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Abstract: Bone and cartilage tissue play multiple roles in the organism, including kinematic support,
protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inher-
ently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these
crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores
the urgent imperative to investigate therapeutic strategies capable of effectively addressing the
challenges associated with their degeneration and damage. In this context, the emerging field of
tissue engineering and regenerative medicine (TERM) has made important contributions through
the development of advanced hydrogels. These crosslinked three-dimensional networks can retain
substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels ex-
hibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate
bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of
each patient, providing a promising alternative to conventional surgical procedures and reducing
the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack
of mechanical strength, inconsistent properties, and low-cell viability. This review describes the
structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels,
including their classification, synthesis, and biomedical applications. Following this, we review the
most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.

Keywords: tissue engineering and regenerative medicine (TERM); advanced hydrogels; bone
regeneration; extracellular matrix (ECM); scaffolds; stem cells (SCs)

1. Introduction

The skeleton is one of the largest organs in the human body, and it performs pivotal
functions such as providing structural support for the body′s shape and facilitating move-
ment. It also plays a crucial role in protecting vital organs and actively contributes to the
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overall homeostasis of the entire body by storing calcium and phosphate and harboring the
bone marrow [1,2]. Articular cartilage represents a specialized type of connective tissue
found in diarthrodial joints covering the surface of bones to allow almost frictionless joint
movement and support load transfer, all while protecting the subchondral bone [3]. Bone
and cartilage diseases, including bone fractures, tumors, osteoporosis, or osteoarthritis, sig-
nificantly burden global healthcare systems and the quality of life for affected individuals.
These conditions often lead to chronic pain, functional impairment, and reduced mobility,
affecting millions of people worldwide [4–6]. There are instances in fracture healing where
the process of bone regeneration faces challenges, particularly when fractures are too exten-
sive to undergo natural regeneration. For example, up to 13% of tibia fractures are linked to
delayed union or, in severe cases, fracture nonunion [7,8]. The conventional approach for
treating patients whose bone treatments have been lengthy or unsuccessful is to use bone
grafting, which ranks second among the most transplanted tissues in the United States,
either as an allograft or an autograft [9]. However, there are issues with bone grafting. A
more sustainable, less invasive, long-term healing strategy is consequently required to help
treat fractures that have been damaged, and bone graft substitutes are being developed [10].
The following main approaches to bone restoration have been established, depending
on the severity of the trauma: synthetic substitutes alone; scaffolds combined with active
molecules; nanomedicine; cell-based combination products with different cells from various
sources; biomimetic fibrous and nonfibrous substitutes; magnetic field and nano-scaffolds
with stem cells; bioactive porous polymer/inorganic composite; and biomaterial-based 3D
cell-printing substitutes [11–17]. The election of the different techniques is based on the
healing potential and particular requirements of each case.

Langer and Vacanti defined tissue engineering in the early 1990s as “an interdisci-
plinary field which applies the principles of engineering and life sciences toward the devel-
opment of biological substitutes that restore, maintain, or improve tissue function” [18].
In recent decades, there have been remarkable advances in the field of tissue engineer-
ing and regenerative medicine (TERM), with particular attention to the development of
biomaterials-based strategies to facilitate tissue repair and regeneration [19,20]. Among
these biomaterials, hydrogels have emerged as versatile and promising candidates for the
promotion of the natural healing processes of bone and cartilage [21,22]. Their unique
properties, including high water content, adjustable mechanical properties, and the ability
to load bioactive molecules and cells, make hydrogels uniquely suited for TERM appli-
cations [23]. Hydrogel-based methods offer less invasive alternatives to conventional
surgical techniques, reducing patient discomfort, shortening recovery times, and reducing
complications associated with invasive procedures. In addition, these methods can be
precisely tailored to the specific needs of each patient [24]. This personalized approach to
regenerative therapies has the potential to deliver superior results while minimizing the
likelihood of adverse reactions [25,26].

The main objectives of our article are to provide a comprehensive and current overview
of advances in advanced hydrogels for bone and cartilage tissue regeneration. The review
focuses especially on the recent advances in advanced hydrogels for bone and cartilage
regeneration and the novelties of patient-specific treatments. This work arises from the
need to address the increasingly prevalent disorders affecting bone and cartilage tissues
and aims to bring together the specific contributions of advanced hydrogels in this context,
thus contributing to the evolving field of TERM, moving toward personalized medicine.
We collect the main knowledge on bone and cartilage structure and regeneration. Below,
we present the state of the art of advanced hydrogels in TERM and explore their use in bone
and cartilage tissue engineering. Through this review, we aim to illuminate the potentially
transformative impact of hydrogel-based therapies in addressing unmet clinical demands
associated with bone- and cartilage-related disorders.
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2. Bone Biology

Bone is a robust, multifunctional structure that plays a pivotal role in protecting vital
organs, providing crucial kinematic support, regulating hematopoiesis, and preserving
mineral balance. This dynamic tissue continuously remodels to maintain bone strength,
mass, and the necessary calcium and phosphate mineral homeostasis, and importantly, it is
the final step of bone regeneration [27]. It is formed by cells and a mineralized extracellular
matrix (ECM) (Figure 1). Bone consists of five major cellular components: osteoprogenitor
cells, osteoblasts, osteocytes, osteoclasts, and bone lining cells [2]. Osteoprogenitor cells,
derived from mesenchymal stem cells (MSCs), are predominantly located in the bone
marrow. These cells can differentiate into osteoblasts and maintain their osteoprogenitor
potential in the adult bone system, making them crucial to the repair process [28,29].
Osteoblasts are recognized for their role in the formation of new bone via the secretion
of the ECM [30,31]. Osteocytes are the most prevalent cells and are found in lacunae that
are enclosed by a mineralized matrix, previously secreted as an osteoblast [32,33]. The
osteoclasts are phagocytic multinucleated cells that have undergone terminal differentiation
and are derived from the fusion of mononuclear cells of the hematopoietic stem cell (HSC)
lineage under the effect of cytokines, such as receptor activator of nuclear factor κB ligand
(RANKL) and macrophage colony-stimulating factor (M-CSF) [34–36]. Finally, the bone
lining cells are quiescent flat-shaped osteoblasts that protect the surfaces of bones where
neither bone growth nor bone resorption takes place [37].
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Figure 1. Bone anatomy and histology. A typical large bone exhibits a distinct structural organiza-
tion, comprising epiphyses at the extremities housing bone marrow and cancellous bone, a central
diaphysis characterized by a robust cortical bone layer, and the transitional metaphysis region. The
bone tissue comprises various cell types alongside a mineralized extracellular matrix. The organic
component, constituting approximately 30% of bone composition, primarily consists of collagen
type I. In contrast, the inorganic component, representing around 60% of the bone’s composition,
mainly comprises hydroxyapatite crystals.

The bone matrix is composed of organic compounds (30%), inorganic compounds
(60%), and water (10%). The former is mainly composed of collagen type I (90%), and
to a lesser extent collagen type V, and more than 30 proteins classified into four groups:
proteoglycans, multiadhesive glycoproteins (osteonectin and podoplanin/E11), vitamin
K-dependent proteins (osteocalcin and protein S) and growth factors (GFs), and cytokines
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(CKs) (IGF, TNFα, TGF-β, PDGF, BMP, IL-1, and IL-6) [38,39]. Hydroxyapatite (HA) crystals
[Ca10(PO4)6(OH)2] are inorganic compounds, and their deposition is responsible for the
mineralization of the bone matrix [40,41]. Research on the roles of bone matrix is essential
for the development of hydrogel-based strategies for regenerative medicine.

Bone regeneration is composed of a well-orchestrated sequence of biological events of
bone induction and conduction that involve a variety of types of cells and intracellular and
extracellular molecular-signaling pathways [42]. Contrary to other tissues, the majority of
skeletal injuries, such as fractures, heal without the development of scar tissue. Instead,
bone regenerates, with many of its pre-existing qualities restored, and finally becomes iden-
tical to the nearby uninjured bone [43,44]. The process of bone regeneration encompasses
three sequential steps: the acute inflammatory response, bone repair, and remodeling
(described in Figure 2) [45–49]. Surgical and non-surgical procedures play a crucial role in
facilitating and expediting the bone-repair process by immobilizing the bones and bridging
the gap between the two fractured ends [50,51]. With a greater understanding of bone
biology at the molecular level, numerous new treatment approaches have been developed,
and it is projected that there will be many more (or advancements to existing ones) in the
years to come.
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Figure 2. Bone healing process. The bone healing process comprises different phases. It begins with
the formation of a hematoma and coagulation at the fracture site, followed by the recruitment of
neutrophils and macrophages, together with the proliferation of fibroblasts and endothelial cells,
leading to the formation of granulation tissue. Subsequently, a soft callus, characterized by a fi-
brocartilaginous matrix, connects the fractured bone ends. Osteoprogenitor cells of the periosteum
differentiate into osteoblasts, initiating the formation of new bone around the soft callus. As fibro-
cartilage calcification occurs, new bone is deposited, culminating in the formation of a hard callus.
Finally, bone remodeling occurs, restoring normal bone structure.
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3. Cartilage Biology

Cartilage is an avascular, aneural, a-lymphatic connective tissue that is also present
in the growth plates of children and adolescents. Humans have three different forms of
cartilage: hyaline, fibrous, and elastic [52]. The chondrocytes, which produce and secrete
the main elements of the extracellular matrix (EMC), are present in low density in all
three types. The cartilage ECM has a special family of proteoglycans interwoven within a
highly hydrated collagen fibrillar network to carry out the biomechanical responsibilities
of giving structural support and resistance to deformation [53]. This matrix is produced
and assembled by chondrocytes with the help of a large number of other non-collagenous
proteins, proteoglycans, and glycoproteins. Each of the three forms of cartilage has varied
abundance, distribution, and types of collagen and proteoglycans, which results in varia-
tions in appearance and biomechanical capabilities. The most prevalent type of cartilage
in the human body is hyaline cartilage, which has a glassy appearance. It is located in the
growth plates, ribs, nose, trachea, bronchi, and articulating surfaces of bones in synovial
joints [54]. Articular cartilage is very similar to hyaline cartilage, except for the absence
of perichondrium. It contains cartilage-specific collagen molecules that are crosslinked
together in a copolymeric network, as well as proteoglycans and multiadhesive glyco-
proteins [55]. The limited regenerative capacity is due to the stability of cartilage-specific
collagen molecules and the low activity of metalloproteinases.

Cartilage damage should ideally recover without leaving a scar. The smooth surface
of the joint would be hampered by scar tissues inside the joint, and they would also
have bad mechanical qualities [56]. Catabolic and anabolic damage responses in cartilage
can be distinguished. The synthesis of agreement can degrade enzyme disintegrant and
metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and the collagen matrix
metalloproteinase 13 (MMP-13), which exclusively destroys type II collagen, is the catabolic
activity that is most relevant to cartilage [57]. In reaction to injury, ADAMTS-5 is released
quickly, but MMP-13 expression has a delayed response [58]. Instead, the anabolic activity
involves the induction of chondroprotective genes like the transforming growth factor
beta (TFG-β) family member activin A, hyaluronan-binding anti-inflammatory molecule,
and tumor necrosis factor-inducible gene 6 protein (TSG-6). Uncertain factors may have
contributed to the failure of cartilage regrowth [59,60]. Additional hints have been offered
from the study of cartilage engineering: for instance, it is uncommon to see neocartilage
integrating laterally with neighboring cartilage.

4. Hydrogels: Concept, Synthesis, and Biomedical Applications

Hydrogels are three-dimensional (3D) networks that are created by crosslinked poly-
mers and can swell in aqueous solutions. These hydrogels possess unique properties such
as biocompatibility, low toxicity, wide availability, viscoelasticity, and biodegradability,
making them suitable for numerous biomedical applications [61–64]. These include TERM
(reviewed in this paper), wound dressing, contact lenses, 3D cell cultures, drug delivery,
antimicrobial resistance treatment, and biosensing.

Hydrogels can be classified according to different criteria (Figure 3), such as their
source/composition, crosslinking, ionic charge, configuration, preparation, degradability,
administration, and sensitivity to external stimuli [65]. Their diverse composition comprises
natural polymers, synthetic polymers, or hybrid combinations of both. Natural polymers,
from various biological origins, offer remarkable advantages, such as excellent biocom-
patibility, biodegradability, and non-toxicity [66–68]. Examples of natural polymers are
chitosan, hyaluronic acid (HA), gelatin, alginate, and cellulose. In contrast, synthetic hydro-
gels contain synthetic polymers, making them ideal for tailoring and optimizing mechanical
properties [69,70]. Some synthetic examples are polycaprolactone, poly (vinylpyrrolidone)
(PVP), poly (lactic acid) (PLA), poly (ethylene glycol) (PEG), and poly (vinyl alcohol) (PVA).
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Figure 3. Classification of hydrogels according to different criteria.

Hydrogels are prepared through different procedures—chemical crosslinking, physical
crosslinking, enzymatic crosslinking, grafting polymerization, and radiation crosslinking—
which facilitate a broad spectrum of applications and fine-tuning of their characteristics to
align with specific therapeutic and biomedical requirements [62,71,72]. Chemical crosslink-
ing involves the establishment of covalent bonds that ensure long-term stability and dura-
bility [73,74]. For this purpose, crosslinking agents or the grafting of monomers onto the
polymer backbone are used, and various chemical reactions can be employed, such as
Schiff base reactions, photoelectric crosslinking, and crosslinking by chemical reactions
of complementary groups [75–77]. In contrast, physical crosslinking relies on reversible
interactions that provide flexibility and responsiveness to external stimuli [78]. These inter-
actions include hydrogen bonding, the formation of amphiphilic grafting, crystallization,
ionic interactions, maturation (heat-induced aggregation), and hydrophobic interactions,
all of which contribute to the remarkable adaptability and multifunctionality of hydrogels
in the biomedical field. These types of hydrogels are known for their ease of synthesis
and lack of a crosslinking agent, which may have an impact on the reliability of loaded
materials because of their toxicity [79,80]. Stress or changes in the physical environment
can disrupt these interactions, allowing the hydrogel to revert to its polymer chains. Enzy-
matic crosslinking is a method in which an enzyme, such as tyrosinase, lysyl oxidase, or
peroxidase, catalyzes the crosslinking within polymer chains [81–83]. They create in situ
hydrogels characterized by exceptional biocompatibility. Grafting consists of the covalent
attachment of a monomer to a polymeric host molecule or the polymerization of a monomer
into a prefabricated polymeric skeleton [84–87]. This can be achieved using chemical or
radiation-based methods, leading to the formation of functional hydrogels with specific
properties. Radiation crosslinking uses sources such as electron beams, gamma radiation,
or X-rays to generate free radicals in the polymer, resulting in crosslinking [88,89]. This
method is preferred because of its ability to modify biopolymers without the need for
chemical additives while ensuring biocompatibility and cost-effectiveness [90–92].

Hydrogels can also be classified into four main categories based on their polymeric
composition: homopolymers, copolymers, interpenetrating polymer networks (IPNs), and
semi-IPNs [62]. Homopolymer hydrogels are formed from a single monomer species,
while copolymer hydrogels are derived from two or more monomer species and can be
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arranged as block, alternating, or random configurations along the chain of the polymer
network [93,94]. Both present the same type of polymer. In contrast, semi-IPN hydrogels
involve a polymeric network embedded within linear polymeric chains without crosslink-
ing agents, whereas IPN hydrogels result from multiple polymeric networks crosslinked
together using a crosslinking agent [95–97]. Semi-IPN and IPN hydrogels exhibit superior
mechanical strength and swelling properties compared to homopolymeric and copolymeric
hydrogels [98].

5. Hydrogels for TERM of Bone and Cartilage

Tissue engineering and regenerative medicine (TERM) is an emerging field that aims
to achieve complete restoration of damaged tissues or organs. On the one hand, tissue
engineering integrates the interplay of cells, scaffolds, and bioactive molecules to fabricate
functional tissues. On the other hand, regenerative medicine encompasses a broader
spectrum by synergizing tissue engineering with complementary strategies, such as cell
therapy, gene therapy, and immunomodulation, all working in concert to promote tissue
and organ regeneration [99]. In recent years, there have been significant advances in TERM,
especially in the field of bone and articular cartilage regeneration [100,101].

In the field of TERM, hydrogels present ideal properties that make them suitable for
bone regeneration and cartilage repair. Their ability to retain and release these therapeutic
agents in a controlled manner facilitates tissue regeneration processes [102]. Moreover,
the hydrophilic groups that retain water and the chemical crosslinker can also interact
with the cells and molecules of the damaged tissue [103]. In addition, hydrogels offer the
advantage of being customizable, allowing their physical and mechanical properties to
be adjusted to those of the target tissue [102]. This fine tuning enhances their versatility
and applicability in the field of tissue engineering and regenerative medicine (TERM). For
example, hydrogels can be carefully designed to reproduce the characteristic stiffness and
elasticity of specific tissues, facilitating seamless integration and optimal functionality in
regenerative applications. In the following sections, we will provide an overview of some
of the most prominent hydrogels used in TERM for bone and cartilage applications.

Hydrogels have diverse applications in the TERM of bone and cartilage defects. They
play a crucial role in fracture healing by releasing bioactive molecules to accelerate the bone
healing process and as bone graft substitutes that fill bone defects, eliminating the need
for traditional bone grafting procedures [104–107]. Hydrogels act as supporting scaffolds,
encapsulating cells, and growth factors to facilitate the formation of new bone tissue. In
the treatment of osteoporosis, hydrogels are used to release drugs in a sustained manner
and increase bone density [108–112]. In addition, they serve as lubricants in joints, offering
relief to patients with joint diseases such as osteoarthritis [113–117]. In minimally invasive
surgeries, injectable hydrogels conform to the irregular shapes of defects, providing struc-
tural support for bone and cartilage problems [118,119]. Finally, hydrogels are useful for
local drug delivery, as they precisely target foci of bone infection with antibiotics, silver
nanoparticles, or bacteriophages [120–123]. This variety of applications underscores the
versatility and importance of hydrogels in meeting diverse clinical needs related to bone
and cartilage regeneration.

In the context of the TERM of bone and cartilage, physically crosslinked hydrogels
are formed through reversible non-covalent interactions, offering high biocompatibility
and suitability for applications requiring temporary support, flexibility, and rapid degra-
dation [124,125]. Chemically crosslinked hydrogels, on the other hand, are created by
covalent bonds, providing permanent and robust networks with increased mechanical
strength. They are suitable for load-bearing applications due to their non-reversible nature
and slower degradation rate, although concerns regarding residual chemicals must be
taken into account [126,127]. The choice between these hydrogels in bone regeneration
depends on specific clinical requirements, with physically crosslinked hydrogels being
ideal for temporary and sensitive solutions and chemically crosslinked hydrogels being
suitable for long-term stability and load-bearing applications [128].
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Injectable hydrogels are a type of biomaterial that can be administered in liquid or
gel form and then solidify or gel in situ at the desired site in the body [118,119]. Injectable
scaffolds can be molded to fit bone/cartilage defects of any shape, which makes them
a versatile option for various defect types and sizes and the most widely investigated
technology in the field [129]. Injectable scaffolds also have the advantage of adhering well
to the surrounding tissue, which promotes tissue integration. In addition, they minimize
the need for aggressive surgical interventions, making them a more comfortable option
for the patient [130]. These hydrogels are easily handled and can be loaded with cells,
creating an environment conducive to cell survival and growth. This cell support facilitates
specific cellular responses and guides the formation of new tissue (Figure 4). Lastly, they
are suitable for drug delivery, allowing controlled release of bioactive molecules to enhance
the regenerative process [131].
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Figure 4. Schematic representation of strategies for creating injectable hydrogels intended for TERM
applications in cartilage and bone. Injectable hydrogels are designed to solidify in situ via chemical
reactions or the induction of physical factors to repair bone or cartilage defects.

In the field of 3D bioprinting, bioinks based on naturally occurring hydrogels, such
as (HA), gelatin, and fibrin, have demonstrated their ability to preserve crucial quality
attributes of MSCs [132–134]. This preservation is attributed to the minimization of shear
stress imparted by these bioinks, which not only provide structural support for cell prolif-
eration but also facilitate osteogenic differentiation. Regarding cartilage tissue engineering,
the main advantage of 3D bioprinting lies in its ability to hierarchically and spatially
distribute 3D bioprinted cells, hydrogels, and active substances according to specific 3D
requirements [135,136]. This approach generates an interconnected pore structure with
substantial surface area, which facilitates cell adhesion, growth, intercellular communi-
cation, and gas and nutrient exchange [137]. These advantages represent a significant
advance in promoting cartilage tissue regeneration compared to conventional solvent
hydrogels. Bioinks are composed of conventional synthetic materials such as PVA, PAA,
or nylon, charged with cells to construct allogeneic tissues and organs to avoid surgical
invasive procedures, i.e., bone autografting [138]. Four-dimensional bioprinting goes be-
yond traditional three-dimensional bioprinting by incorporating the dimension of time
as a critical factor in the printing process. In 4D bioprinting, hydrogels can respond to
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environmental stimuli, such as changes in temperature, pH, or the presence of specific
molecules in a predetermined and programmable manner over time [139]. In the context of
bone and cartilage TERM, shape memory implants adapt to evolving tissue needs, while
stimuli-responsive scaffolds allow controlled cell differentiation through the release of
growth factors [140]. These constructs mimic the behavior of natural tissue by altering its
mechanical properties in response to mechanical loading. In addition, 4D-printed implants
offer dynamic drug delivery to enhance regeneration and osteogenic maturation properties
that promote osteoblast development [141]. Cartilage constructs adapt to changing joint
conditions, promoting cartilage repair and joint function. Customized solutions can be
achieved for each patient, ensuring that the regenerated tissue is precisely tailored to the
anatomy and requirements of the patient.

5.1. Hydrogels in Bone Tissue Regeneration

In bone tissue engineering (BTE), hydrogels need specific fundamental attributes:
tissue and cell compatibility, along with osteoinductive and osteoconductive properties.
Osteoinduction denotes the ability to stimulate osteogenesis, while osteoconduction refers
to the capacity to facilitate bone growth on a surface or scaffold [142]. These essential
attributes collectively contribute to the efficacy of the hydrogel in promoting bone regener-
ation and healing. The composition of hydrogels in bone tissue engineering (BTE) involves
a hydrogel-inspired scaffold designed to reproduce the mechanical properties of the ex-
tracellular matrix (ECM) and facilitate bone remodeling [143]. Within this scaffold, cells
with osteogenic potential, including several varieties of stem cells, are included along with
bioactive molecules, mainly growth factors, and cytokines, aimed at recruiting immune
and osteoprogenitor cells to the injured site [106]. This multifaceted structure is intended
to recreate an environment conducive to bone regeneration [144]. The various techniques
used to prepare hydrogels give rise to a wide range of options in terms of their structure. In
the context of bone regeneration, the most commonly used forms are microbeads, nanogels,
and hydrogel fibers [106].

In the field of bone regeneration, there have been significant advances in hydrogel
research in recent years, accompanied by the emergence of numerous innovative strategies.
In particular, drug delivery systems, especially bioactive molecules, and cell-loaded hydro-
gels, have shown promising results. Moreover, advanced hydrogels show multifunctional
properties that improve the outcomes of bone tissue regeneration. Examples of hydrogels
employed in the TERM of bone tissue are reported in Table 1.

5.1.1. Bioactive Molecules-Loaded Hydrogels

Shekaran et al., designed a protease-degradable PEG synthetic hydrogel with a triple
helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle [145]. This
hydrogel showed susceptibility to matrix metalloproteinase (MMP) activity, resulting in a
controlled and sustained release of BMP-2 at low doses in vivo. Consequently, it facilitated
bone fracture regeneration by recruiting osteoprogenitor cells and bridging fracture sites
in mice. Another example is SDF-1α/chitosan/carboxymeymethy-chitosan nanoparticles
(NPs), which were prepared and added to thermosensitive chitosan/glycerol phosphate
hydrogels [146]. These were injected into calvarial defects induced in rats. Bone regen-
eration was induced by the sustained release of SDF-1α in situ, which signals for the
homing of host MSCs. Zhang et al., constructed an alginate hydrogel loaded with peptide
nanofibers made of two ultrashort peptides for the self-assembly and the stimulation of the
M2 phenotype [147]. Following this, the hydrogel was applied to treat bone defects in mice,
and upon ultrasound stimulation, the nanofibers were released from the hydrogel. The M2
phenotype was induced in macrophages through the STAT6/PPAR-γ/SOCS3 signaling
axis, leading to the inhibition of the production of reactive oxygen species (ROS) and
secretion of BMP-2 and IGF-I that promote the osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs). Collectively, all this contributes to the bone regeneration
of rats. Atsttrin is a derivative of progranulin, a secreted glycoprotein that binds to TNFα
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receptors and is involved in anti-inflammation, tissue repair, wound healing, and cartilage
development [148]. Moradi et al., synthesized a chitosan/graphene oxide/hydroxyethyl
cellulose/β-glycerol phosphate hydrogel loaded with Atsttrin [149]. Enhanced bone regen-
eration was observed using the injectable hydrogel, which facilitated the sustained release
of Atsttrin, thereby promoting the establishment of a well-defined callus structure in a
murine diabetic model. Wang and colleagues engineered a dynamic hydrogel mimicking
the gel-like nature of a hematoma, crucially involved in the initial stages of bone repair,
as we have reviewed above [150]. The gel was formulated by taking advantage of the re-
versible interaction between vancomycin and D-Ala-D-Ala dipeptide, effectively trapping
and killing bacteria within the hematoma-like environment. In addition, the incorporation
of an osteogenic peptide facilitated bone healing. This approach holds great promise for
preventing infections in vulnerable bone fractures or cases of osteomyelitis. Lastly, hydro-
gels can also include plasmids. Cheng et al., loaded a glycol-based dendronized chitosan
with G protein-coupled receptor kinase 2 interacting protein 1 (GIT1) plasmid [151]. MSCs
were effectively transfected in vivo, which promotes bone repair and neovascularization
around bone defects via the Notch signaling pathway. Calcium phosphate (CaP)-based
products, including hydrogels, are very useful for bone tissue engineering [152,153]. Fatimi
and colleagues developed an innovative cellulose-derived pH-sensitive hydrogel combined
with biphasic calcium phosphate to create an injectable formulation aimed at enhancing
bone regeneration. This injectable bone substitute exhibits osteoconductive characteristics
and has demonstrated its ability to stimulate the formation of new bone tissue [154,155].
The addition of beta-tricalcium phosphate (β-TCP) particles in hydrogels significantly
broadens the range of hydrogel stiffness and promotes osteogenic differentiation of human
mesenchymal stem cells (hMSCs), with lower-stiffness composites showing the highest
expression of alkaline phosphatase and gene markers associated with osteogenesis [156].
Svarca et al., added strontium ranelate and CaP nanoparticles to HA-based hydrogels
for local osteoporosis treatment as a drug delivery system [157]. The incorporation of
these components significantly affected hydrogel properties, such as swelling behavior,
gel fraction, rheological properties, and microstructure, while strontium ranelate demon-
strates a positive impact on cell viability, particularly within the concentration range of
0.05–0.2 µg/mL.

5.1.2. Cells-Loaded Hydrogels

Stem cells from different sources are the most employed cells in hydrogel therapies
due to their potential for proliferation and differentiation to regenerate the tissues. The
treatment of osteoporosis with BMSCs in preclinical studies is effective [158]. Furthermore,
hydrogels loaded with BMSCs have been used extensively in animal models of osteoporosis,
with favorable results. A hydrogel composed of poloxamer 407 and HA was fortified with
MnO2 to protect administered BMSCs from reactive oxygen species (ROS) accumulation
in osteoporosis, thus effectively promoting bone regeneration [159]. In particular, this
hydrogel induced an M2 phenotype of macrophages while reducing the expression of
proinflammatory cytokines and the secretion of osteogenic factors such as TGF-β and PDGF.
Human tonsil-derived mesenchymal stem cells (TMSCs) loaded on gelatin-hydroxyphenyl
propionic acid hydrogel were delivered subcutaneously to the dorsal of ovariectomized
mice [160]. It demonstrated a recovery of the femoral heads and serum osteocalcin and
alkaline phosphatase. Interestingly, the mice also showed a reduction in visceral fat.

Therefore, it can be deduced that in the development of hydrogels, attention must
extend beyond just the degradation timeline. It is essential to take into account both the
process of osteogenesis and osteodegradation and to carry out a thorough evaluation of
constituents, their ratios, and fillers, which may prove invaluable in future research.
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Table 1. Recent research on advanced hydrogels incorporating bioactive molecules and cells for bone
tissue regeneration: composition, preparation, and the process of application and evaluation.

Polymer Biological Factor Mechanism
of Gelation Application Year References

PEG BMP-2 Chemical
crosslinking

Murine non-healing
radial bone defect 2014 [145]

Chitosan/β-glycerol
phosphate disodium salt SDF-1α Chemical

crosslinking
Critical-sized calvarial

defects in rats 2017 [146]

Calcium alginate Ultrashort peptide
nanofibers

Physical
crosslinking

Rebuild osteogenic
immune

microenvironments
2024 [147]

Chitosan/graphene
oxide/hydroxyethyl
cellulose/β-glycerol

phosphate

Atsttrin Physical
crosslinking

Bone regeneration in
diabetic mice model 2023 [149]

Vancomycin/D-Ala-D-
Ala/acrylamide OGP Physical

crosslinking Infected bone fracture 2023 [150]

Glycol-based
dendronized chitosan GIT1 plasmids Physical

crosslinking Bone defects 2023 [151]

Hydroxypropylmethylcellulose Biphasic
calcium phosphate

Chemical
crosslinking New bone formation 2009/12 [154,155]

Agarose and agarose–collagen β-TCP Chemical
crosslinking

Osteogenic
differentiation of hMSCs 2018 [156]

HA CaP NPs and
strontium ranelate

Chemical
crosslinking Osteoporosis 2022 [157]

Poloxamer 407/HA BMSCs Chemical
crosslinking Osteoporosis 2023 [159]

Gelatin-hydroxyphenyl
propionic acid TMSCs Chemical

crosslinking
Postmenopausal

osteoporosis 2018 [160]

5.2. Hydrogels in Cartilage Regeneration

TERM also takes advantage of the advantageous properties of hydrogels for articular
cartilage regeneration, mainly their less invasive and easy application. These hydro-
gels, being swollen with water, offer a convenient means of effectively filling cartilage
defects [60]. For these reasons, the most employed are injectable hydrogels, which ho-
mogenously distribute any shape before gelation. Within this, some common natural
biomaterials are chitosan, collagen/gelatin, alginate, fibrin, elastin, heparin, chondroitin
sulfate, and HA, while synthetic polymers include PEG, poly(L-glutamic acid), poly(vinyl
alcohol), poly(propylene fumarate), α,β-poly-(N-hydroxyethyl)-DL-aspartamide, PEG-
poly(N-isopropyl acrylamide), methoxy polyethylene glycol, and methoxy polyethylene
glycol–poly(ε-caprolactone) [118]. The most common approaches found in the literature
divide cell-free and cell-loaded hydrogels. Examples of hydrogels employed in TERM of
cartilage tissue are reported in Table 2.

5.2.1. Cell-Free Hydrogels

Chitosan–gelatin hydrogels exhibit both durability and the ability to be finely adjusted
in terms of their porosity and degradation rates [161]. In vitro, cell culture with cartilage
cells of the human thyroid displays excellent adhesion, proliferation, and secretion of ECM.
Lei et al., developed rapamycin-liposome-incorporating HA-based hydrogel microspheres
to enhance joint lubrication, maintain cellular homeostasis, and mitigate the progression of
osteoarthritis [162]. These microspheres formed self-renewable hydration layers, improved
lubrication through a smooth rolling mechanism, and released rapamycin (autophagy
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activator) to target cartilage, ultimately offering effective lubrication and potential relief
for friction-related conditions like osteoarthritis. Han et al., introduced injectable hydrogel
microspheres (GelMA@DMA-MPCs) with enhanced lubrication and sustained drug release
for the treatment of osteoarthritis (OA) [163]. These microspheres effectively improved
lubrication, released diclofenac sodium (DS) for anti-inflammatory action, and demon-
strated significant therapeutic effects in an OA rat model, offering a promising approach
to the treatment of OA. Injectable marine collagen-based hydrogel effectively preserved
the differentiated state of chondrocytes during in vitro culturing, a significant challenge in
cartilage regeneration [164]. This biocompatible hydrogel formulation, capable of retaining
cells without cytotoxic effects, allows for stiffness modulation and promotes chondrogenic
gene expression (namely Sox9, Col2A1, and Acan).

In other studies, an injectable double crosslinked hydrogel modified was devel-
oped with sodium alginate and gelatin, loaded with kartogenin (KGN) and TGF-β3 [165].
This cell-free hydrogel system attracted endogenous MSCs, induced chondrogenesis, and
showed promise for cartilage repair in a one-step procedure. The study demonstrated
the potential of the combination of KGN and TGF-β3 to promote MSC chondrogenesis
for cartilage regeneration. Indeed, 4-aminobiphenyl (4-ABP) enzymatically derived from
KGN significantly enhanced cartilage repair in a murine model of osteoarthritis. This
improvement was achieved through the activation of the PI3K-Akt pathway, which in
turn stimulates mesenchymal stem cell (MSC) proliferation and facilitates chondrogenic
differentiation [166]. Similarly, Zhu et al., aimed to evaluate the efficacy of an integrated
scaffold of 3D-printed decellularized cartilage extracellular matrix (ECM) and PEG diacry-
late (PEGDA), in combination with the natural compound honokiol (Hon), to regenerate
osteochondral defects [167]. Hon is a polyphenol extracted from Magnolia officinalis
with pleiotropic properties, including anti-inflammation and anti-oxidant properties [168].
The research employed a controlled laboratory design using a rat model with cylindri-
cal osteochondral defect in the trochlear groove of the femur. The results indicated that
the PEGDA/ECM/Hon scaffold effectively reduced the release of proinflammatory cy-
tokines from LPS-stimulated macrophages in vitro. In addition, the PEGDA/ECM/Hon
group demonstrated superior results in terms of International Cartilage Repair Society
(ICRS) score, micro-CT evaluation, and histological analysis, suggesting its potential as a
promising hydrogel for the repair of osteochondral defects.

Table 2. Recent research on advanced hydrogels incorporating bioactive molecules and cells for
cartilage regeneration: composition, preparation, and the process of application and evaluation.

Hydrogel Core Material Preparation Application Year References

HA Rapamycin-liposome
microspheres Physical crosslinking Osteoarthritis 2022 [162]

Methacrylate gelatin
hydrogel microspheres Diclofenac sodium Physical crosslinking Osteoarthritis 2021 [163]

Marine collagen Enzymatic
crosslinking Cartilage regeneration 2020 [164]

Sodium alginate
and gelatin KGN/TGF-β3 Double crosslinking Cartilage regeneration 2020 [165,166]

PEGDA/ECM Honokiol Physical crosslinking Osteochondral
defect repair 2020 [167]

PEG-GelMA-HA DPSCs Physical crosslinking Chondrogenic
differentiation of DPSCs 2014 [169]

Carrageenan MSCs Physical crosslinking 3D bioprinting 2016 [170]

Chitosan glycerol
phosphate/starch ASCs Physical crosslinking Cartilage tissue

engineering 2010 [171,172]

HSMSSA Chondrocytes Di-self-crosslinking Cartilage repair fille 2020 [173]



Gels 2023, 9, 885 13 of 20

5.2.2. Cell-Loaded Hydrogels

Hydrogels provide a proper environment for loading cells, especially SCs. These
protect the cells from high shear forces and improve the therapy. Nemeth et al., utilized
ultraviolet-assisted capillary force lithography to create nanostructured scaffolds of com-
posite PEG-GelMA-HA hydrogels, promoting the chondrogenic differentiation of dental
pulp stem cells (DPSCs) [169]. DPSCs cultured on these nanopatterned scaffolds exhibited
upregulation of chondrogenic gene markers and increased collagen type II deposition,
indicating that nanotopography and HA cues are crucial for enhancing DPSC chondroge-
nesis. Thakur et al., developed 2D nanosilicate-reinforced κ-carrageenan hydrogels with
shear-thinning properties, enhanced mechanical stiffness, and physiological stability for
MSCs delivery [170]. Sa-Lima et al., investigated the development of injectable thermosen-
sitive hydrogels based on chitosan glycerol phosphate (CGP) and starch for cartilage tissue
engineering. These hydrogels showed minimal changes in transition temperature with
increasing starch concentrations, making them suitable for minimally invasive applica-
tions [171]. The addition of starch improved the viscoelastic properties and degradation
profile of the hydrogels. In a subsequent phase, the potential of the hydrogels to induce
chondrocyte differentiation and cartilage matrix accumulation was evaluated, in particular
with encapsulated adipose-derived stromal cells (ADSCs) [172]. The results indicated
that chitosan-β-glycerophosphate-starch hydrogels, especially novel CST constructs, were
promising for chondrogenic differentiation of ADSCs in cartilage tissue engineering using
minimally invasive techniques. Yao et al., developed an injectable thiolated hyaluronic acid
(HA-SH) and maleimided hyaluronic acid (HA-Mal) (HSMSSA) hydrogel, formed using
thiol oxidation reactions and thiol/maleimide click chemistry, showed physicochemical
properties affected by molecular weight and precursor concentration [173]. Although a
single HSMSSA gel demonstrated moderate injectivity and promoted cartilage tissue forma-
tion, it lacked adhesion sites for efficient cell-cluster connections. Combining HSMSSA with
bioactive collagen I in a self-crosslinking blend hydrogel improved degradation resistance,
chondrocyte adhesion, and proliferation, together with an upregulation of gene expression
levels associated with hyaline cartilage formation and proteoglycan secretion (collagen I, II
and X, Sox 9, and aggrecan), making it a potential strategy for clinical cartilage repair fillers
with expanded autologous chondrocytes. Overall, there is growing evidence supporting
the potential usefulness of hydrogels for treating conditions affecting articular cartilage,
such as osteoarthritis or rheumatoid arthritis.

6. Conclusions and Future Trends

In summary, advanced hydrogels hold great promise in the field of tissue engineering
and regenerative medicine, especially for the regeneration of bone and cartilage tissues.
Their exceptional physical and chemical characteristics, such as mechanical strength, water-
retaining capacity, and ability to transport and deliver bioactive agents and cells, make
them well suited to treat a variety of bone and cartilage defects. This is especially important
for cartilage, whose natural regenerative capacity is limited. However, further research
is crucial to optimize the efficacy of these hydrogels and accelerate their integration into
clinical practices, where they can be used to treat a variety of conditions, such as bone
fractures, infections, metastases, osteoporosis, or osteoarthritis.

Looking ahead, there are several critical findings and future trends to consider. Person-
alized therapies, facilitated by advances in 3D and 4D bioprinting, are expected to improve
the precision of treatments. Stimuli-responsive hydrogels that react to physiological signals
and combination therapies with hydrogels, growth factors, stem cells, and gene therapy
could offer even more effective solutions. Regulatory approval, long-term safety and effi-
cacy studies, and efforts to bridge the gap between research and commercialization will
be essential steps. Patient education and global accessibility efforts will ensure that these
cutting-edge hydrogel-based treatments reach a wide range of people in need, ultimately
improving their quality of life.
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