determined by analyzing the viscosity-time curve and it is identified as
the moment when the viscosity abruptly increases and reaches a plateau or significantly
deviates from the initial viscosity value [52]. Many studies have used the infinite-viscosity
approach to analyze the gelation behavior of various thermoset resins such as epoxy, phe-
nolic, and polyester resins, as well as to explore the influence of various curing conditions
on the gel point. Table 1 shows the values produced using each approach for the various
temperatures and at a shear rate of 1 s−1.

Table 1. The gel times obtained at different temperatures according to the different methods—The
parameters of the Arrhenius law of gel times.

ω Temperature (◦C)

1 s−1

160 170 180 190 210

Gel Time (min) Activation Energy
(J/mol)

Pre-Exponential
Factor

Regression
Coefficient

Method 1 56 38 25 14.5 6.5 9170.6 2 × 10−6 0.9961

Method 2 56 36 24 15 6.5 8745.3 6 × 10−6 0.9965

Method 3 59 39.5 27 19 9 7830.2 5 × 10−5 0.9994

Method 1: Determination of the crossover point of the elastic modulus (G′) and viscous modulus (G
′′

). Method 2:
The point at which tan (δ) becomes independent of the frequency (ω). Method 3: The moment when the viscosity
of the reacting system becomes infinite.
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The corresponding gel time for every method follows a thermodependency according
to an Arrhenius rule [53] and is given by the equation:

tgel = Ae(Ea/RT) . (2)

The three methods generate fairly comparable results in terms of duration, activation
energy, and the pre-exponential constant of the Arrhenius law, as shown in Figure 6.
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Based on the findings presented in Table 1, it can be deduced that there is no significant
distinction between the time at which G′-G

′′
crossover occurs and the point of intersection

of tan(δ) in relation to the overall time scale of gelation at each temperature. As a result,
the validity of using the G′-G

′′
crossover as the gel-time reference point is confirmed, and

the moment when the G′ and G
′′

curves intersect can be utilized as the gelation point for
the epoxy formulation. In order to confirm or infirm the aforementioned findings, we
attempted to apply PCA to the dataset of Table 1. Here, PCA is applied to seek a more
sophisticated statistical comparision between the three methods, and probably to decipher
any hidden patterns in the conventional bi-dimensional perspective.

2.3. PCA Results

To establish the statistical validity of comparing the three explored methodologies,
PCA was performed to examine the distribution of the data. Moreover, the application of
PCA enhanced our comprehension of the dataset by revealing patterns that were previously
obscured when examining the data solely from a two-dimensional perspective. Figure 7
illustrates the PCA bi-plot depicting the comparison of the three adopted methods for
calculating the gel point. The initial two PCs demonstrated the cumulative variance, which
accounted for 100% of the total variance (Figure 7a). This phenomenon can be attributed
to the limited number of approaches employed within the examined population, as only
three methods are engaged. The factors exhibited contributions ranging from 11% to 16%
towards PC1, suggesting that they exerted comparable influences on the various approaches
under investigation. A distinct pattern of dominance has been seen for the gel duration
at a temperature of 170 ◦C in PC2 (52.466%; Figure 7b). The activation energy (Ea) made
a significant impact, accounting for 24.432% of the overall result (Figure 7b). A modest
result was obtained for the gel duration at a temperature of 180 ◦C, with a value of 14.649%
(Figure 7b). It is worth noting that the temperatures mentioned above represent the range
within which the investigated material underwent the curing process. This observation
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suggests that the curing range of the material has a significant impact on the gel-point
approach, which exhibits substantial loadings (either positive or negative) along PC2. For
the individuals, the three techniques exhibit significant dispersion along the PCA bi-plot,
as depicted in Figure 7a. Method 1 had a moderate negative influence along PC1 and a high
positive influence along PC2. In contrast, Method 2 demonstrated a moderate negative
influence along PC1 and a high negative influence along PC2, positioned significantly
opposite to Method 1. It is noteworthy that Method 1 exhibited a significant correlation
with Ea, but Method 2 did not have a substantial beneficial impact on any of the factors.
In accordance with the patterns observed in the variables, a majority of the latter had a
substantial beneficial impact in relation to Method 3. The observed phenomenon of a
high clustering of various variables using this method can be attributed to the significant
representativeness of the first principal component (PC1) for the entire dataset. Therefore,
it was observed that Method 3 exhibited a positive correlation with PC1, but PC2 had a
minimal impact on the results.
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Most of the varied patterns found in respect to individuals and variables can be
explained using PC1 alone. However, along PC2, certain tendencies can also be seen. In
light of the aforementioned assertion, the substantial loading of PC2, seen in both Method
1 and Method 2, would suggest the significance of the curing temperature in relation to
this particular material, as well as its impact on Ea. The influence of Method 3 cannot
be maintained. Hence, the latter is more likely to be influenced by the other elements.
It is noteworthy that the pre-exponential factor has been tightly plotted along Method
3. From a kinetic perspective, factor A has been empirically identified as an indicator of
molecular-collision frequencies. In contrast to Ea, the dependence of the rate constant on
temperature is significant, as described by the Arrhenius law [54]. Based on the pronounced
positive trend observed in the plot of Method 1, as well as the occurrence of a significant
shift in temperature at 170 ◦C along PC2, it can be concluded that this approach is more
sensitive to physical alterations in the polymer under investigation, which are influenced
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by variations in temperature. In contrast, the divergent trends observed in the plots of
Method 2 suggest that this approach exhibits a limited sensitivity to the polymer’s physical
changes induced by temperature.

3. Conclusions

The rheological behavior of epoxy resin was examined using a plate-plate controlled
stress rheometer, revealing complex viscosity changes across a 1–200 rad/s frequency range.
Three isothermal methods were compared to determine the resin’s gel point. The first
highlighted the independence of the loss factor at the gel point from frequency, noting
tan(δ) = 0.6. The second, a multi-frequency approach, validated gel times from single-
frequency experiments, observing no significant time discrepancy for G′-G

′′
crossover. The

third method identified when the reacting system’s viscosity became infinite, with results
from all methods indicating a thermodependent gel time adhering to the Arrhenius rule.

PCA was used to confirm the consistency of these methods. Three main components
captured variance tied to curing range and method sensitivity. Method 1 was the most
sensitive to temperature changes, while Method 2 displayed limited reactivity. Method 3’s
influence stemmed primarily from the first principal component.

Given these insights, future research incorporating numerical simulations could vali-
date and bolster these experimental findings on epoxy resin behavior.

4. Materials and Methods
4.1. Sample Preparation

As previously stated, the epoxy matrix used in this study is commonly used in aero-
nautics. The HexPly® M21 epoxy resin with hardener is provided on silicon paper. Before
being studied, the resin is held at −18 ◦C (far below the glass-transition temperature Tg
of −4 ◦C) to freeze the mobility of the macromolecular chains and avoid curing processes.
Before beginning any studies, the resin is scraped from the paper, and clean samples mea-
suring 0.55 g are prepared using a “Mettler Toledo” precision balance. These samples are
then refrigerated until they are ready for use.

4.2. Rheological Experiments
4.2.1. Time-Test Oscillation

Time-test oscillation measurements were performed at isothermal conditions in the
temperature range from 160 ◦C to 220 ◦C. Frequency scans are performed using four
selected frequencies (1, 10, 100, and 200 s−1), allowing for scans at varying speeds (25 s). To
prevent excessive deformations and material loss, the fluid material is initially subjected
to low stress. Since the original stress is no longer sufficient for deformation, the stress
is increased when the material becomes rigid. The applied stress is adjusted for different
levels of conversion. The preliminary stress is set to 10 Pa, and the optimal stress at the end
of crosslinking is either 2000 Pa or 4000 Pa, depending on the temperature used. Three tests
at each temperature are carried out to verify the results. A ramp is used to implement the
stress change in stages. These tests are extremely sensitive to preparation quality, including
weighing accuracy, speed, and efficiency.

4.2.2. Time-Test Rotation

Measurements were carried out at shear rates of 1, 10, 100, and 200 s−1, which were
imposed on the sample by rotation of the moving plate of the rheometer under isothermal
conditions.

4.3. Dynamic Rheometer

The rheometer used in our tests is a TA instruments ARG2 Rheometer [55]. The ARG2
model is used to characterize complicated fluids. It has many capabilities, including for
dynamic and steady-state testing, temperature control, and viscoelastic tests. The ARG2 is
outfitted with cutting-edge software that offers a user-friendly interface and real-time data
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processing. It is composed of various components, such as a test station, a control computer,
and an air drier. The test station houses the upper and lower plates, which are linked to the
control computer and computer. The ARG2 software includes the ability to process all of
the rheological quantities measured during the test, making it a comprehensive tool for
fluid analysis.

The rheological measurements are carried out on a constant-stress-rate rheometer
using a plan-plan arrangement using disposable plates of 25 mm diameter. After heating
the oven to the specified test temperature, the clearance is adjusted accordingly. It is critical
to ensure that no light is seen between the plates to ensure appropriate contact. The torque
is then set by executing the appropriate command. This step is essential for conducting
exact tests. The entire procedure takes around 15 min and must be completed every time
the plates are changed. Following that, the spacing between the upper and lower plates
is set to 1 cm. At this point, the oven is opened, and the pre-measured 30 g sample is
placed between the plates, leaving an 8-micrometer space. The sample’s thickness is narrow
enough to preclude any liquid flow caused by gravity. Since the material being introduced
is in a liquid condition, the upper plate slides swiftly to the appropriate gap distance,
avoiding any harm to the device. The precision of the measurements is largely dependent
on the quality of the sample preparation and efficient sample placement.

4.4. PCA Overview

PCA is predominantly employed as a method for reducing the dimensionality of data
in a wide range of disciplines, such as statistics, data analysis, and machine learning. PCA
is a technique that enables the transformation of data with a high number of dimensions
into a lower-dimensional space, while preserving a significant portion of the original
data’s variability [56,57]. By employing data visualization techniques in this dimensionally
reduced environment, one can acquire valuable insights regarding the inherent structure of
the data, distinguish clusters, and identify probable outliers. The tool has been extensively
utilized for data preprocessing, prior to implementing statistical validation techniques,
and PCA may be employed to eliminate correlated features and mitigate multicollinearity.
This contributes to enhancing the efficacy and comprehensibility of statistical models. In
certain instances, PCA can be employed to ascertain the primary attributes within the
dataset by assessing the extent to which each principle component (PC) contributes to the
overall variance [56,57]. This process can help in the identification and selection of pertinent
features for further investigations. The exact outcomes of certain statistical models rely
on the fulfillment of key assumptions, including linearity, independence of variables, and
constant variance, and PCA can be utilized to evaluate the linearity and independence of
variables via the examination of a scatter plot of data points inside the PC space. Although
PCA is not typically employed for model validation, the reduced-dimensional data derived
from PCA can be utilized in statistical models to facilitate the validation process [56,58].
Assessing model performance, identifying overfitting, and evaluating assumptions made
by the statistical model are potential benefits that can be derived using this approach.
In certain instances, PCA has the potential to enhance the interpretability of statistical
analyses by diminishing data complexity and emphasizing the most influential features. In
other terms, it has the capacity to unveil concealed patterns that are rendered indiscernible
using traditional statistical methodologies. PCA has numerous applications in mechanical
analyses, enabling the extraction of useful insights, reduction of data dimensionality,
and enhancement of the efficiency of diverse mechanical engineering processes. It has
been commonly applied in mechanical analyses for many purposes such as vibration
analysis [59], design optimization [58], process control and quality monitoring [60], and
model reduction in finite element analysis (FEA) [57]. To the best of our current knowledge,
there has been no previous attempt involving the application of PCA to statistically validate
methods for determining the gel point.
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4.5. PCA Adopted Methodology

PCA results were obtained using XLSTAT 2014 software, employing a methodology
similar to that employed by Murshid et al. [61]. The technique under consideration is an
unsupervised machine learning approach that relies on data-driven methods to reduce the
size of a given dataset. The application of this reduction technique has resulted in improved
visualization of a specific phenomenon. It allows for the exploration of hidden knowledge
via the examination of correlations, both negative and positive. Additionally, it enables the
assessment of the representativeness of the Principal Components (PCs) to the population
under study. The jth principal component matrix (Fi) is calculated by multiplying the
unit-weighting vector (Uj) by the original data matrix M, which has dimensions m × n.
The variables in this study are denoted as m, representing the number of variables, and n,
representing the number of datasets. This notation is consistent with other studies [62–65]:

Fi = UT
j M = ∑

i=0
Uji Mi , (3)

where U is the loading coefficient and M is the data vector of size n. The variance matrix
M(Var(M )) is obtained by projecting M to U, should be maximized, and is as follows:

Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU , (4)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
, (5)

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be

expressed as:
Var (M) = UTcov (M) U , (6)

The Lagrangian function can be defined by performing the Lagrange multiplier
method as follows:

L = UT , (7)

L = UTcov(M)U − δ
(

UTU − 1
)

, (8)

For Equation (8), “UTU − 1” is considered to be equal to zero since the weighting
vector is a unit vector. Hence, the maximum value of var(M) can be calculated by equating
the derivative of the Lagrangian function (L) in respect to U as follows:

dL
dU

= 0 , (9)

cov(M)U − δU = (cov(M)− δI)U = 0, (10)

where

δ: eigenvalue of cov(M);
U: eigenvector of cov(M) (loading coefficient).
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