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Abstract: AI and ML have emerged as transformative tools in various scientific domains, including
hydrogel design. This work explores the integration of AI and ML techniques in the realm of
hydrogel development, highlighting their significance in enhancing the design, characterisation, and
optimisation of hydrogels for diverse applications. We introduced the concept of AI train hydrogel
design, underscoring its potential to decode intricate relationships between hydrogel compositions,
structures, and properties from complex data sets. In this work, we outlined classical physical
and chemical techniques in hydrogel design, setting the stage for AI/ML advancements. These
methods provide a foundational understanding for the subsequent AI-driven innovations. Numerical
and analytical methods empowered by AI/ML were also included. These computational tools
enable predictive simulations of hydrogel behaviour under varying conditions, aiding in property
customisation. We also emphasised AI’s impact, elucidating its role in rapid material discovery,
precise property predictions, and optimal design. ML techniques like neural networks and support
vector machines that expedite pattern recognition and predictive modelling using vast datasets,
advancing hydrogel formulation discovery are also presented. AI and ML’s have a transformative
influence on hydrogel design. AI and ML have revolutionised hydrogel design by expediting
material discovery, optimising properties, reducing costs, and enabling precise customisation. These
technologies have the potential to address pressing healthcare and biomedical challenges, offering
innovative solutions for drug delivery, tissue engineering, wound healing, and more. By harmonising
computational insights with classical techniques, researchers can unlock unprecedented hydrogel
potentials, tailoring solutions for diverse applications.

Keywords: hydrogel design; artificial intelligence; machine learning

1. Introduction: The Concept of AI in Hydrogel Design

Hydrogels are three-dimensional, crosslinked polymer networks that can absorb
and retain large amounts of water or biological fluids. They have gained considerable
attention in the medical field due to their unique properties, such as high-water content,
biocompatibility, and the ability to be tailored to specific applications. The term “hydrogel”
is derived from the combination of “hydro”, meaning water, and “gel”, indicating a semi-
solid, jelly-like state. This defining characteristic of hydrogels allows them to mimic the soft
and hydrated environment of living tissues, making them highly compatible with biological
systems. They can be fabricated from polymer chains linked by physical interactions or
chemical bonds, allowing for precise control of the degradation rate, porosity, and release
profile [1]. Moreover, hydrogels can undergo self-assembly using self-complementary
amphiphilic peptides, enabling customisation to achieve optimal geometry for implantation
or injection. These appealing features position hydrogels as attractive therapeutic delivery
materials, with the potential to encapsulate agents within their water-swollen network.
Hydrogels are extensively employed as drug delivery vehicles due to their capacity to
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encapsulate and release therapeutic agents in a controlled and sustained manner. This
controlled drug release enhances treatment efficacy, reduces side effects, and improves
patient compliance, particularly in chronic conditions [2]. Additionally, certain hydrogel
types possess inherent antibacterial properties [3]. In tissue engineering, hydrogels serve
as scaffolds for growing cells and regenerate damaged or lost tissues [4]. Their high-water
content and biocompatibility mimic the natural extracellular environment, facilitating
cell growth, proliferation, and differentiation [5]. This is particularly significant in the
development of artificial organs and in repairing damaged tissues [4]. Moreover, hydrogels
play a vital role in wound care and healing. They can maintain a moist environment,
which accelerates the wound-healing process, reduces the risk of infection, and minimises
scarring [6].

Hydrogels are the material of choice for contact lenses due to their water-retaining
properties, ensuring comfort and optical clarity for the wearer [7].

Other applications of hydrogels include diagnostic assays and biosensors [8]. Their
ability to undergo volume changes in response to specific analytes, such as glucose or pH,
makes them valuable components in various diagnostic applications [8].

While the potential applications of hydrogels in the biomedical and pharmaceutical
fields are vast, designing hydrogels with precise properties tailored to each application is a
complex endeavour. Researchers must consider factors such as biocompatibility, mechani-
cal strength, degradation rates, and drug release profiles. The interplay of these variables
makes hydrogel design challenging and often reliant on time-consuming trial-and-error
approaches. Big data generated from experiments, simulations, and computational calcula-
tions has provided potential for applying data-driven methodologies in material science,
which shows promise for expediting the discovery and design of new materials. This
approach harnesses the power of vast datasets generated through experiments, simulations,
or observations to gain insights, make predictions, and guide decision-making in the field
of materials science and in the context of hydrogel design.

In the 1990s and early 2000s, the integration of AI in hydrogel research began with
the application of computational simulations and modelling techniques. Researchers
started to use computational methods to simulate hydrogel behaviour under various
conditions, aiding in predicting swelling properties, mechanical responses, and drug release
kinetics. Hydrogel theoretical modelling is based on continuum mechanical concepts such
as balancing laws, kinematics, and constitutive equations. The Flory–Rehner theory, which
explains the swelling equilibrium of gels [9], represents a suitable example. As a result of
the advancement of computing capabilities, the computational science paradigm gained
enormous popularity. Simulations on both the macro- and micro-scales, such as those using
the finite element and volume methods, are now possible [10].

These early efforts laid the groundwork for using AI to unravel the complex interac-
tions within hydrogel networks.

As Machine Learning (ML) algorithms advanced, the hydrogel research community
recognised the potential of AI to revolutionise material discovery. The utilisation of ML
techniques gained traction. These approaches enabled researchers to analyse large datasets,
correlate structure–property relationships, and accurately predict hydrogel behaviour. AI
algorithms can analyse patient-specific data, such as genetic information, metabolism rates,
and medical histories [11], to design hydrogels that deliver drugs with precision. For
instance, in cancer treatment, AI-driven hydrogel formulations can adapt drug release
rates based on the tumour’s response to therapy, minimising side effects and maximising
effectiveness [12]. AI models can simulate and predict the behaviour of hydrogels under
various conditions, saving researchers significant time and resources. For example, they
can predict how a hydrogel will swell, degrade, or release drugs in response to changes
in pH, temperature, or biological factors [13]. AI-driven material design can identify
the ideal combination of polymers, crosslinkers, and additives to create hydrogels with
specific mechanical, thermal, and chemical properties. This accelerates the development
of hydrogels tailored for applications such as wound healing, contact lenses, or tissue
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scaffolds. High-throughput screening, guided by AI algorithms, enables the evaluation of
vast libraries of hydrogel formulations [14]. This accelerates the discovery of hydrogels
with desirable properties, reducing the time needed to bring innovative materials to market.

Therefore, this era marked a significant shift from traditional empirical methods to
data-driven approaches, offering faster and more informed decision-making in
hydrogel design.

Artificial Intelligence (AI) represents a field that involves the development of algo-
rithms and models that enable computers to mimic human intelligence. In hydrogel
development, AI offers a novel approach to tackle the challenges associated with hydrogel
properties and performance by leveraging data-driven insights, predictive modelling, and
optimisation techniques. These challenges are multifaceted and include tailoring hydrogels
for precise applications, optimising their mechanical and chemical characteristics, and
navigating the complex interplay of material variables. First and foremost, AI expedites
the process of discovering new hydrogel formulations. Traditional methods often involve
extensive trial-and-error experimentation, consuming considerable time and resources. In
contrast, AI-driven algorithms can rapidly analyse vast datasets, predict material proper-
ties, and recommend optimal compositions. This acceleration of the research process is
particularly crucial in the field of hydrogels, where materials must meet precise criteria for
applications in medicine and biology.

AI also offers a level of precision and customisation that was previously unattainable.
Researchers can input specific characteristics they desire in a hydrogel—such as mechan-
ical strength, porosity, or biodegradability—into ML models. AI then provides tailored
recommendations for material compositions and processing techniques to achieve these
desired properties. This level of precision is invaluable when designing hydrogels for
diverse applications, from drug delivery systems to tissue engineering scaffolds.

Hydrogel research is inherently complex, involving intricate relationships among
various factors. AI can help in this aspect by handling multidimensional data effectively. It
identifies patterns and correlations that may elude traditional analysis, allowing researchers
to make informed decisions about material design.

In addition, AI integration offers cost and resource efficiencies. It reduces the need for
extensive laboratory experimentation, thus saving costs related to materials, equipment,
and personnel. Moreover, it minimises material wastage, aligning research practices with
environmental sustainability goals.

Interdisciplinary collaboration is another hallmark of AI-driven hydrogel research.
This technology bridges the expertise of materials scientists, chemists, biologists, and
computer scientists. Their collective knowledge and insights foster innovative solutions to
complex challenges in hydrogel development.

AI also enables data-driven insights that can lead to breakthroughs and innovations.
By analysing extensive datasets, it uncovers hidden patterns and relationships, guiding
researchers toward novel solutions that might otherwise remain undiscovered.

In the pursuit of personalised medicine, AI plays a pivotal role by recommending
hydrogel formulations tailored to individual medical needs. This approach promises
more effective treatments with fewer side effects, marking a significant advancement in
patient care.

The integration of AI in hydrogel development encompasses various stages, each
contributing to a holistic framework for material design and optimisation. The AI begins
by acquiring comprehensive datasets containing information about hydrogel compositions,
fabrication methods, and resulting properties. These datasets serve as the foundation for
training AI models. Preprocessing techniques ensure data quality, handling missing values
and normalising variables for accurate analyses.

ML algorithms, a subset of AI, play a pivotal role in hydrogel development. Su-
pervised learning techniques, such as regression and classification, enable the prediction
of hydrogel properties based on input variables—unsupervised learning, like cluster-
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ing and dimensionality reduction, aids in identifying patterns and relationships within
complex datasets.

AI facilitates the creation of predictive models that map input parameters to specific
hydrogel outcomes. These models can forecast properties like swelling behaviour, mechan-
ical strength, and drug release kinetics, allowing researchers to make informed decisions
during material design.

AI-driven optimisation methods, including genetic algorithms and Bayesian opti-
misation, guide the search for optimal hydrogel formulations within vast chemical and
structural spaces. These techniques expedite the identification of compositions that meet
predefined performance criteria.

While the potential of AI in hydrogel development is vast, several challenges war-
rant consideration. The availability of high-quality, well-curated datasets is crucial for
training robust AI models. Data privacy, the integration of domain knowledge, and the
interpretability of AI-generated models are also critical concerns that researchers must
address. Additionally, the complexity of hydrogel behaviour, which arises from intri-
cate molecular interactions and crosslinking mechanisms, poses a challenge for accurate
predictive modelling.

We would like to point out that this manuscript was prepared with the help of AI-
assisted technology. We think that the text’s clarity and coherence were considerably
improved via AI-driven language technologies. With the use of these tools, grammatical
and structural errors were found and fixed, ensuring that our article meets the strictest
requirements for scientific writing. This open disclosure demonstrates our commitment
to rigorous and high-level scientific communication. We have given this manuscript the
spirit of originality and correctness, which was made possible in part by the cooperation of
human expertise and AI-driven language technologies.

This review aims to provide a comprehensive understanding of the potential benefits
of AI in designing hydrogels. By shedding light on this innovative approach, we hope to
inspire continued research and development, paving the way for more effective targeted
therapies that can improve patient outcomes and transform the research of hydrogels in
the future.

2. Physical and Chemical Methods for Designing Hydrogels

Hydrogels, three-dimensional polymeric networks capable of retaining large amounts
of water, have emerged as remarkable materials with a diverse range of applications,
particularly in the biomedical and pharmaceutical fields [15]. Their unique properties, such
as high water content, biocompatibility, and tuneable mechanical characteristics, make
them invaluable for various purposes.

In biomedicine, hydrogels have gained prominence as versatile materials for drug
delivery, tissue engineering, wound healing, and diagnostics [15]. These hydrophilic
networks can be engineered to mimic the extracellular matrix [16], providing an ideal
environment for cell growth and tissue regeneration [17]. Moreover, their ability to encap-
sulate and release bioactive compounds in a controlled manner has revolutionised drug
delivery systems.

In pharmaceutical sciences, hydrogels find applications in drug formulation, where
they serve as carriers for poorly water-soluble drugs, enhancing their bioavailability. Ad-
ditionally, their mucoadhesive properties make them suitable for mucosal drug delivery,
opening avenues for novel drug administration routes.

Hydrogels can be prepared using both natural and synthetic materials as precursors.
Raw materials, such as cellulose, gelatine, alginate, chitosan (CS), and silk fibroin, are
directly sourced from nature and are known for their biocompatibility and bioactive prop-
erties. On the other hand, synthetic materials, including polymethylmethacrylate (PMMA),
polyurethane (PU), poly(N-isopropylacrylamide) (PNIPAM), poly(lactic acid) (PLA), and
poly(lactic-co-glycolic acid) (PLGA), are produced through chemical reactions, offering the
advantage of tuneable mechanical properties.
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While homopolymeric hydrogels serve a specific purpose, their functionality can be
limited. Other biomaterials, such as bioceramics, are often incorporated to enhance the
mechanical strength, biodegradability, and/or stimuli-responsiveness of hydrogel matrices.
The combination of various biomaterials enables the creation of multifunctional hydrogels
that cater to diverse biomedical applications.

This section refers to the physical and chemical methods employed in the design and
development of hydrogels. Understanding these methodologies is crucial for harnessing the
full potential of hydrogels in addressing contemporary challenges in healthcare and drug
delivery. We explore the techniques utilised to tailor hydrogel properties, ensuring they
meet the stringent requirements of various biomedical and pharmaceutical applications.

2.1. Physical Crosslinking

Physical crosslinking is versatile for creating hydrogels without chemical reactions
or covalent bonds. Instead, physical crosslinking relies on non-covalent interactions to
form a 3D network, resulting in hydrogels with reversible and dynamic properties. This
method offers several advantages, such as ease of preparation, injectability, and the ability
to respond to external stimuli, making it suitable for various biomedical and pharmaceutical
applications [18].

Some polymers exhibit a temperature-dependent sol-gel transition, forming a gel at a
specific temperature range. As the temperature is lowered, these polymers undergo self-
assembly, forming a hydrogel network [19]. Common polymers that undergo temperature-
induced gelation include thermoresponsive polymers like poly(N-isopropylacrylamide)
(PNIPAAm). These hydrogels are particularly attractive for drug delivery applications, as
they can respond to changes in body temperature and release drugs accordingly.

Ionic gelation involves using ionic interactions between charged polymer chains and
counterions to form a hydrogel network [20]. Examples include alginate and chitosan
hydrogels, which can form crosslinks through interactions with divalent cations like cal-
cium ions [20]. The reversibility of these ionic interactions makes them suitable for cell
encapsulation and tissue engineering applications.

Certain amphiphilic polymers can self-assemble into hydrogels through hydrophobic
interactions or hydrogen bonding [21]. Lipid-based hydrogels, for instance, can sponta-
neously form through the self-assembly of amphiphilic molecules into nanostructures,
resulting in a hydrogel network [22]. These hydrogels have applications in drug delivery,
as they can encapsulate hydrophobic drugs and release them in a controlled manner.

Photocrosslinking involves using light to induce the crosslinking of photoreactive
molecules or polymers [23]. Photocrosslinkable hydrogels are prepared with photoinitiators
that initiate the crosslinking reaction upon exposure to specific wavelengths of light [23].
This method offers precise spatial and temporal control over hydrogel formation, making it
valuable for tissue engineering and 3D bioprinting applications.

The freeze–thaw method involves the freezing and thawing of a mixture containing
different components, typically polymers and other functional materials, to create a gel-like
structure [24]. The process starts by preparing a solvent solution or suspension of the
desired components. This mixture is then subjected to a freezing step, where it is cooled to
a low temperature, usually below the solvent’s freezing point. During freezing, ice crystals
form and the solute molecules, including polymers and other functional materials, are
excluded from the ice lattice, increasing their concentration in the unfrozen portion of the
solution [25]. After freezing, the sample is thawed, allowing the ice crystals to melt and the
components to redistribute in the liquid phase. This process promotes the formation of a
gel network as the polymers and other functional materials interact and crosslink, creating
a three-dimensional structure that retains a large amount of solvent within its matrix [24,25].
The freeze–thaw cycles can be repeated multiple times to improve the gel’s stability and
mechanical properties. By adjusting the composition and freezing–thawing conditions,
it is possible to control the hydrophilic/hydrophobic character and other properties of
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the resulting hybrid hydrogel [25]. This process creates physical crosslinks between the
polymer chains, producing a hydrogel.

2.2. Chemical Crosslinking

Chemical crosslinking is a versatile and widely used method for obtaining hydrogels
with excellent mechanical stability and structural integrity [26]. This process involves the
formation of covalent bonds between polymer chains, resulting in a stable 3D network
that retains water and forms a hydrogel. Covalent bonds are a type of chemical bond that
occurs when two atoms share electrons to achieve a stable electron configuration [27]. In
the context of hydrogel formation, when hydrogel precursors, such as polymer chains
or monomers, contain functional groups that are capable of forming covalent bonds, a
chemical crosslinking process can be initiated [28]. During this process, these functional
groups react with one another, establishing covalent bonds between the polymer chains or
monomers [29].

Chemical crosslinking is especially suitable for creating hydrogels with controlled
porosity, swelling behaviour, and degradation rates, making them ideal for various biomed-
ical and pharmaceutical applications.

In the radical polymerisation method, monomers containing double bonds are poly-
merised by a crosslinking agent and a radical initiator. The polymerisation reaction gener-
ates free radicals, which initiate the chain-growth polymerisation, forming covalent bonds
between monomer units [30]. Typical radical initiators include azo compounds and per-
oxides. The polymerisation process can be carried out in solution or in the presence of a
template to create 3D structures [30].

The Michael addition reaction involves the reaction between a Michael donor, typ-
ically a thiol group (-SH), and a Michael acceptor, such as an α,β-unsaturated carbonyl
compound [31]. This reaction results in the formation of a stable covalent bond, creating
crosslinks between polymer chains. Hydrogels formed through Michael’s addition are
highly biocompatible and find applications in drug delivery, tissue engineering, and wound
healing [32].

Click chemistry refers to a set of high-yield and selective reactions that can efficiently
form covalent bonds. Common click chemistry reactions include azide-alkyne cycloaddi-
tion, thiol-ene, and tetrazine-norbornene reactions [33]. These reactions are advantageous
for hydrogel formation due to their rapid reaction kinetics, high yields, and bioorthogo-
nality, meaning they can be performed in the presence of biological molecules without
interfering with cellular processes [34].

Schiff base formation is a chemical reaction between an aldehyde and a primary
amine or hydrazine group. This reaction results in the formation of a covalent imine bond,
creating crosslinks between polymer chains [35]. Schiff-based hydrogels are often used
for drug delivery, as they can release drugs in response to specific environmental cues or
triggers [35].

Bioprinting for hybrid hydrogels represents a cutting-edge approach that combines the
advantages of both bioprinting and hybrid hydrogel materials [36]. Hybrid hydrogels blend
or incorporate multiple materials, such as natural and synthetic polymers [36] or inorganic
nanoparticles [37], to create novel hydrogel formulations with enhanced properties. When
combined with bioprinting, this approach allows for the precise and controlled deposition
of complex 3D structures containing living cells and multifunctional materials [38]. In
bioprinting for hybrid hydrogels, the careful selection of bioinks and hybrid materials is
crucial. The choice of bioinks is essential to ensure cellular viability, biocompatibility, and
mechanical stability [39]. Hybrid materials may include natural polymers like collagen and
gelatine, synthetic polyethylene glycol (PEG) and polyvinyl alcohol (PVA), and inorganic
nanoparticles like calcium phosphate or gold nanoparticles [40].

Hybrid hydrogels offer a wide range of tuneable mechanical properties. By incorporat-
ing different materials with varying stiffness or elasticity, it is possible to create hydrogels
that mimic the mechanical properties of native tissues [41]. This is especially important in
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tissue engineering, where bioprinted constructs must match the target tissue’s mechanical
environment for proper cell function and growth [41].

Hybrid hydrogels can be functionalised with bioactive molecules, growth factors,
or peptides to promote cell adhesion, proliferation, and differentiation [42]. Bioprinting
allows for the precise spatial distribution of these bioactive components within the hydrogel,
creating complex microenvironments that can support tissue regeneration and repair.

One of the critical challenges in bioprinting tissue constructs is the lack of vascularisa-
tion. Hybrid hydrogels offer a promising solution by incorporating bioactive factors that
promote the formation of blood vessels (angiogenesis) [43]. Additionally, hybrid hydrogels
can be engineered to contain channels or networks to facilitate the diffusion of nutrients
and oxygen, enabling the survival of bioprinted cells within thick tissue constructs [44].

Bioprinting for hybrid hydrogels is a rapidly evolving field with immense potential
for advancing tissue engineering, regenerative medicine, and drug development. As re-
searchers continue to innovate in materials science, bioprinting technologies, and tissue
engineering, the applications of bioprinted hybrid hydrogels are expected to expand, ulti-
mately leading to groundbreaking advancements in healthcare and personalised medicine.
For instance, in regenerative medicine, bioprinted hybrid hydrogels are anticipated to revo-
lutionise the development of patient-specific organoids [45], facilitating drug testing and
disease modelling with unparalleled accuracy. Moreover, these hydrogels are set to play a
pivotal role in orthopaedics, enabling the creation of custom-designed scaffolds for bone
and cartilage repair [46]. In the realm of dermatology, they hold the potential to transform
wound healing, with hydrogel-based dressings tailored to individual patient needs [47].
In the pharmaceutical industry, bioprinted hydrogels are envisioned to streamline drug
formulation testing, ensuring it becomes safer and more effective [48]. Beyond healthcare,
these hydrogels are also expected to find applications in environmental science, such as
in the removal of contaminants from water sources [49]. As these innovations gather
momentum, they are poised to reshape multiple facets of our lives, promising a future
where healthcare and various industries benefit from the limitless potential of bioprinted
hybrid hydrogels.

The choice of method depends on the desired properties, functionality, and intended
application of the hydrogel. Each technique offers unique advantages and can be tailored
to suit specific research or medical needs.

3. Numerical and Analytical Methods in Hydrogel Design

Numerical and analytical methods play crucial roles in the design and characterisa-
tion of hydrogels. They provide insights into the complex behaviours, properties, and
interactions within hydrogel systems.

3.1. Numerical Simulations

Numerical simulation methods have emerged as invaluable tools in hydrogel design,
revolutionising how researchers approach the development and analysis of these versatile
materials. Hydrogels, three-dimensional networks of hydrophilic polymers that can absorb
and retain large amounts of water, have found applications in various fields, from biomed-
ical engineering and drug delivery to tissue regeneration. As the demand for hydrogels
with tailored properties continues to grow, the integration of computational techniques has
become essential for expediting the design process, optimising performance, and predicting
behaviour under varying conditions.

The intricate nature of hydrogels, influenced by factors such as polymer composition,
crosslinking density, and environmental conditions, presents challenges in accurately
characterising and predicting their behaviour solely through traditional experimental
approaches. Numerical simulations bridge this gap by providing a virtual laboratory where
researchers can explore the intricate interplay between molecular structures, mechanical
forces, fluid dynamics, and other critical variables that dictate hydrogel performance. These
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simulations offer a deeper understanding of hydrogel behaviour, enabling informed design
decisions and accelerating the development of hydrogel-based solutions.

Some standard numerical simulation methods used for hydrogel design include Finite
Element Analysis (FEA), Computational Fluid Dynamics (CFD), Molecular Dynamics
simulations (MD), Monte Carlo Simulations, etc.

FEA is widely used to simulate the mechanical behaviour of hydrogels, including
their deformation, stress distribution, and responses to external forces [50,51]. It helps
us understand how hydrogels will behave in different loading conditions and assists in
designing hydrogels with specific mechanical properties for applications such as tissue
engineering, drug delivery, and medical devices.

CFD is used to model the flow of fluids through hydrogel structures [52]. It is impor-
tant for hydrogels used in drug delivery systems or tissue engineering scaffolds where
transporting nutrients, oxygen, and waste products is critical [53]. CFD simulations can pro-
vide insights into mass transport phenomena and guide the design of hydrogel structures
with optimised fluid flow patterns.

MD simulations are used to study the behaviour of individual molecules within
hydrogel networks [54]. They provide insights into the interactions between polymer
chains, solvent molecules, and solutes at the atomic level. MD simulations can predict
swelling behaviour [55], diffusion rates [56], and biomolecule interactions.

Monte Carlo methods are often employed to model the statistical behaviour of hydro-
gel systems [57]. These simulations help predict the macroscopic properties of hydrogels
based on the behaviour of individual molecules or particles within the system [57]. They
can be applied to study phenomena such as the swelling equilibrium, polymer chain
conformations, and gel network structure.

Hydrogels are often subjected to multiple physical phenomena simultaneously, such
as mechanical deformation, fluid flow, and heat transfer. Multiphysics simulations combine
different numerical approaches to model these coupled effects and provide a comprehensive
understanding of hydrogel behaviour [58] in complex environments such as tumours [59].

Numerical simulations can be coupled with optimisation algorithms to search for the
best combination of material properties or structural configurations that meet specific
design criteria. This approach is valuable for tailoring hydrogel properties to achieve
desired outcomes.

Some simulations combine multiple techniques, such as coupling MD with FEA, to si-
multaneously capture different aspects of hydrogel behaviour. These hybrid methods allow
a comprehensive understanding of complex interactions within hydrogel systems [60].

These numerical simulation methods expedite the design process and enable re-
searchers to explore a vast design space, optimise material properties, and predict hy-
drogel behaviour across various environments. In combination with experimental data,
inverse modelling techniques refine simulations and enhance the accuracy of predictions.
Furthermore, the fusion of numerical simulations with optimisation algorithms empow-
ers researchers to identify optimal hydrogel compositions and structures that align with
specific performance criteria.

3.2. Analytical Methods

The design of hydrogels involves a multifaceted approach that relies heavily on
analytical methods to characterise their physical, chemical, and mechanical properties.
These methods not only aid in understanding the fundamental behaviour of hydrogels
but also drive the optimisation and tailoring of their properties for specific applications.
This article delves into the pivotal role of analytical methods in hydrogel design, from
characterisation techniques to advanced imaging modalities.

Analysing the chemical composition of hydrogel precursors and networks is crucial
for understanding their structure–property relationships. Fourier-transform infrared spec-
troscopy (FTIR) [61] and nuclear magnetic resonance (NMR) spectroscopy [62] provide
insights into functional groups and molecular structures within hydrogel matrices. These
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methods allow researchers to verify the successful incorporation of desired monomers and
crosslinkers and monitor the progress of polymerisation reactions.

Mechanical properties heavily influence the performance of hydrogels in various
applications. Compression testing, tensile testing, and rheological analysis quantify param-
eters like compressive strength, Young’s modulus, and viscosity [63]. These data guide
the selection of suitable hydrogel formulations for specific uses, ensuring that mechanical
properties align with intended functions.

Hydrogels’ ability to absorb water and swell is a fundamental characteristic that impacts
applications such as drug delivery and wound dressings. Swelling behaviour is studied by
immersing hydrogels in different solvents and measuring weight changes over time [64]. An-
alytical balances and swelling ratio calculations provide insights into hydrogel responsiveness
to environmental changes, influencing design choices for optimal performance.

Microscopic analysis techniques like scanning electron microscopy (SEM) [65] and
atomic force microscopy (AFM) [66] allow researchers to visualise hydrogel surfaces and
internal structures. These images reveal information about pore size, distribution, and
interconnectedness, which are crucial for applications involving cell adhesion, growth, and
the diffusion of therapeutic agents [67].

Thermal properties impact hydrogel stability and behaviour at different temperatures.
Differential scanning calorimetry (DSC) [68] and thermogravimetric analysis (TGA) [69]
enable the assessment of glass transition temperatures, melting points, and thermal degra-
dation profiles. Such data aid in determining suitable processing conditions and the
temperature ranges within which hydrogels maintain their integrity.

Analytical methods are pivotal in studying drug release kinetics from hydrogel ma-
trices. UV-Vis spectroscopy [70] and high-performance liquid chromatography (HPLC)
monitor the concentration of released substances over time. These data are crucial for
designing hydrogel-based drug delivery systems with controlled and sustained release
profiles [71].

Recent advancements have introduced sophisticated imaging methods such as con-
focal microscopy and magnetic resonance imaging (MRI) to further probe hydrogel be-
haviour [72]. These techniques allow the in-depth visualisation of hydrogel interactions
with cells, tissues, and drugs, providing insights into real-time responses and interactions.

Statistical Data Analysis

Statistical data analysis involves applying various statistical techniques to process,
interpret, and draw meaningful conclusions from experimental data. In hydrogel design,
statistical analysis plays a crucial role in understanding the relationships between different
variables, optimising formulations, and ensuring the reproducibility of results. Statistical
data analysis methods are applied at various stages of hydrogel design; see Figure 1.

Before conducting experiments, researchers use statistical tools to design experiments
effectively. Techniques like Design of Experiments (DOE) help to determine which vari-
ables to control, which to manipulate, and how many experiments to perform to gather
sufficient data.

Statistical analysis starts with the collection of data from experiments. These data
can include information about hydrogel composition, structure, mechanical properties,
swelling behaviour, drug release profiles, and more.

Descriptive statistics provide a summary of the collected data. Measures like mean,
median, standard deviation, and range give an overview of the central tendency and
variability of the data.
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Researchers use correlation analysis to identify relationships between different vari-
ables. For example, it can reveal if there is a correlation between the composition of the
hydrogel and its mechanical strength [73].

Regression models help establish mathematical relationships between variables. Re-
searchers can use linear or nonlinear regression to predict one variable based on the values
of others. This is useful for predicting hydrogel behaviour under different conditions [74].

Analysis of Variance (ANOVA) assesses the variance between different groups or
conditions. It helps determine if the variations observed in the data are significant and
whether they are due to manipulated variables or random chance [75].

Principal Component Analysis (PCA) is a dimensionality reduction technique that
transforms complex data into a lower-dimensional space. It can help identify patterns and
trends in multi-dimensional data sets, making it useful for analysing complex hydrogel
datasets [76].

Multivariate analysis involves the analysis of multiple variables simultaneously to
uncover hidden patterns and relationships that might not be apparent in individual stud-
ies [77].

Statistical methods are employed to ensure the quality and consistency of hydrogel
production. Control charts, process capability analysis, and six sigma methodologies help
maintain the desired quality standards.

Statistical analysis assesses the reliability and reproducibility of hydrogel properties
allowing the calculation of confidence intervals, the assessment of experimental errors, and
the determination of the precision of measurements.

Researchers use statistical optimisation techniques to find the optimal combination
of hydrogel parameters that yield the desired properties. This is particularly useful in
fine-tuning hydrogel formulations for specific applications.

Visualising data through plots, graphs, and charts helps us to understand trends and
patterns intuitively. Visualisation tools (scatter plots, line charts, bar charts, heatmaps, 3D
surface plots, radial charts, box plots, principal component analysis plots) enhance the
communication of results and aid in decision-making.

Statistical tests, such as t-tests [78] or chi-square tests [79], are used to test hypotheses
and determine whether observed differences between groups are statistically significant.

In hydrogel design, statistical data analysis aids in making informed decisions, opti-
mising formulations, understanding the effects of variables, and ensuring the reliability
of results. By applying appropriate statistical techniques, researchers can uncover in-
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sights that guide the development of hydrogels with tailored properties for a wide range
of applications.

4. Leveraging Artificial Intelligence in Hydrogel Design

Leveraging AI in hydrogel design involves utilising advanced computational tech-
niques to optimise and accelerate the development of hydrogel materials with specific
properties and functionalities. AI-driven approaches revolutionise conventional trial-and-
error methods, enabling rapid and informed material design. This leads to the development
of hydrogels better tailored for diverse applications in medicine and biology [80]. Below, we
present some expanded details and explore how AI is applied to the design and selection
of hydrogels.

In the case of material design and selection, AI algorithms can predict and optimise
hydrogel properties based on desired characteristics. ML models analyse large datasets
of material properties to guide the selection of polymers, crosslinkers, and additives for
specific applications. In addition, ML models can predict hydrogel behaviours, such as
swelling ratios, mechanical strength, and degradation rates, based on formulation and
environmental conditions.

AI can perform virtual screenings of vast chemical spaces to identify potential monomers,
crosslinkers, and reaction conditions for synthesising hydrogels with desired properties,
reducing the need for extensive experimental trial and error.

Also, AI-driven optimisation algorithms can enhance the hydrogel synthesis process
by adjusting parameters such as temperature, pH, reaction time, and swelling to maximise
yield and desired properties. For example, Islamkulov et al. used AI-supported optimisa-
tion applications (multilayer neural network sigmoid function model) for determining the
swelling kinetics of hydrogel networks. In addition, the results of swelling behaviour under
different experimental conditions, such as different crosslinker concentration temperatures
and salt solutions, provided a deeper understanding of the physicochemical properties
of the prepared hydrogels [81]. An important parameter for achieving a reproductible
hydrogel is the gelation kinetics. AI models can predict hydrogel gelation kinetics by
analysing the kinetics of polymerisation reactions, aiding in controlling gelation time and
achieving reproducible results [82].

AI-enabled image analysis and spectroscopic techniques assist in the characterisa-
tion of hydrogel structures, porosity, and mechanical properties, ensuring quality and
consistency in production. These analyses can be performed by using advanced imaging
techniques such as scanning microscopy or NMR spectroscopy.

AI algorithms can assess the biocompatibility and functionality of hydrogels for
specific biological applications, guiding the design of hydrogels for drug delivery, tissue
engineering, and wound healing. Boztepe and colleagues [12] introduced an innovative
hydrogel for the controlled release of doxorubicin. This research addressed a notable gap
in the exploration of AI-driven hydrogel systems. Their study revealed the remarkable
performance of the AI-based model in accurately predicting the drug release behaviour
of the hydrogels they developed. These findings underscore the significance of such
investigations in advancing novel materials while building upon empirical knowledge.

AI-driven data analysis can reveal previously unnoticed patterns (correlations between
components, optimal manufacturing conditions, material interactions, performance over
time, cost-effective formulations, biological response) and relationships within hydrogel
datasets, leading to the discovery of novel hydrogel formulations and applications. These
unnoticed patterns are often buried within vast datasets and can be challenging for humans
to discern. AI’s strength lies in its ability to sift through immense amounts of data, and to
make predictions or recommendations based on these findings.

Another essential aspect of the research and development of hydrogels is the number
of experimental iterations required. AI can accelerate hydrogel development, leading to the
faster translation of hydrogel-based technologies, from research to practical applications.
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AI-driven materials informatics platforms organise and analyse hydrogel-related
data, facilitating collaboration and knowledge-sharing among researchers. Also, AI can
help design hydrogels with tailored properties for specific patient needs, such as wound
dressings or drug delivery systems.

AI-driven predictive models assist in predicting hydrogel performance under different
regulatory conditions, aiding in compliance with safety and efficacy standards.

Integrating AIs into hydrogel research and development streamlines processes; it acceler-
ates innovation and enhances the capabilities of hydrogels for diverse biomedical applications.

5. Machine Learning Techniques in Hydrogel Development

ML techniques have sparked a paradigm shift in the realm of hydrogel development.
These sophisticated computational tools are reshaping how researchers approach materials
design and expediting the entire innovation lifecycle of hydrogels. By harnessing the
power of data-driven insights and predictive modelling, ML techniques have established
themselves as indispensable assets at various crucial stages of hydrogel development,
paving the way for accelerated discovery, enhanced precision, and the creation of novel
and tailored hydrogel materials.

5.1. Machine Learning Subsets

ML subsets can be applied to various hydrogel research and development aspects,
offering innovative solutions and accelerating progress in this field. ML consists of sev-
eral subsets or branches [83], each with its own focus and techniques. Some of these
subsets include:

Supervised Learning: In hydrogel research, supervised learning involves training
a model on labelled data, where inputs (e.g., polymer type, crosslinking density) are
associated with desired outputs (e.g., swelling ratio, degradation rate). This approach
enables the prediction of hydrogel properties based on known relationships, aiding in
efficiently screening potential formulations and optimising synthesis conditions [84].

Unsupervised Learning: Unsupervised learning techniques like clustering can uncover
hidden patterns within complex hydrogel datasets. By grouping similar hydrogels based
on structural and functional attributes, researchers can identify novel categories or classes
of hydrogels with distinct behaviours, facilitating targeted investigations and customised
designs [85].

Semi-Supervised Learning: When hydrogel datasets have limited labelled samples,
semi-supervised learning combines labelled and unlabelled data. This approach can
enhance predictions by leveraging the broader dataset, providing valuable insights into
hydrogel behaviour even with a scarcity of labelled samples.

Reinforcement Learning: Hydrogel design can benefit from reinforcement learning
by treating it as a sequential decision-making process. Algorithms can optimise synthesis
parameters over multiple iterations to achieve the desired properties, such as mechanical
strength or drug release profiles, while considering the feedback received from previous
experiments [86].

Deep Learning: Deep neural networks, a subset of AI [87], can capture intricate
relationships between input variables and hydrogel properties. By training on a diverse
range of hydrogel compositions and experimental outcomes, deep learning models can
predict complex behaviours, guiding the design of new hydrogel formulations.

Transfer Learning: Transfer learning allows models pre-trained on one hydrogel
dataset to be fine-tuned for a different application. For instance, a neural network initially
trained to predict swelling behaviour in one type of hydrogel can be adapted to predict
degradation in another, saving time and computational resources [88].

Generative Adversarial Networks (GANs): GANs can aid in the design of new hy-
drogel structures by generating molecular configurations that meet specific performance
criteria. This approach is promising for creating unique hydrogel formulations optimised
for biomedical applications [89].
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Applying these ML subsets to hydrogel research offers a multidimensional approach
to understanding, designing, and optimising hydrogel materials for diverse biomedical,
pharmaceutical, and industrial purposes. A schematic of AI-ML context and some of the
application areas in the field of hydrogels are shown in Figure 2.
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5.2. Machine Learning Algorithms
5.2.1. Random Forest

RF stands out as a powerful and versatile ML algorithm that has revolutionised the
field of hydrogel development [10]. Built upon the principles of ensemble learning, RF
offers a sophisticated solution for tackling complex challenges in materials design, property
prediction, and optimisation. Its unique characteristics make it an invaluable asset in
pursuing innovative and tailored hydrogel materials.

At its core, RF is a collection of decision trees that operate collectively as a cohesive unit.
Each decision tree is constructed using a random subset of the available data and features,
making them diverse and distinct [90]. This diversity is a crucial strength of RF, enabling
the model to capture a wide range of relationships within the data, from simple to complex.
When a prediction is required, each decision tree contributes its output, and the final result
is determined by aggregating these outputs—usually through voting for classification
tasks or averaging for regression tasks (Figure 3). This ensemble approach enhances RF’s
accuracy, stability, and robustness, enabling it to handle the noisy or incomplete datasets
that often characterise hydrogel research.

RF’s ability to handle high-dimensional data and complex interactions is advantageous
in hydrogel development. As researchers work with intricate combinations of variables—
from monomer types and crosslinking ratios to environmental conditions and desired
material properties—RF excels at identifying non-linear relationships and interactions
that could be challenging to discern through traditional methods. By analysing these
relationships comprehensively, RF aids researchers in predicting how changes in one or
more variables may impact the final hydrogel properties, thus guiding more informed and
efficient decision-making.
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Moreover, RF offers a degree of interpretability that differentiates it from other ML
techniques. It can provide insights into feature importance, revealing which variables
contribute most significantly to the model’s predictions. This feature importance analy-
sis in hydrogel research is invaluable for uncovering the key factors influencing specific
material properties or behaviours. By identifying the most influential parameters, re-
searchers can focus on fine-tuning these aspects of hydrogel design to achieve the desired
outcomes effectively.

The RF method was recently applied for the hypothesis that polysaccharide hydrogels
may feature fundamental separation criteria relevant to the permeability of compounds
across the Gram-negative bacterial cell envelope, and that such permeability data could be
used for predicting antibiotic accumulation in such bacteria [91]. Applying contemporary
ML tools to the in vitro data, the same authors reported the first data on in bacterio
accumulation of aminoglycosides and sulphonamides—essential classes of antibiotics used
to treat Gram-negative infections. Expanding the investigations to antibiotic activity against
highly relevant Gram-negative species gave evidence that in vitro permeability data may
allow the exclusion of inactive substances at an early stage of antibiotic development [91].

5.2.2. Artificial Neural Network

Artificial Neural Networks (ANNs), inspired by the human brain’s neural structure,
excel at capturing intricate patterns in large datasets [83]. In hydrogel research, ANNs
can model complex hydrogel–property relationships, allowing for accurate predictions
of material behaviours. ANNs have been employed to optimise hydrogel formulations,
predict drug release kinetics, and even simulate hydrogel–cell interactions, accelerating the
understanding of hydrogel functionality.

For example, Brahima et al. used an ANN to model the nonlinear, multivariable,
and complex drug delivery behaviour of poly(NIPAAm–co–AAc) IPN hydrogel systems.
The developed ANN model was used to efficiently predict the drug release behaviours of
hydrogels [92].

5.2.3. Support Vector Machines

Support Vector Machines (SVM) are a supervised learning method used for classi-
fication and regression tasks [93]. In hydrogel development, SVM can classify hydrogel
formulations based on their properties or predict properties based on known compositions.



Gels 2023, 9, 845 15 of 22

SVM aid in identifying relevant features that influence hydrogel performance, guiding
researchers to prioritise specific components for achieving desired outcomes.

5.2.4. Deep Neural Networks

Deep Neural Networks (DNNs) can predict hydrogel properties based on their molec-
ular structures [83,94]. By training on a dataset of known hydrogel compositions and
their corresponding properties, DNNs can learn complex relationships between molecular
features and hydrogel behaviour. This can aid in predicting properties like mechanical
strength, swelling behaviour, and drug release profiles for new hydrogel formulations.
DNNs can also be used for optimising hydrogel synthesis parameters. By setting up the
DNN as an optimisation algorithm, it can iteratively suggest modifications to the formula-
tion based on desired property outcomes. This can accelerate the process of finding optimal
synthesis conditions.

5.2.5. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) excel at analysing visual data, making them
helpful in analysing hydrogel images, such as microstructure images captured through
microscopy. CNNs can identify features, patterns, and structures in these images, providing
insights into the internal structure of hydrogels [94].

In the context of 3D-printed hydrogels, CNNs can analyse the printing process and
optimise printing parameters. By learning from 3D printing data, CNNs help the user
adjust the printing speed, material deposition rate, and other variables to achieve the
desired printing outcomes [95]. For example, a deep learning model using CNN was used
to generate a model that differentiated between excellent and poor hydrogel prints. The
CNN model was found to classify the bad and good images with an accuracy of 93.51%.
The model achieved a validation accuracy of 90.244% [96]. Jin et al. [68] developed an
anomaly detection system to classify imperfections for hydrogel-based bioink based on
convolutional neural networks. Images were processed as small image patches for grid,
gyroid, rectilinear, and honeycomb shapes. This research envisions high-quality tissue
composition through real-time autonomous correction in the 3D bioprinting process [97].

CNNs can assist in designing microfluidic channels for hydrogel synthesis. By consid-
ering fluid flow dynamics, mixing efficiency, and gelation behaviour, CNNs can suggest
optimised channel geometries for efficient and controlled synthesis.

CNNs can be employed to analyse and characterise the surface features of hydrogels.
This includes identifying surface roughness, pore size distribution, and other topographical
aspects influencing hydrogel performance.

Also, this algorithm can aid in quality control by identifying defects or inconsistencies
in hydrogel products. This can ensure that the synthesised hydrogels meet the desired
specifications and perform as expected.

The versatility of the above-mentioned algorithms can be extended. Combining some
of the above-mentioned can aid researchers in identifying the most relevant variables
among a large pool of options. This streamlines hydrogel development by focusing on
the most impactful factors, reducing experimentation time and resources. For example,
Pluronic F127, Pluronic F68, and Methocel K4M created and characterised enemas that
deliver rectal protein. The concentrations of various polymers were utilised as input values
to correlate with the final properties of the hydrogel using FormRules version 4.03, a
commercial hybrid artificial intelligence tool platform that combines ANNs and fuzzy
logic technologies. It is possible to assess the effects of each polymeric component in the
hydrogel composition. For instance, it was discovered that F127 affected mucoadhesion
and syringeability [98].

In a recent study conducted by Boztepe et al., ANNs were used to predict doxorubicin
delivery from pH- and temperature-responsive poly(N–Isopropyl acrylamide-co-Acrylic
acid)/Poly(ethylene glycol) (poly(NIPAAm-co-AAc)/PEG) interpenetrating polymer net-
work (IPN) hydrogel [12]. In the same study conducted by Boztepe et al., derivates of
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SVM were used to predict doxorubicin delivery from pH- and temperature-responsive IPN
hydrogel [12].

Another study employed random forests, Gaussian process, and support vector ma-
chines as ML models to predict the cardiomyocyte (CM) content following the differ-
entiation of human-induced pluripotent stem cells (hiPSCs) encapsulated in hydrogel
microspheroids and to identify the main experimental variables affecting the CM yield.
The models were built to predict two classes, sufficient and insufficient, for CM content on
differentiation day 10. The best model predicted the sufficient class with an accuracy of
75% and a precision of 71%. This study showed that we can extract information from the
experiments and build predictive models that could enhance the cell production by using
ML techniques [99].

In a novel study, Li. et al. showed a combinational approach to generate a structurally
diverse hydrogel library with more than 2000 peptides and evaluated their corresponding
properties. The authors combined algorithms with the best precisions (54%, 57%, and
62% for RF, logistic regression, and gradient boosting, respectively, at the 50% recall). The
authors correlated chemical variables and quantitative structure–property interactions with
the self-assembly behaviour, and they were effective in identifying key structural elements
influencing hydrogel formation [100].

Moreover, many of these algorithms can be combined for hydrogel synthesis. In a
recent work, a CNN regression method was used to predict the Young’s modulus and
Poisson’s ratio of BG-COL composites. First, 2000 images of BG-COL microstructures were
generated. Then, the mechanical properties of the BG-COL composite were calculated using
the finite element simulation. This numerical simulation software obtained data that were
used to train a CNN regression model for predicting the mechanical properties of BG-COL
based on its microstructural image. The authors demonstrated that the accepted CNN
regression model could predict the mechanical properties of BG-COL. Hence, it can aid in
overcoming the challenges of predicting these properties with traditional homogenisation
methods. This work could guide the design of BG-COL and other composite hydrogels [50].

Zhu et al. used DNN and 3D CNN to reveal the implicit relationship between the
network structure and mechanical properties of hydrogels to predict mechanical properties
from different network structures. A modelling method for a single-network hydrogel
network, that is, a self-avoiding walk network model which approximates the real polyacry-
lamide (PAAm) hydrogel structure at a mesoscopic scale, was proposed. After, the authors
developed a DNN based on MLP and a 3D CNN containing the physical information of the
network and utilised them to predict the nominal stress–stretch curves of hydrogels under
uniaxial tension. By having a dataset of 2200 randomly generated network structures of
PAAm hydrogel and their corresponding stress–stretch curves, the authors trained and
evaluated the performance of the two models [94].

The selection of machine learning algorithms in hydrogel development is a dynamic
and data-driven process. Researchers must consider the specific objectives, data types, and
desired outcomes when choosing the most appropriate and particular machine learning
algorithm or technique. This adaptability and versatility make AI a powerful tool in
advancing the development of hydrogels for a wide range of biomedical applications.

6. Conclusions and Future Perspectives

Hydrogel-based strategies hold great promise and offer customisable solutions for
various clinical scenarios. Hydrogels have immense promise for transforming hard and
soft tissue treatments, but their successful implementation requires overcoming various
obstacles through continued research, collaboration, and regulatory compliance.

Numerical simulations offer a virtual playground where hydrogel properties can be
tailored, refined, and fine-tuned, creating a synergy between computational and experi-
mental methodologies. As the field of hydrogel design continues to evolve and advance,
the integration of numerical simulations can expand the frontiers of what is achievable
with these remarkable materials.
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Looking ahead, the fusion of AI with hydrogel development holds immense promise.
Advanced AI techniques, including deep learning and reinforcement learning, will likely
push the boundaries of predictive accuracy and material optimisation. Collaborations be-
tween materials scientists, chemists, and AI experts will foster interdisciplinary innovation,
leading to the discovery of novel hydrogel formulations with tailored functionalities.

Across the hydrogel landscape, ML’s transformative influence is undeniable. As re-
searchers strive to design hydrogels with specific properties and functionalities, traditional
methods often entail time-consuming trial-and-error approaches. In contrast, ML tech-
niques are potent engines for pattern recognition, data analysis, and predictive modelling.
They enable researchers to navigate the complex interplay of numerous variables—such
as hydrogel composition, processing parameters, and end-use requirements—by gen-
erating comprehensive insights from large, intricate datasets. This capability propels
hydrogel development beyond the boundaries of conventional experimentation, allowing
researchers to extract valuable knowledge from raw data and make informed decisions
with unprecedented efficiency. The continued collaboration between materials scientists,
chemists, and AI/ML experts is instrumental in advancing hydrogel design. Together,
they can harness the power of data-driven approaches, tackle complex problems, and
create innovative hydrogel-based solutions that have a profound impact on healthcare and
biomedical applications.

ML’s impact is particularly profound in optimising hydrogel formulations. By rapidly
evaluating an extensive range of chemical compositions and structural arrangements,
ML algorithms guide researchers towards promising hydrogel candidates for specific
applications. This ability to traverse multidimensional parameter spaces accelerates the
identification of optimal formulations, expediting the path from conceptualisation to tan-
gible hydrogel prototypes. Furthermore, ML techniques empower researchers to predict
hydrogel properties with remarkable accuracy, sparing them the need for resource-intensive
trial iterations. This predictive prowess shortens development timelines and empowers
researchers to fine-tune hydrogel properties to precise specifications—a critical advan-
tage in tailoring materials for diverse applications, from drug delivery systems to tissue
engineering scaffolds.

Integrating ML techniques into hydrogel development represents a fundamental shift
from conventional approaches to a dynamic, data-centric methodology. ML’s capacity to
handle complexity, recognise intricate patterns, and optimise outcomes positions it as an
indispensable tool in the arsenal of modern hydrogel development. As the boundaries
of ML continue to expand, its synergy with hydrogel research is poised to reshape the
trajectory of biomaterials innovation.

As ML continues to evolve, advanced techniques like deep learning and reinforce-
ment learning are promising for further pushing push the boundaries of hydrogel re-
search. Integrating domain knowledge into ML models and addressing challenges such
as data scarcity and interpretability will be crucial for realising the full potential of ML in
hydrogel development.

In conclusion, integrating ML techniques such as RF, ANN, SVM, and LR has revo-
lutionised the field of hydrogel development. These tools expedite the discovery process,
optimise material properties, and pave the way for innovative applications in drug delivery,
tissue engineering, and diagnostics. As ML technology advances, it is poised to reshape the
landscape of hydrogel research, unlocking new possibilities and accelerating advancements
in biomaterials science.

Even though incorporating AI into hydrogel design has opened a new era of precision
and efficiency, significant challenges persist, necessitating innovative solutions and inter-
disciplinary collaboration. As we mentioned, AI models rely heavily on data. In hydrogel
design, comprehensive and accurate datasets can be elusive. Materials scientists, chemists,
and AI experts must collaborate to curate high-quality data [101,102].

Successful hydrogel design demands input from chemistry, biology, materials science,
and AI. Effective cross-disciplinary collaboration is essential but can be challenging. Hydro-
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gel properties are influenced by numerous factors. Modelling these interactions accurately
remains a challenge [101,102].

As AI-driven hydrogel design advances, ethical concerns surrounding data privacy,
bias in algorithms, and intellectual property rights become more prominent. Addressing
these issues transparently and ethically is critical to maintaining trust and integrity in
research. Transitioning from small-scale AI-optimised designs to large-scale production is
challenging, particularly for medical and industrial applications [101,102].

Hydrogels developed using AI may face regulatory hurdles, particularly in the medical
field. However, demonstrating their safety and efficacy to regulatory bodies is a complex
and resource-intensive process [101,102].

As AI continues to evolve, its integration with hydrogel research holds the promise of
unlocking new capabilities and applications, revolutionising the field of biomaterials and
shaping the future of medical science and technology.
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