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Abstract: Hydrogels have gained significant popularity in agricultural applications in terms of
minimizing waste and mitigating the negative environmental impact of agrochemicals. This review
specifically examines the utilization of environmentally friendly, shapable hydrogels composed of
polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) in various casings for crop protection
against different pests, fertilizing, and watering. To activate their effectiveness, PVA/PVP hydrogels
were loaded with both hydrophilic and hydrophobic environmentally friendly pesticides, namely
hydrogen peroxide (HP), the essential oil thymol, and urea as a fertilizer, either separately or in
combination. This review covers various physical and chemical approaches used for loading, shaping,
and controlling the release profiles of pesticides and fertilizers. Additionally, it explores the evaluation
of the chemical composition, structure, classification, rheology, and morphology of the hydrogels as
well as their impact on the thermal stability of the encapsulated pesticides and fertilizer, followed by
biological tests. These hydrogels significantly contribute to the stabilization and controlled release
of essential nutrients and biocides for plants, while maintaining excellent biocidal and fertilizing
properties as well as sustainability characteristics. By shedding light on the latest insights into
the concepts, applications, and results of these hydrogels, this review demonstrates their immense
potential for widespread future use in agriculture.

Keywords: PVA/PVP; agricultural applications; PVA/PVP-based hydrogels; controlled release;
sustainability; biodegradability

1. Introduction

A hydrogel is characterized by a porous three-dimensional (3D) framework composed
of hydrophilic polymers that can undergo swelling, effectively accommodating a large
water content. Swollen hydrogels are sustained by chemical or physical cross-linking
among constituent polymer chains, ensuring structural integrity. Qualification as a hydrogel
requires that water constitutes at least 10% of the total weight (or volume). Hydrogels are
systematically categorized into distinct branches. PVA/PVP hydrogels are constructed
from two synthetic, nonionic, homopolymer chains that undergo physical or chemical
cross-linking [1–3]. An extensive investigation was conducted on a physically cross-linking
(via hydrogen bonds) PVA/PVP hydrogel. Gelation, for example, is initiated by freezing
followed by thawing [4–6]. During this process, a phase separation occurs; the polymeric
chains get closer to each other, forming denser polymer regions connected by entangled
hydrogen bond interactions, resulting in a strengthened structure. Meanwhile, water
migrates from different regions, forming separate water phases. Repeated freeze–thaw
cycles enhance a hydrogel’s mechanical properties [7–9]. Strengthened hydrogels restrict
the release of entrapped active molecules, significantly influencing release behavior [10,11].
The PVA/PVP ratio directly impacts various parameters, such as water content, absorption
capacity, transmittance, and tensile strength [4]. Viscosity decreases with temperature,
eventually leading to melting; therefore, it is reversible [12–14]. Hydrogen bonds are
susceptible to heat. Upon reaching the boiling point of water, they dissolve back into
their initial precursor solutions [15–18]. From a sustainability perspective, this holds
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significant implications, as the polymers can be reused, resulting in reduced waste that
would otherwise accumulate in the environment. Yet, physical cross-linking alone does not
always confer the requisite strength.

An alternative method for fabricating PVA/PVP hydrogels involves cross-linking
by irradiation. Many studies effectively showcase the utilization of gamma and ultravio-
let irradiation, as well as high-voltage electron beams, as viable means for cross-linking
PVA [19,20] and PVP [21,22]. Some instances were documented where these methods were
applied to create cross-linked PVA/PVP hydrogels [23–26]. The mechanism underpinning
these approaches is rooted in radical formation through homolytic cleavage, leading to
the creation of reactive sites. These radical sites propagate with other polymer chains,
giving rise to the formation of robust covalent cross-linking that contributes to enhanced
strength [27–29]. The degree of cross-linking is contingent upon factors such as the radiation
source, its intensity, and exposure duration. Hydrogels subjected to irradiation exhibit dis-
tinctive features, including reduced pore size, heightened mechanical strength, diminished
swelling capacity, and an extended release profile for encapsulated active molecules [23].
Nonetheless, it is important to note that irradiation can potentially result in degradation or
adverse environmental effects on substances entrapped within hydrogels. For instance, the
pesticide thymol and hydrogen peroxide (HP) were shown to be susceptible to the effects
of irradiation [30,31].

Another avenue for covalent cross-linking involves a chemical approach, wherein a
cross-linker covalently connects polymeric chains. Diverse types of linkers are utilized
for PVA/PVP hydrogels. Prominent examples include formaldehyde, glutaraldehyde
(GA), and derivatives, which have been extensively studied and their utility has been
showcased in various domains, such as biomedical devices, biological applications, and
industrial settings [32–35]. The cross-linking mechanism relies on the hydroxyl groups of
PVA initiating nucleophilic attacks on the electrophilic aldehyde or derivative groups of
GA. This process results in the formation of acetals, contributing to the establishment of
covalent cross-linking [36,37]. The incorporation of these new acetal groups, derived from
the cross-linker, significantly enhances strength and stability. The obtained hydrogel is
inert, particularly in neutral conditions, unaffected by acidic environments [38,39]. The
chemical cross-linking process can potentially introduce certain undesired side effects. The
cross-linker might react with the encapsulated substances, forming byproducts [40,41], or
unreacted residues of the cross-linker can persist, posing a toxic risk [42]. Furthermore, the
outcome of this process is covalent bonds, which are inherently nearly irreversible [43,44].

Owing to their distinctive characteristics, hydrogels were identified as suitable for a
wide range of applications. These include drug delivery, the creation of contact lenses, de-
velopment of scaffolds for tissue engineering, wound healing, functional tissue generation,
capturing dyes and heavy metals, pH and biosensors, supercapacitors, and spinal cord
regeneration by injection [18]. Simultaneously, hydrogels gained recognition in agricultural
contexts, primarily due to their capacity to serve as carriers for pesticides, fertilizers, and wa-
ter. Their ability to retain these substances and facilitate extended, controlled release within
the plant environment contributed to their increasing utilization in agriculture [45–50]. The
outcome is a surplus availability of nutrients and effective irrigation while concurrently
minimizing pest-related challenges. Irrigation stands as an imperative prerequisite for
ensuring the viability of plants. Nevertheless, conventional direct watering can lead to sub-
stantial water loss owing to evaporation and rapid infiltration, pronounced particularly in
desert climates and areas with low soil density, respectively. Hydrogels exhibit exceptional
water retention capabilities due to their hydrophilic nature and expansive porous structure.
This unique composition allows them to accumulate significant water volumes, with the
capacity for prolonged retention and gradual controlled release. As a result, incorporating
water-laden hydrogels into plant soil facilitates efficient management of soil moisture.

Extensive research has been conducted on PVA and PVP hydrogels utilized individ-
ually as additives in soil conditioners [51–53]. However, there is a scarcity of relevant
works in the literature regarding utilization of a combination of PVA and PVP in hydrogel-
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based soil conditioners. Despite their potential, these polymers still encounter several
challenges. From a cost–benefit perspective, the established polyolefin plastic industry
remains dominant due to its cost-effectiveness and product durability [54–56]. Owing to the
high water uptake and release characteristics of PVA/PVP, these materials are susceptible
to swelling and shrinking, leading to dimensional changes [57–59]. Protection against
pests is an additional critical factor, as plants and crops are susceptible to pest attacks
and damage. Diverse pesticides were formulated into these hydrogels to mitigate such
challenges [60–62]. However, many pesticides are regarded as toxic and exhibit gradual
degradation over time [63,64]. Consequently, the residues they leave behind have the
potential to inflict harm upon both consumers and the environment. As a result, significant
endeavors are undertaken to explore alternative eco-friendly solutions. As an example,
consider HP, recognized for its hydrophilic nature and strong oxidizing properties, which
impart well-established virucidal and fungicidal activities. Importantly, it also mitigates
toxic effects on crops. In addition, as HP naturally breaks down into water and oxygen
over time, there is no concern about toxic residues impacting the environment [10,65,66].

Another example is thymol, a natural essential oil terpenoid with hydrophobic prop-
erties extracted from Thymus vulgaris. Thymol was proven effective against a wide range
of pests, including microorganisms and insects. Importantly, it is not classified as an
environmental toxin and does not pose a risk to human health [67–69]. Furthermore, it
undergoes decomposition over time through hydrolysis and aqueous photolysis in normal
processes [70]. Regarding fertilizers encapsulated within hydrogel carriers, it is important
to note that N, P, and K constitute the three pivotal nutrients that are essential for plant
growth [71–73]. These nutrients are accessible in the form of synthetic or natural com-
pounds, with the former offering greater efficiency and the latter providing environmentally
friendly advantages [74–77]. However, integrating natural fertilizers into a hydrogel casing
establishes a barrier that retains and gradually releases them into the environment. The
outcome is an extended release that facilitates an efficient and controlled supply of natural
nutrients to plants [78,79].

Several studies showcase the utilization of PVA and PVP combinations in coatings and
membranes designed for controlled release of fertilizers [80,81]. Nonetheless, the task of
developing environmentally sustainable hydrogels involves engineering adaptable physical
and/or chemical cross-linking properties, which must be achieved while ensuring that the
hydrogel retains its mechanical integrity to maintain consistent shape and compatibility
with both hydrophobic and hydrophilic active compounds. A hydrogel’s composition
should consist of components that are officially approved for agricultural and post-harvest
applications. The amalgamation of these stipulations presents a multifaceted challenge. For
this purpose, several promising materials were selected. PVA holds promise as a constituent
for several reasons. It is a water-soluble hydrophilic polymer possessing favorable attributes
including being non-toxic, non-corrosive, biocompatible, easily processable, and well
regarded in pharmaceutical applications. These applications encompass a range of uses,
from cartilage replacements and contact lenses to wound healing and eye drops. It also
finds extensive application in the cosmetic industry, including lotions, creams, makeup,
hair treatments, and styling aids.

Similarly, PVA plays an important role in the food industry as thickener and moisture
barrier. Notably, it is recognized and approved by the FDA as food additive E1203 [82–87].
Furthermore, it is considered environmentally friendly due to its biodegradable nature [88–90].
Many studies were conducted on PVA in hydrogel form, all of which strongly substantiated
its suitability for applications in agriculture and the food industry [91–93]. Another promis-
ing component, PVP, serves as a highly compatible polymer alongside PVA, owing to its
non-toxic nature and FDA approval for food applications. It is recognized as food additive
E1201 and employed as an emulsifying, stabilizing, and thickening agent [94–96]. PVP
also plays a significant role in pharmaceutical applications, serving as a plasma volume
expander, a binder in pharmaceutical tablets, and a wetting agent, and in dental care
products, particularly in tooth-whitening gels. However, PVP distinguishes itself by its
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distinct chemical properties, enabling effective interactions and carrying both hydrophilic
and lipophilic substances. Its advantageous capacity to adsorb substantial quantities of
water [97,98] allows PVP to function as a versatile carrier for hydrophilic and hydrophobic
fertilizers, pesticides, and water. Many studies present solutions for protection against vari-
ous pests. Some cases include hydrogels encapsulated with hazardous pesticides [30,31],
while others demonstrate more friendly encapsulated substances [47,57]. However, none
of the above approaches can be described as constituting a versatile carrier of hydrophobic
and hydrophilic substances with the capability to design the bulk material into versatile
shapes as capsules, seedling plates, coatings, and beads. Moreover, none of the approaches
are officially approved materials for food use. Our review focuses on PVA/PVP-based
hydrogels with the capability to achieve optimal strength, water content, and absorption
while minimizing transmissivity. These hydrogels are also designed to be shapeable [4]
and are adapted for potential agricultural applications. They are loaded with HP and/or
thymol and maintain neutral physiological pH conditions, showcasing a wide range of
pesticides, and can be shaped into conceptual forms including coatings, seedling plates,
capsules, and encapsulated granules or diluted to become sprayable liquids. Hydrogel
shapes are reinforced through physical or chemical cross-linking. The emphasis is placed
on the physical and chemical interactions within the hydrogel structures and their impact
on morphology, the stability of encapsulated substances, and subsequent release behavior.
In this review, patterns of pesticides and fertilizers released from PVA/PVP hydrogels
and derivatives were examined, considering those that are physically cross-linked, and
cases with chemical cross-linking were explored. This evaluation encompasses the study
of exchange effects and involves a direct comparison between these two methodologies.
Our investigation culminates with contemporary practical implementations of hydrogels
in safeguarding crops and plants as well as fostering their growth through protective and
fertilization functions.

2. Structural Chemistry and Classification of Agricultural PVA/PVP-Based Hydrogels

The fundamental structure of PVA/PVP hydrogels can be achieved through the es-
tablishment of physical hydrogen bonds between distinct homopolymer chains [99–101].
PVP acts as a highly effective proton acceptor [97,102,103], while PVA serves as a proton
donor [104]. The more complex structure involves chemical cross-linking, e.g., via glu-
taraldehyde, leading to the development of copolymer chains along the backbone or the
formation of acetals through interactions involving side chains, introducing possibly more
rigid structures [105–107]. However, both structures serve as excellent carriers and retainers
of water for plants, owing to their hydrophilic side groups. These structures can be loaded
with hydrophilic fertilizer and pesticide compounds, such as urea and HP, respectively, as
well as hydrophobic ones, like thymol.

In the scenario of hydrophilic loaded substances, their retained and slow-release
forms are primarily established through branched hydrogen bond interactions between
the polymeric caging structure of the hydrogels and these solutes. For instance, urea
fertilizer solute comprises amide groups, functioning as a physical cross-linker, while its
carbonyl head contributes to additional physical interactions regarding HP pesticide solute,
which has the capacity to engage in hydrogen bonding with PVA and form complexes with
PVP [108,109]. In the context of thymol, Van der Waals hydrophobic interactions are feasible
mainly with PVP due to thymol’s hydrophobic terpene side. Additionally, its hydroxyl
group stemming from the phenolic hydrophilic side can participate in hydrogen bonding
interactions (Figure 1 blue arrow). In scenarios involving the loading of multiple substances,
the possibility of additional interactions between them arises. For instance, the coexistence
of urea with HP can result in the formation of a complex [110]. Additional potential
hydrogen bond interactions can take place between thymol and urea [111]. However, given
that HP is recognized as a distinct oxidizer, the presence of thymol could potentially lead
to certain oxidative side reactions [112].
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Figure 1. Representative agricultural PVA/PVP hydrogel structures: PVA and PVP precursors (in
the red frame), physically cross-linked unloaded PVA/PVP (white arrow) and entrapped with HP
and urea (peach arrow), PVA/PVP/thymol (blue arrow), PVA/PVP/HP/thymol (green arrow),
chemically cross-linked PVA/PVP/HP (grey arrow) hydrogels.

3. Hydrogels as Carriers and Controlled Release of Pesticides, Fertilizers, and Water
3.1. PVA/PVP Hydrogel Carriers

Hydrogels were modified to transport both water-loving) hydrophilic (and water-
repelling (hydrophobic) pesticides and fertilizers [10,65]. This versatility is primarily
attributed to the binding capabilities of PVP with a wide range of substances [97]. Loading
of active materials can occur by two pathways. One involves a heated hydrogel precursor
solution, wherein the active ingredients are mixed, and the mixture is cured into its ultimate
form. This method is referred to as the in situ method. The second pathway involves
creating a pure hydrogel, which is then dried to remove water. The dried product is
immersed in an aqueous solution containing the active ingredient at room temperature.
Over time, the hydrogel absorbs the solution and swells until equilibrium is reached. This
is referred to as the swelling method (Figure 2A).

Gels 2023, 9, 895 6 of 26 
 

 

to water at room temperature, it forms a separate oil phase and does not undergo swelling 
within the hydrogel [114,115]. Recent studies effectively demonstrate the capacity of these 
hydrogels to carry significant amounts of pesticides and fertilizers, while maintaining 
their ability to absorb water [10,81,116–118]. 

 
Figure 2. Loading of active substances can occur either through (A) the swelling of hydrophilic and 
heat-sensitive materials or (B) the in situ entrapment of hydrophobic and more thermally stable 
substances. 

3.2. Controlled Release by PVA/PVP Hydrogel 
Upon  saturating  a  hydrogel  with  water, pesticide, or fertilizer,  cargo is released by 

various  pathways when the target comes into direct physical contact with the surface of 
the hydrogel. Subsequently, the active solutes or colloids undergo diffusion and directly 
adhere to the roots, foliage, crop shells, or pests of plants. Release is facilitated by a method 
involving direct contact. Another approach involves situating the hydrogel near its target 
with a controlled air gap. Over time, this arrangement enables gradual release of pesti-
cides or moisture vapor, establishing a localized environment around the plant. This in-
direct method enhances plants’ survivability and, correspondingly, their prosperity. Each 
approach encompasses advantages and disadvantages. On the one hand, direct contact 
efficiently conveys the released substances to their intended destination, resulting in rela-
tively minimal loss during release. On the other hand, subjecting plants or crops to direct, 
unbuffered doses of water, nutrients, or pesticides can lead to phytotoxic effects and po-
tential harm, including destruction. The indirect approach mitigates these severe side ef-
fects. Nonetheless, while this refined method helps alleviate issues, it may not always 
yield perfect results. Hence, the choice of the optimal method relies on the inherent resil-
ience of the plant or crop during its exposure as well as the effectiveness of the released 
substances, all within the context of the specific operational conditions. 

Our recent investigations encompass the release of HP pesticide through both direct 
and indirect methods. The HP release profile exhibited a dependency on the quantity of 
freezing–thawing cycles undergone by the physically cross-linked PVA/PVP hydrogels. 
The augmentation in cycles led to extension and modulation of the release [10]. Hydrogels 
containing a blend of HP and thymol enabled a swifter release of HP. This could be at-
tributed to the repulsive interactions occurring between these distinct types of molecules 
[65]. A novel aspect of our ongoing research reveals the reinforcement of a HP-entrapped 
hydrogel through chemical cross-linking utilizing glutaraldehyde under mild acidic con-
ditions. This cross-linking process led to a significantly prolonged release duration in 
comparison to a previous physical technique (Figure 3). This development holds signifi-
cant potential for providing plants and crops with sustained, long-term essential supplies. 
Nonetheless, the presence of unreacted glutaraldehyde residues poses potential risks to 
both human health and the environment. Consequently, further research is imperative in 
addressing the issue of residual glutaraldehyde (GA) within loaded hydrogels, all while 
ensuring the retention of loaded active substances. 

Figure 2. Loading of active substances can occur either through (A) the swelling of hydrophilic and
heat-sensitive materials or (B) the in situ entrapment of hydrophobic and more thermally stable
substances.



Gels 2023, 9, 895 6 of 26

The suitability of the loading method depends on the specific properties of the in-
tended substance. The swelling method is particularly suitable for loading hydrophilic
and less thermally stable ingredients, such as HP, which is miscible in aqueous solutions
and undergoes decomposition when exposed to heat [113]. Consequently, during swelling,
HP can readily permeate the hydrogel. Given that this process takes place at room tem-
perature, the pesticide maintains its stability. The active substance’s swelling rate within
the hydrogels is a parameter that must be considered. Conversely, hydrophobic and more
heat-resistant pesticides such as thymol are better suited for the in situ method. This is
due to thymol’s ability to create a uniform and stable mixture, resembling a lotion when
combined at moderate temperatures. Nonetheless, when thymol is exposed solely to water
at room temperature, it forms a separate oil phase and does not undergo swelling within the
hydrogel [114,115]. Recent studies effectively demonstrate the capacity of these hydrogels
to carry significant amounts of pesticides and fertilizers, while maintaining their ability to
absorb water [10,81,116–118].

3.2. Controlled Release by PVA/PVP Hydrogel

Upon saturating a hydrogel with water, pesticide, or fertilizer, cargo is released by
various pathways when the target comes into direct physical contact with the surface of
the hydrogel. Subsequently, the active solutes or colloids undergo diffusion and directly
adhere to the roots, foliage, crop shells, or pests of plants. Release is facilitated by a
method involving direct contact. Another approach involves situating the hydrogel near
its target with a controlled air gap. Over time, this arrangement enables gradual release
of pesticides or moisture vapor, establishing a localized environment around the plant.
This indirect method enhances plants’ survivability and, correspondingly, their prosperity.
Each approach encompasses advantages and disadvantages. On the one hand, direct
contact efficiently conveys the released substances to their intended destination, resulting
in relatively minimal loss during release. On the other hand, subjecting plants or crops
to direct, unbuffered doses of water, nutrients, or pesticides can lead to phytotoxic effects
and potential harm, including destruction. The indirect approach mitigates these severe
side effects. Nonetheless, while this refined method helps alleviate issues, it may not
always yield perfect results. Hence, the choice of the optimal method relies on the inherent
resilience of the plant or crop during its exposure as well as the effectiveness of the released
substances, all within the context of the specific operational conditions.

Our recent investigations encompass the release of HP pesticide through both direct
and indirect methods. The HP release profile exhibited a dependency on the quantity
of freezing–thawing cycles undergone by the physically cross-linked PVA/PVP hydro-
gels. The augmentation in cycles led to extension and modulation of the release [10].
Hydrogels containing a blend of HP and thymol enabled a swifter release of HP. This
could be attributed to the repulsive interactions occurring between these distinct types of
molecules [65]. A novel aspect of our ongoing research reveals the reinforcement of a HP-
entrapped hydrogel through chemical cross-linking utilizing glutaraldehyde under mild
acidic conditions. This cross-linking process led to a significantly prolonged release dura-
tion in comparison to a previous physical technique (Figure 3). This development holds
significant potential for providing plants and crops with sustained, long-term essential sup-
plies. Nonetheless, the presence of unreacted glutaraldehyde residues poses potential risks
to both human health and the environment. Consequently, further research is imperative
in addressing the issue of residual glutaraldehyde (GA) within loaded hydrogels, all while
ensuring the retention of loaded active substances.
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In the domain of fertilizer release and water retention, an investigation centered on the
encapsulation of urea granules [119] using PVA/PVP coatings unveiled significant insights.
The encapsulated urea granules displayed a controlled and extended release of urea relative
to the fast loss exhibited by uncoated counterparts [117]. These findings are consistent with
our investigations pertaining to the controlled release of pesticides [10,65]. Furthermore,
the amalgamation of Superabsorbent Polymers (SAP) with either PVA or PVP, when
integrated with soil and subsequently irrigated with a precisely measured water volume,
resulted in a substantial improvement in water retention. This improvement was notably
superior to the water retention observed in untreated control soil conditions [119–126].
This suggests that in prospective advancements of soil conditioners, the incorporation
of PVA/PVP composites is anticipated to play an impactful role as a significant additive
for soil conditioners. Figure 4 introduces an illustrative depiction of current agricultural
applications of PVA/PVP hydrogels and coatings, both in pesticides and fertilizers, and
their prospective potential as soil conditioners.
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4. Characterization

A vast amount of knowledge is available in the literature on the characterization of
PVA/PVP-based hydrogels. However, the majority of publications focus on their properties
in the context of medical uses [127–129]. This chapter provides a clear exposition of
characterization tools aligned with agricultural uses. FTIR–ATR spectroscopy constitutes
a fundamental technique for identifying functional groups, such as those indicative of
the typical cross-linking in hydrogels, as well as the presence of entrapped pesticides or
fertilizers. In addition, this technique has the capability to unveil unreacted precursors or
undesired side reactions [10,65]. When assessing the soil conditioning capability, several
pivotal equations are employed to ascertain a hydrogel’s polymer composition and water
content, which influence water swelling and retention properties. The gel content signifies
the proportion of polymers within the loaded hydrogel relative to its total mass. On the
other hand, the swelling degree or water absorbance refers to the ratio of polymer water
uptake (at equilibrium) with respect to its initial dehydrated state [130–132].

These properties can be monitored over time to obtain the swelling kinetics of hydro-
gels, which can be ascribed to the process of water molecule diffusion into the polymer
network, which continues until it attains an equilibrium state, while the time required
for this process to occur is assessed. The diffusion mechanism of small molecules into
hydrogels can be elucidated using the following relationship, as developed by Korsmeyer:
Ktn = Mt

M∞
. In this context, ‘Mt’ signifies the weight of water absorbed at a specific time ‘t’,

‘M∞’ corresponds to the weight of water absorbed at equilibrium, ‘K’ stands for the kinetic
constant, and ‘n’ serves as the diffusional exponent. The diffusional exponent ‘n’ provides
insight into the diffusion, transport, or release mechanism at play in the system. Three
fundamental diffusion scenarios can be employed to describe the water uptake behavior
in hydrogels:

1. Fickian diffusion: In this case, the rate of transport is notably slower than the relaxation
of the polymer chains. In such a scenario, the primary limiting factor affecting the
swelling of the polymer is the diffusion of water into the polymer network;

2. Case of rapid water diffusion: In contrast, here, the diffusion of water occurs at a
significantly faster rate compared to the relaxation process of the polymer network. In
this situation, the limiting factors for water movement are primarily associated with
the polymer relaxation process and the constraints imposed by the polymer network’s
swelling capacity;

3. Non-Fickian or anomalous diffusion: This scenario represents an intermediate case
where the diffusion of water and the relaxation rates of the polymer network are
approximately equal in magnitude. It is characterized by a more complex interplay
between diffusion and relaxation, leading to behavior that deviates from the typical
Fickian diffusion model.

These three diffusion cases provide valuable insights into the water uptake behavior
of hydrogels under different conditions and help elucidate the underlying mechanisms at
play. Regarding PVA/PVP hydrogels, it is observed that the water absorption mechanism
is predominantly governed by pseudo-Fickian diffusion. This behavior is characterized by
water absorption curves that resemble Fickian diffusion curves; however, the attainment of
the final equilibrium state occurs at a notably slower pace. In other words, while the initial
stages of water absorption may resemble Fickian diffusion, the hydrogels’ water uptake
eventually reaches equilibrium more gradually than what would be expected in a strictly
Fickian diffusion process [133–135].

Water retention quantifies the alteration in water weight when hydrogels are pre-
mixed within the soil. The objective of engineered soil conditioning hydrogels is to achieve
a low gel content, along with a high swelling degree and water retention capacity. This
combination results in the accumulation of a substantial water volume, which gradually
diminishes over time. This phenomenon holds the potential to provide an exceptional
irrigation resource for plants [119].
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The definition, adjustment, and characterization of the mechanical properties of these
hydrogels are pivotal aspects of their functional enhancement. Whether they are employed
as beads within soil or designed to support seedlings, both scenarios necessitate the abil-
ity to endure various loads and pressures while retaining their structural integrity and
shape [136,137]. Consequently, tests such as tensile strength and elongation at break tests
are conducted to ensure compatibility with the required levels of strength [81,138,139]. As
these hydrogels were intentionally crafted into different shapes intended for agricultural
products, their mechanical properties such as tensile strength and particularly rheology,
including viscosity and viscoelasticity, assume a significant role. In various fields, investi-
gations involving the composition of PVA/PVP hydrogels were conducted, incorporating
mechanical tensile strength and rheology measurements carried out with a universal testing
machine and rheometer, respectively. Shear rate tests were employed to characterize shear
behavior. Dynamic rheological studies were performed to ascertain the linear viscoelas-
tic range (LVR) of the hydrogels, encompassing amplitude sweep tests and strain sweep
measurements. The primary factors influencing the rheological properties of the hydrogels
were the composition of PVA/PVP and the number of freeze–thaw cycles. The viscosity
results suggest that polymer solutions containing PVA/PVP exhibit higher viscosity com-
pared to pure PVA, primarily due to the formation of strong hydrogen bonds, electrostatic
interactions, and entanglement between the compatible PVA and PVP compositions. When
prepared in high-gel-content solutions, these polymers exhibit a Newtonian shear flow
behavior, while those in low-gel-content solutions display a shear-thinning nature. The
non-Newtonian behavior of diluted solutions is a well-established phenomenon, attributed
to hydrodynamic interactions and chain extensibility [140]. These solutions can maintain
their properties even under high shear rates. The strain and frequency sweep measure-
ments confirmed the stable viscoelastic behavior of this polymer combination, attributed
to the presence of both G’ and G”. This combination promotes excellent flow properties,
resulting in the formation of elastic hydrogels. An increase in the number of freeze–thaw
cycles led to higher values for both G’ and G”, attributed to the formation of stronger
networks. As the PVP ratio increases (up to 6 W%), the hydrogels transition towards a
more solid-like gel form, gaining enhanced mechanical tensile strength and water retention
capabilities, albeit with a lower elastic modulus. However, when PVP increased above this
ratio, the mechanical strength declined. This transformation arises from the creation of
new cross-linked sections between PVA and PVP. In general, these hydrogels are highly
flexible and robust and capable of being stretched, curled, folded, and poked. They can
quickly return to their original state after the removal of an external force, indicating ex-
cellent resilience. Additionally, the hydrogels can accommodate local stress concentration
and have excellent puncture resistance, making them able to withstand inhomogeneous
deformation. Specifically, a rectangular-shaped hydrogel can bear a load of 100 g without
breaking or cracking, demonstrating its toughness [141–144]. These properties of flowa-
bility, elasticity, and mechanical strength are essential for molding hydrogels into desired
stable agricultural shapes.

The physical properties of PVA/PVP hydrogels, such as the degree of crystallinity and
miscibility, were determined through DSC analysis. The degree of crystallinity was found
to be significantly influenced by the ratios of PVA to PVP; higher PVA concentrations led to
intensified PVA crystal regions. DSC analysis also demonstrates a high level of miscibility
between PVA and PVP, indicating their cohesive and integrated properties [130]. This good
miscibility was also substantiated by morphology analyses using E-SEM and AFM, which
reveal a uniform surface texture and roughness, respectively. AFM and E-SEM are also
valuable for characterizing the shapes, sizes, and distribution of entrapped pesticides or
fertilizers, along with their morphological impacts on the surface of the hydrogels [10,65].

To further quantify the entrapped pesticides or fertilizers, a range of analytical methods
can be employed. The choice of method depends on the specific characteristics of the
analyzed agent and the method’s specifications. As an example, if the entrapped pesticide
undergoes a well-defined redox process like HP, its quantification can be achieved through
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titration with potassium permanganate. However, in the case of an entrapped pesticide with
strong UV absorption, such as thymol, quantification can be accomplished by measuring
absorption using a UV spectrophotometer.

In scenarios involving entrapment of multiple agents within the hydrogel matrix, it
is imperative to address factors such as reagent selectivity and the precise sequencing
of procedural steps. For instance, consider a scenario where both thymol and HP are
entrapped within a hydrogel. In this case, using a general oxidizer such as potassium
permanganate would lead to oxidation of both agents without differentiation. To address
this issue, specific indicators such as peroxide sticks may be employed initially to detect
the presence of HP. Thymol quantification can be conducted in a sequential manner [65].

The assessment methodology for fertilizers must align with the unique characteristics
of the given scenario. When aiming to identify the nitrogen source originating from
urea, which is encapsulated within PVA/PVP copolymeric coatings, the proven Kjeldahl
method stands out as the most appropriate choice. After determining the content of the
entrapped substance, a systematic process of sequential sampling over specific intervals
enables the construction of a release profile graph. This graph serves as a fundamental
tool for comprehending the way a pesticide or fertilizer is gradually released into a plant’s
surrounding environment. Hence, the release profile of the hydrogels can be fine-tuned to
match the specific needs of plants [10,80,118].

Thermal stability is an additional crucial factor. Many pesticides or fertilizers demon-
strate limited stability in their pure form. For example, thymol grains have a substantial
vapor pressure, making them volatile and leading to swift evaporation over a short pe-
riod [114,145]. HP naturally decomposes into oxygen and water over time or is rapidly
flushed away when dissolved in water [113]. Urea is another example; due to its instability
in the presence of water, it undergoes rapid hydrolysis and subsequent flushing [146,147].
Consequently, evaluating the role of these hydrogel casings in maintaining the stability of
entrapped agents can elucidate their significance in preserving these agents for extended
durations, especially under demanding conditions such as dynamic elevated temperatures
in TGA–MS, within a pre-heated isotherm incubator, or during exposure to rapid water
flushes [65,118].

The forthcoming discussion involves a comprehensive examination of the influence
of hydrogels on biological activity concerning their specific targets. Hydrogels, which
are formulated to enhance plant fertilization and irrigation, are assessed using inductive
approaches. This evaluation encompasses an analysis of various plant growth metrics,
including measurements of fresh and dry biomass, stem, and root elongation, as well
as quantification of the proportion of total nitrogen content within leaves and the dehy-
drated plant components [118,148]. A primary objective involves eradicating or preventing
proliferation of plant pests while also assessing the effectiveness of biocidal agents.

This evaluation can be conducted by direct measurements of the pests themselves
or indirectly by quantifying the observable signs of their activity on the host plants. The
studies we reviewed focusing on PVA/PVP hydrogels infused with pesticides showcased
the application of these assessment techniques against various pathogens [10,65].

An important consideration pertains to the complete life cycle of these hydrogels,
including preventing their accumulation and the potential environmental risks that might
emerge over time. This achievement is made possible through the biodegradation of
PVA/PVP compounds [130]. Several complementary methods are employed to evaluate
the biodegradability of these compounds. Soil burial is a commonly used technique for
degradation assessment. It involves placing hydrogels in soil under controlled conditions
that simulate natural degradation processes. The hydrogels’ dry weight loss over time
is measured, and the difference in weight is considered as the portion that undergoes
biodegradation [117]. To validate the biodegradation, the qualitative clear-zone method is
employed as a straightforward visual technique. This method involves observing a distinct,
clear area around microbial colonies. This clear zone is attributed to the enzymatic activity
of microorganisms, leading to the dissolution of the surrounding area. Furthermore, to
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quantify and identify microbial degradation, the plate screening method is utilized. This
technique involves isolating, identifying, and ranking bacteria based on their contribution
to the largest measured solubilized margins [130].

5. Conceptual Shapes of PVA/PVP-Based Hydrogels in Crops

Various techniques are viable for generating a range of applications using hydrogels.
One of the most widely used and scalable techniques for practical applications is solution
casting. This process involves pouring the bulk solution into an inert mold of the desired
shape or using a doctor blade to cast a thin film. This method is straightforward, allows
for easy adjustment of film thickness, is cost-effective, and can be employed with various
polymer components to produce homogeneous castings. Nonetheless, if a high level of
mechanical strength is required, this method may not be adequate [149–151]. Injection
molding is a molding technology that involves melting polymers using a screw and an
external heating device, followed by injecting the molten material into a mold to produce
the desired product as the mold cools. This process is repetitive, allowing for rapid
production, and it is compatible with both pure and composite materials. Injection molding
can create complex geometries with high precision. However, this method does face
certain challenges, including limitations in terms of suitable materials with appropriate
rheological properties, process complexities, and equipment-related challenges [152–154].
Compression molding is a closed molding process wherein raw materials are placed within
a cavity mold under controlled heat and pressure conditions to create a range of composite
products known for their relatively high mechanical strength. The preparation of raw
materials and the compression molding process, including specified applied pressures, heat
levels, and durations, are critical parameters that significantly influence the mechanical
performance of the final product. This method is highly reproducible and widely adopted
in industrial settings due to its cleanliness, cost-effectiveness, efficiency, and the fact that
it can be performed without solvents. However, because it necessitates pretreatment
of raw materials and involves multiple variables such as compression force, heat, and
duration, achieving optimal working conditions may require thorough investigation and
optimization [155–157]. Three-dimensional printing represents the most modern technique
among the four mentioned. It can be categorized into four primary printing methods:

1. Extrusion printing: In this method, continuous filaments serve as the building blocks;
2. Inkjet printing: This technique utilizes low-viscosity inks, often combined with in situ

or post-fabrication processing to achieve mechanically stable structures;
3. Stereolithography printing: Stereolithography employs photopolymerizable prepoly-

mer solutions;
4. Laser-assisted printing: Laser beams are employed to construct intricate structures

from ink droplets.

The primary advantage of 3D printing is its ability to create complex hierarchical
multi-material structures at a reduced cost. Additionally, these printers are user-friendly
and can be quickly adjusted to meet specific parameters. However, it is essential to prepare
printing formulas with precise rheological specifications to ensure the desired mechanical
structure. Furthermore, it is worth noting that, as of now, these printers have not yet
reached the levels of industrial output achievable by the traditional shaping methods
previously mentioned [158–160].

One approach involves creating uniform shapes that are laden with fertilizers and
pesticides. This section introduces specific configurations, including hydrogel coatings
infused with HP (Figure 5A,F). These coatings are produced by applying hydrogel precursor
solutions onto polymeric sheets using the Mayer rod technique [65,161]. The outcome is
the production of coated sheets, facilitating the creation of an atmosphere saturated with
active ingredient vapor or direct contact with the crops (Figure 5F). In cases where a bulk
form is required, castings are produced by pouring the hydrogel precursor solutions into a
designated mold with the desired shape [10]. The resulting castings manifest as hydrogel
seedling plates infused with HP and urea (Figure 5B,G) or as capsules loaded with thymol
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(Figure 5C,H). These structures possess the capability to release active substances into
the root systems of plants or emit fumes that envelop fruits, depending on the specific
configuration.
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Figure 5. PVA/PVP-based hydrogels composed of 15 w% PVA and 6 w% PVP engineered into various
forms for plant and crop protection: neat and loaded with 6 w% HP coatings on polymeric sheets
(A left and right, respectively), implemented as potato crop bags stored in 2–10 ◦C refrigerated room
(F). Seedling plates unloaded and loaded with HP (B left and right, respectively), for implanting
seedlings placed in greenhouse (temperature: 18–24 ◦C, relative humidity: 40–80%). (G). Capsules
loaded and unloaded (C left and right, respectively) with 5% thymol (w/w) anchored on banana
plantations are protected by net sheets and grow in mediterranean weather all year (H). Spray
formulation, unloaded and loaded with 5 w% thymol (D left and right, respectively) utilized on
seedling foliage placed in greenhouse (I); uncoated and coated encapsulations of fertilizer granules
(E left and right, respectively) implemented in plant soil placed in greenhouse (J).

An additional form comprises liquid hydrogel formulations derived from diluted PVA
and PVP precursor solutions incorporated with HP and thymol. These formulations are
specifically designed for direct spraying applications. The resultant solutions are applied
onto the foliage of seedlings, forming a protective coating (Figure 5D,I). An additional
form of encapsulation of urea granules constitutes an alternative technique for developing
safeguarded fertilizers, mitigating issues related to swift decomposition, leaching, or
evaporation (Figure 5E,J). This encapsulation methodology can be achieved by utilizing a
sugar-coating machine or through the application of a hot coat sprayer apparatus [162].

6. Recent Agricultural Applications and Results with PVA/PVP-Based Hydrogels

A plethora of studies extensively investigated the individual applications of PVA
and PVP within an agricultural context [52,163,164]. Nevertheless, the amalgamation
of PVA and PVP (PVA/PVP) for agricultural purposes remains relatively novel. As a
result, there is a lack of comprehensive works in the literature on these hydrogels and
their derivatives. The present review encompasses a range of studies, including both our
recent contributions and research conducted by other groups. A recent study introduces the
development of Nervilia fordii extract-loaded electrospun PVA/PVP nanocomposites for
antioxidant packaging [130]. This innovative approach holds the potential to revolutionize
agrifood preservation by providing nanofibers with a significantly increased surface area,
leading to superior spatial antioxidant release compared to traditional bulk hydrogels.
Furthermore, the resulting morphology of these fibers remained unchanged when loaded
with antioxidants, in contrast to the discussed loaded hydrogels, which exhibited significant
morphological changes compared to their unloaded counterparts. Both our work and the
aforementioned study offer efficient loading methods, improved thermo-stability of active
substances, and promising results for applications in preserving tested products.

These studies shed light on the various pesticidal capabilities of these hydrogels
and their derivatives against crop viruses and fungi [4,32]. Additionally, these hydrogels
function as carriers for fertilizers with promising results for plants growth [39,41,63],
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enabling their controlled and gradual release. A correlated and advantageous outcome
of hydrogel utilization, which holds true in this specific case as well, is the capacity to
retain water and subsequently release it over a period. This stands in contrast to scenarios
involving irrigation without the incorporation of hydrogels into soils, where water tends
to seep rapidly, leading to its loss. Hence, it is conceivable that this could serve as a
potential enhancer for soil conditioning. The applications were executed through diverse
preparations and formulations of the PVA/PVP composition, tailored to suit various
purposes (Table 1).

Table 1. Hydrogels and their PVA/PVP derivatives, designed for agricultural applications or pos-
sessing properties suitable for agricultural use.

Hydrogel Type Application Method Purpose Reference

Physical cross-linked PVA/PVP loaded
with hydrogen peroxide

Loaded hydrogels in direct contact
with the virus or exposure via

released vapor

Virucide: eradication of
Tomato Brown Rugose Fruit

Virus (ToBRV)
[10]

Physical cross-linked PVA/PVP loaded
with varied thymol and hydrogen

peroxide ratios

Hydrogel coatings placed on top of
hay

Fungicide: prevention of mold
growth on hay [65]

Physical cross-linked PVA/PVP Coatings encapsulated urea
granules

Slow-release fertilizer and soil
conditioner [118]

Chemical cross-linked PVA/PVP with
epoxy resin and zeolite Membrane slow release of urea Slow-release fertilizer [81]

Chemical cross-linked with biochar
copolymer PVA/PVP

Coating material encapsulates urea
granules Slow-release fertilizer [117]

Physical cross-linked
Chitosan/PVA/PVP

Films loaded with chitosan
nanoparticles

Fungicide: prevention of
fungus growth on strawberry [165]

Chemical cross-linked PVA/PVP Films loaded with plant extracts Broad-band antimicrobial
activity [166]

Physical cross-linked PVA/PVP Coatings encapsulate urea Slow-release fertilizer [167]

Physical cross-linked PVA/PVP
Films loaded with cyanine
derivatives and their Cu

2+

complexes

Broad-band antimicrobial
activity [168]

Physical cross-linked PVA/PVP/Glycerol Coated seeds loaded with
pro-microbial inoculant

Plant growth-promoting
bacteria [169]

PVA/PVP/Cellulose Films loaded with ZnO and
cellulose Antimicrobial activity [170]

Physical cross-linked PVA/PVP Films loaded with ZnO:Fe modified
with vitamin C nanoparticles

UV protection and
antimicrobial activity [171]

Physical cross-linked PVA/PVP Films loaded with anthocyanin UV and visible radiation
protectant [172]

Chemical cross-linked CMC/PVA/PVP Nanofiber mats Moisture reducer: fruit and
vegetable preservatives [173]

Physical cross-linked PVA/PVP/PEG Coatings loaded with celery leaf
extract on aluminum foil Insect repellent [174]

Chemical cross linked PVA/PVP Microneedles loaded with
epsilon-poly-L-lysine

Reduction of fungal infections
in citrus fruit pericarp [175]

Physical cross-linked PVA/PVP Protective solution for the
preparation of silver nanoparticles Antimicrobial activity [176]

Physical cross-linked PVA and PVP Coated seeds loaded with
pro-microbial inoculant

Plant growth-promoting
bacteria [177]
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Table 1. Cont.

Hydrogel Type Application Method Purpose Reference

Physical cross-linked PVA/PVP Films loaded with CuO Antimicrobial activity [178]

Physical cross-linked PVA/PVP
Films loaded with

OrmocarpumCochinchinense Leaf
Extract

Antifungal and antimicrobial
activity [179]

Physical cross-linked PVA and PVP Encapsulation of living bacteria in
dry coatings Bioremediation [180]

Physical cross-linked PVA and PVP Nanofibers loaded with hormones Plant growth-promoting
hormones [181]

Physical cross-linked PVA/PVP Nanoribbons loaded with
magnesium oxide Soil enrichment [182]

Physical cross-linked PVA/PVP Nanofibers General use in agriculture [183]

Physical cross-linked PVA/PVP Nanocomposite films loaded with
crystalline nanocellulose Food packaging [184]

Representative results from our recent studies demonstrated the effective results of
these hydrogels against various pests as shown in Figures 6–9, respectively [65,116].
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precursor, black) or PVA/PVP/HP-thymol (0.63% each of HP and thymol precursors, orange) present
coatings with entrapped anti-mold components.
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7. Sustainability

Conventional agricultural methods involve extensive utilization of water, fertiliz-
ers, and pesticides. However, a significant portion of these resources go to waste due to
processes such as seepage, evaporation, and rapid decomposition. This accumulation of
residues over time has a notable adverse impact on the surrounding environment [185]. Hy-
drogels, especially those composed of PVA and PVP, exhibit exceptional capacity in terms
of stability, retention, and controlled release of water, fertilizers, and pesticides [10,65,118].
Consequently, broadening their application presents a viable alternative for resource preser-
vation. PVA/PVP hydrogels, particularly in their physically cross-linked state, demonstrate
convenient reversibility. Application of mild heat is adequate to dissolve them back into
their initial precursor solutions [186]. These solutions possess the capacity to undergo
both regelation and reloading procedures. These inherent properties significantly enhance
their potential for repeated utilization, resulting in a decreased demand for raw materials
or active ingredients [187]. Regarding chemically cross-linked PVA/PVP hydrogels, the
covalent bonds formed within these hydrogels are of a permanent nature and exhibit
irreversibility [188]. Nevertheless, these rigid structures acquire enhanced capability for
retaining and prolonging the release of active substances, such as pesticides Figure 3.

Several parameters exert influence over biodegradation. Previous studies conducted
long ago provide insights into the separate biodegradation characteristics of PVA and
PVP components, enhancing our understanding of their respective degradation behav-
iors [88,189]. PVA has a well-known biodegradation mechanism and, which exhibits
favorable results [190], while PVP shows relatively high resistance due to its pyridine cycle,
which is considered relatively inert and less susceptible to microbial digestion. Subsequent
investigations addressed the biodegradation of combined components. The influence of
the PVA-to-PVP ratio on this process was examined, revealing that as PVP becomes more
predominant, the extent of biodegradation decreases [130]. This outcome is consistent with
the findings of earlier studies focused on investigating each component individually. Both
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the type and intensity of cross-linking are parameters that directly influence the rate of
biodegradation. Chemical covalent cross-linking is notably more stable compared to physi-
cal cross-linking, which confers greater resistance to microbial degradation. Furthermore,
whether achieved through physical or chemical cross-linking, increasing the density of
cross-linking leads to heightened resistance against biodegradation in both cases [191].

Microbiome composition is an additional parameter, and the isolation of various
bacteria involved in the degradation process reveals that the dominant microbe responsible
for PVA/PVP degradation is the Pseudomonas putida strain. The microbe’s prosperity
depends on the soil type in which the hydrogels are buried. Various soil types possess
unique compositions and physical properties, leading to diverse ground conditions that
can influence the inhibition of different microbiomes. Accordingly, a study effectively
illustrated the impact of rich clay soil containing a dense microbiome, which expedited
the biodegradation of PVA/PVP hydrogels. In contrast, when comparable hydrogels were
introduced into nutrient-poor sandy soils, they exhibited inferior levels of biodegradation
activity [24]. This description pertains to the biodegradation of the hydrogel casing.

Another crucial aspect involves the material released by biodegradation. Both pesti-
cides and fertilizers are distributed to cover the surroundings of plants, with only limited
amounts taken up by the plants themselves. The remaining residues have the potential
to pose environmental risks [185,192,193]. Consequently, numerous efforts are focused
on identifying environmentally friendly alternatives. An example of such an alternative
pesticide is HP, which undergoes spontaneous decomposition over time, yielding oxygen
and water. As a result, no toxic residues are left behind [194]. Another viable alternative
is the use of the natural essential oil thymol. Thymol either exhibits negligible residue
formation, as it undergoes rapid photodegradation when exposed to sunlight and water, or
degrades when buried in soil. A significant portion of thymol tends to dissipate prior to
degradation, attributed to its high volatility [70,195]. Our recent investigations showcase
PVA/PVP hydrogels entrapping diverse ratios of HP and thymol, which exhibit remarkable
biocidal efficacy against Tomato Brown Rugose Fruit Virus (ToBRFV) and mold [10,65].

We conclude by addressing the sustainability of fertilizers in relation to PVA/PVP
hydrogels, with a specific focus on nitrogen, a pivotal element for plant growth. Urea, a
prevalent nitrogen source, is widely recognized as a biodegradable plant nutrient. Plants
can directly assimilate urea through their foliage or indirectly acquire ammonium and
nitrate ions, byproducts of urea biodegradation, through their roots. This process takes
place through the enzymatic activity of urease present in the soil microbiome, facilitated
by the presence of water. Urea undergoes rapid hydrolysis, producing ammonia, which
is readily available for plant uptake [146,196]. A comprehensive study was conducted
to examine the effects of encapsulating urea with PVA/PVP coatings on the growth of
Chinese kale plants. These coatings effectively minimized ammonia evaporation, providing
a more sustained and favorable supply of ammonia for plant uptake. Consequently,
plants treated with encapsulated urea exhibited enhanced development and a healthier
appearance compared to those exposed to conventional urea granules [118]. Figure 10
visually represents these sustainability aspects.
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8. Conclusions and Outlook

Agricultural practices have undergone progressive industrialization and intensified
utilization of fertilizers, pesticides, and irrigation systems to fulfil the escalating global
food demand. There is a necessity to establish regulatory frameworks and optimization
strategies governing the precise allocation of these resources in alignment with the requi-
site nourishment of plants, considering both environmental sustainability and economic
prudence. Hydrogels are recognized for their potential to effectively fulfil plant needs
while also preserving the environment and valuable resources. PVA/PVP hydrogels exhibit
well-known characteristics such as extended release of essential substances and possible
controlled irrigation of plants. What sets this combination apart is its unique ability to
create various shapes using only physical cross-linking in many applications, which is
more environmentally friendly compared to chemically cross-linked hydrogels. Nonethe-
less, the hydrogels can potentially be enhanced through chemical cross-linking if an extra
level of strength is desired. Adjustment of the PVP ratio allows for regulation of water
absorption and transmissivity, enhancing compatibility with a wide range of entrapped
chemical compounds.

Hence, PVA/PVP combination provides a convenient way to adjust these hydrogels for
diverse agricultural applications. These hydrogels were suggested to be synthesized using
various preparation techniques, which encompass methods such as irradiation, chemical
cross-linking, and physical cross-linking via freeze–thaw cycles. The choice of method
depends on the desired properties of the hydrogels. Subsequently, these properties were
evaluated from both physical and chemical standpoints, and their impact on biological
activity was investigated.

The reviewed studies effectively demonstrate the advantageous attributes of PVA/PVP-
based compositions across various applications in the realm of plants and crops. This lends
support to the potential of extensive utilization of such compositions in agricultural prod-
ucts. Nonetheless, several challenges persist. PVP’s resistance to degradation results in
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its persistence and accumulation. Conventional polyolefins exhibit considerably lower
costs in comparison to PVA and PVP. Moreover, chemical or irradiation-cross-linked rein-
forcement of PVA/PVP-based hydrogels diminishes their susceptibility to biodegradation.
These cross-linking methods are also occasionally prone to side reactions and can cause the
deterioration of entrapped substances.

Considering the challenges, practical and commercial implementation of PVA/PVP-
based agricultural applications could be facilitated by achieving a delicate equilibrium
between the extent and nature of cross-linking with a preference for physical cross-linking.
In addition, exploring the feasibility of reusing hydrogels for successive activity cycles by
replenishing with fresh portions of active substances may prove advantageous. Moreover,
employing minute quantities of additives such as thin coatings or enhancers for soil
conditioners could be a viable approach for mitigating consumption of raw materials.
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