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Abstract: Polymer gels are a valuable class of polymeric materials that have recently attracted
significant interest due to the exceptional properties such as versatility, soft-structure, flexibility and
stimuli-responsive, biodegradability, and biocompatibility. Based on their properties, polymer gels
can be used in a wide range of applications: food industry, agriculture, biomedical, and biosensors.
The utilization of polymer gels in different medical and industrial applications requires a better
understanding of the formation process, the factors which affect the gel’s stability, and the structure-
rheological properties relationship. The present review aims to give an overview of the polymer
gels, the classification of polymer gels’ materials to highlight their important features, and the recent
development in biomedical applications. Several perspectives on future advancement of polymer
hydrogel are offered.
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1. Introduction

Polymer gels are a versatile, soft, semi-solid class of materials with an intermediate
consistency between liquid and solid states. Their cross-linked network can form cavities
of different shapes and sizes, in which various molecules and drugs can be trapped [1,2].
The applications of polymer gels are determined by different factors that (i) influence the
formation process, (ii) influence the stabilities of gels, and (iii) the relationships between
their unique structure and rheological properties. In everyday life, polymer gels are often
found in food products (cakes or sausages, ketchup, cheeses), in personal use (cosmetics,
shampoos, toothpaste, shaving cream), medical products (tissue engineering, coatings for
medical devices, contact lenses, transdermal drug delivery, wound dressing, drug delivery
systems), or in various industrial products (adhesives, paints, asphalts), in the sensor
industry, and in environmental protection [3–5].

In 1894, van Bemmelen introduced the term “hydrogel” [6]. Later, in 1960, Wichterle
and Lim described a cross-linked hydrogel based on poly (2-hydroxyethyl methacrylate)
(HEMA), which can be applied to the manufacture of contact lenses, drug carriers, and
to treat osteoporosis [7]. In 1980, Lim and Sun fabricated a micro capsular membrane
composed of cross-linked alginate for use in cell engineering [8]. One year later, a new
material for use in wound dressing was developed. This material, based on the natural
polymer, collagen, drew attention to the use of polymeric hydrogels for various potential
applications [9].

Polymer gels are systems formed by a polymer and a solvent in the arrangement of
a three-dimensional (3D) cross-linked polymeric network. Depending on the variation
of the external environment, like physical stimuli (temperature, electric and magnetic
field, light, pressure) and/or chemical stimuli (pH, ionic strength, molecular species, and
solvent composition), the polymer gels can discontinuously and reversibly change their
volume [10,11]. Polymeric gels have the capacity to absorb a significant amount of water
(tens to hundreds of times greater than the polymer itself) or biological fluids due to
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the existence of a hydrophilic component [12,13]. The polymer gel can swell until an
equilibrium state is established between the osmotic forces and the ability to expand the
polymer chains [14–16]. The swelling capacity of the functional polymer gels arises from
their hydrophilic functional groups that are attached to polymer chains, and from the cross-
links between the polymer chains. This leads to a dissolution resistance in polymer gels.
Due to a “soft” intermediate state, the polymer gels display a finite shear viscosity [17,18].
This review is focused on analysis of the main characteristics of polymer gels, scrutinizing
the results of the latest research, and their biomedical applications as undertaken during the
last few years. From Wichterle’s revolutionary work [7] to the newest polymer gel-based
developments and tenders, the present review article offers the reader a detailed overview
of this area and an outlook regarding further potential developments.

2. Classification of Polymer Gels

Polymer gels can be classified in different categories:
(i) based on their sources: natural or synthetic origin (Figure 1) [15,19].
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Figure 1. Type of materials used for synthesis of hydrogel based on their origin [15].

(ii) based on polymeric composition: homopolymeric, copolymeric, or multipolymeric
interpenetrating polymer gels.

(iii) based on type of cross-linking: chemically or physically cross-linked [20].
(iv) based on physical appearance: amorphous (non-crystalline), semicrystalline,

or crystalline.
(v) according to network electrical charge: non-ionic (neutral), ionic (anionic or

cationic), amphoteric electrolyte (containing both acidic and basic groups), or zwitteri-
onic (containing both anionic and cationic groups in each structural repeating unit).

In Figure 2 is represented the schematic illustration of the different categories used for
polymer gels classification.
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2.1. Classification Based on the Polymeric Composition
2.1.1. Homopolymeric Polymer Gels

These materials are obtained using a single species of monomer. Depending on the
source of the monomer and the polymerization technique, their structure can be skeletal
cross-linked. They can be arranged in a block, alternating, or random configuration [21].

2.1.2. Copolymeric Polymer Gels

Copolymeric gels are formed by two or more different monomers that have at least
one hydrophilic part [22–25].

2.1.3. Multipolymer Interpenetrating Polymer Gels (IPN)

This polymer gels type is formed by a cross-linked polymer and a non-cross-linked
synthetic and/or natural component polymer [26–28].

2.2. Classification Based on Type of Cross-Linking
2.2.1. Gels Physically Cross-Linked

Physical gels present multiple advantages as they are easier to be obtained and no
cross-linking agents being necessary. They can be formed by a physical (hydrogen) bond,
by crystallization, by ionic bonds, by self-assembly of small molecules, and by mechanical
dispersion. Physical cross-linking is preferred to chemical cross-linking, when it is possible,
to avoid the residual toxicity of chemical additives. Polymer gels can be obtained in the
form of aerogels, cryogels, hydrogels, xerogels, nano and microgels, films, or composite
materials with micro- and nanoparticles.

The molecular forces that act between the constituents of the “soft” matter depend on
the size of the polymer particles and the nature of the medium in which they are dispersed.
They include hydrogen bonds, intermolecular associations through van der Walls bonds,
hydrophobic interactions, electrostatic interactions, polymer interchain interactions, or
local crystallite formation.

Physically cross-linked gels are reversible gels, with temporary bonds between the
polymer chains that appear following changes in temperature, pH, or solvent composition.
They can be used in different fields including biological applications (biomedicine, drug
administration, diagnostic carriers, joint replacement) or for technological applications
(food additives, fuel additives, cosmetics, detergents, lubricants, paints) [29–35].
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2.2.2. Gels Chemically Cross-Linked

Chemical gels are formed by the covalent cross-linking of existing polymer chains,
which ensures a permanent bond between them [36]. Chemically cross-linked gels are also
called irreversible gels. They are usually obtained by four methods:

(i) cross-linking by polymerization, which can be done by addition, condensation,
photopolymerization, with free radicals, with electromagnetic radiation, and with plasma.

(ii) polymerization by condensation.
(iii) addition polymerization.
(iv) cross-linking of the polymer chain in random or end-linking processes.
The advantages of polymer gels obtained by addition and condensation are caused by a

multifunctional cross-linking agent reacting with the monomer units, thereby initiating the
development of the chain. The polymer gels produced in the presence of electromagnetic
radiation have the advantage that they can be made at room temperature and physiological
pH, even without the addition of a cross-linking agent.

The gels obtained by anionic or cationic polymerization are sensitive to water and,
therefore, their use has the disadvantage that they are limited to non-polar monomers,
not being able to obtain hydrogels. The degree and type of cross-linking can induce
changes in some properties of the network, such as swelling, elasticity, and transport
properties [29,37–41].

The types of “bonds” that are formed and the cross-linking methods used establish
the physicochemical characteristics of the polymer gels. They have distinct advantages
and disadvantages. Table 1 shows the main advantages and disadvantages of physical and
chemical cross-linking.

Table 1. Advantages and disadvantages of physical and chemical cross-linking.

Type of Cross-Linking Advantages of Polymer Gels Disadvantages of Polymer Gels

Physical cross-linking

â is a homogenous reversible gel.
â is formed by molecular entanglements,

H-bonding, ionic, or hydrophobic
forces.

â it can be dissolved by changing the
environmental conditions (ionic
strength, pH, temperature).

â the gelation process occurs under mild
conditions.

â absence of any chemical cross-linking
agents.

â the preparation method does not use
chemical modification.

â is less toxic.
â led to inconsistent in vivo performance.
â the presence of hydrophilic and

hydrophobic areas.
â can easily incorporate bioactive

molecules.

â lower bond energy.
â lower cross-linking degree.
â weak viscoelastic properties.
â weak bonds.
â less stable against degradation.
â poor mechanical properties.
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Table 1. Cont.

Type of Cross-Linking Advantages of Polymer Gels Disadvantages of Polymer Gels

Chemical cross-linking

â is a non-homogeneous permanent or
irreversible gel.

â covalent cross-linking bonds.
â it may be charged or non-charged

depending on the nature of functional
groups from their structure. The
charged polymer gels (i) generally
reveal changes in swelling at pH
variation, or (ii) they can suffer changes
in shape when it is subjected to an
electric field.

â forms strong polymer gel bonds.
â satisfactory viscoelastic properties.
â an increased resistance to degradation.
â it is prepared using chemical

modification.
â it is flexible to dissolution, degradation,

and chemical modification.
â better mechanical properties.
â it can be used in cosmetics,

pharmaceuticals, medicine, food
industry, and agriculture.

â the presence of toxic agents in the
synthesis process.

â it must be washed in order to
remove the residue.

2.2.3. Gels Cross-Linked by Ionizing Radiation

Ionizing radiation is a useful, effective, and clean tool for obtaining polymer gels for
biomedical applications [42–45]. The main advantage of this process is the efficacy of the
ionizing radiation at room temperature, and its ability to process any kind of physical
material. Using this technique, no residual toxic chemical reagents remain in the final
product. Moreover, polymer gels can be sterilized with the cross-linked process at the
same time.

2.3. Classification Based on the Source of the Used Precursor
2.3.1. Synthetic Gels

Synthetic gels show adaptable mechanical and degradation characteristics and have
multiple applications in engineering and materials science [46–48]. This type of poly-
mer is often used in regenerative medicine, bioprinting, energy storage, or drug de-
livery. Some of the most common polymer gels are based on PEG (poly(ethylene gly-
col)) [49], PVA (poly(vinyl alcohol)) [50], PMMA (poly(methyl methacrylate)), PHEMA
(poly(hydroxyethylmethyl acrylate)) [51,52], polyurethanes, poly(amino acids), and PVP
(poly(vinyl pyrrolidone)) [53].

Synthetic polymer gels are specifically designed to imitate biopolymers from or-
ganic forms. They have been configured and developed with well-designed functions
for various applications, including industrial ones. Thus, both “stimuli-sensitive” and
“environmentally sensitive polymers” can be found. They could have the ability to respond
to insignificant changes in the environment. The capability of these polymers can be seen
in both the rapid changes of their structure and in the reversibility of the phase transitions.
These transitions can be of different types, like sol-gel transitions, changes in solubility,
shape, surface properties, or the formation of complex gels [54,55].
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2.3.2. Natural Polymer Gels

Natural polymer gels contain biopolymers like polysaccharides (xanthan gum, algi-
nate, starch, chitosan), proteins (fibrin, collagen, or gelatin) or polynucleotides, that are
found in living organic systems as main components [56–59]. Bio-based polymer gels
have unique and diverse characteristics, the most important being the biodegradability
and biocompatibility compared to synthetic hydrogels. Due to their versatile properties,
these polymeric gels have led to a significant and growing interest in the field, due to their
connection with the natural environment and new and attractive functionalities.

To make gels with different shapes and structures, several types of gelators with dif-
ferent molecular weights can be combined to obtain supramolecular hybrid hydrogels [60].

The mixture between natural and synthetic polymers leads to hybrid hydrogels. These
are functionalized materials with unique attributes capable of incorporating the benefits of
both types of included polymers, like biodegradability, a good control of rigidity, viscosity,
and high strength [61,62].

A schematic representation of various type of polymeric hydrogels is illustrated in
Figure 3 [63].
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3. Type of Stimuli-Responsive Polymer Hydrogels

Polymer hydrogel can be considered a smart material in relation to multiple applica-
tion. It can be synthesized to respond to different stimuli in the human body, like ionic
strength, pH, and/or temperature. These triggered mechanisms can be used to release
drugs or bioactive compounds. A schematic representation of phase transition of a polymer
hydrogels in response to different stimuli is given in Figure 4 [64].
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3.1. Thermoresponsive Polymer Hydrogels

It was demonstrated that a small change in temperature can affect the equilibrium
between hydrophobic and hydrophilic polymer segments by causing a sol-gel phase transi-
tion [65]. These kinds of polymer hydrogels are a category of the supramolecular hydrogels
that are transformed in gels through hydrophobic interactions. Due to the property to form
gel at higher temperatures and to return to a liquid state at lower temperatures, they can be
used as biocompatible injectable thermogels [66].

Lee et al. [67] demonstrated that the administration by subcutaneous injection of
human C-peptide conjugated with an elastin-like biopolymer (K9-C-Peptide) develops a
hydrogel depot that can slowly release the human C-protein into the circulatory system
over 19 days. It was demonstrated the long-term influence on hyperglycemia-induced
vascular dysfunction by applying an aortic endothelium prototype in diabetic mice.

Dong et al. [68] synthesized an injectable thermo-sensitive chitosan hydrogel that has
been incorporated into a 3D-printed poly(ε-caprolactone) (PCL)-based scaffold in order to
create a hybrid scaffold. The obtained materials maintained durable compressive strength
and provided a promising micro-environment useful for cell growth and in osteogene-
sis. The 3D scaffold can be further used as a possible bone defect repair for in vivo and
subchondral applications.

Cao et al. [69] reported the first development of a transdermal hydrogel made of
5-aminolevulinic acid for use in photodynamic therapy for skin disease. Two triblock
copolymers–poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(d,l-lactide-co-
glycolide) of different block lengths are produced by changing the blending ratio and
using both sol–gel transition and gel–sol transition of a thermogelling arrangement. This
research has proved that the formation of the “block blend” biomaterials is possible and
this suggests further development of more intelligent drug delivery systems.

3.2. pH-Responsive Polymer Hydrogels

Polymer hydrogels, which are pH-responsive, are a group of biomaterials that were
bonded with polymer chain acidic or basic groups, and which demonstrate suitable physical
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or/and chemical properties in a certain pH domain. The importance of pH-responsive
polymer hydrogels is due to their swelling reaction in response to the pH of various body
organs, the digestive system, or fluids [70–72]. The variations of pH in different parts of the
digestive system are very important. In this regard, the pH-sensitive profile of the marine
polysaccharide fucoidan–chitosan (FUC-CS) system prevents degradation under acidic
gastric conditions and ensures an efficient drug absorption in the intestine [72,73].

Suhail et al. have developed pH-responsive hydrogels of carbopol, chondroitin sul-
phate, and polyvinyl alcohol using the free radical polymerization method with acrylic
acid in the presence of ammonium persulphate and ethylene glycol dimethylacrylate for
oral controlled drug delivery [74]. They demonstrated the capability of the developed
pH-sensitive polymer hydrogel to obtain maximum swelling and drug release at two pH
values (4.6 and 7.4, respectively). No cytotoxic effect was observed on human cancer cells
in the colon. The pH-responsive hydrogels have the property to protect the stomach from
harmful drug side effects and to preserve the drug from the acidic medium in the stomach.

Schoener et al. [75] have developed a pH-responsive polymer hydrogel based on
poly(methacrylic-grafted-ethylene glycol) with various amounts of hydrophobic PMMA
nanoparticles. They demonstrated the ability of the hydrogel to hold different amounts
of doxorubicin, and to locally release doxorubicin in the colon for use in the treatment of
colon cancers. Low pH was applied to simulate the pH of the stomach and then altered
to neutral conditions to mimic the upper small intestine. No cytotoxic effect was detected
using gastrointestinal tract and colon cancer cell lines, from either varying concentration or
times of exposure.

Another study demonstrated that a developed pH-responsive hydrogel using acry-
lamide and methyl acrylic acid in the presence of N-N′-methylene bisacrylamide by free
radical polymerization could be used as a useful oral site-specific release platform to deliver
gastric-sensitive bioactive material to the small intestine route [76].

In Figure 5, the schematic representation of the pH-responsive polymer hydrogel,
ascribed to a minimum swelling ability in a simulated gastric pH, and a significant swelling
and release of theophylline as drug in the simulated intestinal pH for absorption of the
loaded prototype drug, is shown.
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3.3. Light and Chemical-Responsive Polymer Hydrogels

Light-responsive polymer gels are promising biomaterials with potential for use as
sensors [77] or for drug delivery [78], based on their activation by light.

Anugrah et al. [79] has developed a near-infrared-responsive polymer hydrogel based
on alginate cross-linked with tetrazine via the Diels–Alder reaction as a controllable drug
carrier. A near-infrared sensitive indocyanine green and doxorubicin were included in
the polymer hydrogel matrix through gelation. The obtained hydrogels demonstrated a
controlled release profile under simulated physiological conditions and a rapid release
profile of doxorubicin under near-infrared irradiation. The near-infrared-light promoted
the generation of reactive oxygen species caused by indocyanine green, which subsequently
released the entrapped doxorubicin.

Wang et al. [80] has succesfuly incorporated a fluorescent carbon nanoparticle into
poly(N-isopropylacrylamide-co-acrylamide) nanogels via the one-pot precipitation copoly-
merization method. The resultant hybrid nanogels can bring together properties for cell
imaging, fluorescent temperature sensing, and near-infrared responsiveness for drug
delivery systems by accelerating the drug release and by enhancing its therapeutic effi-
ciency. Subjected to laser excitation, it was proved to light up melanoma B16F10 cells from
a mouse.

4. Structure-Effect Relationship

The assessment of the relationship between the structure and its effect is extremely
important for selection of specific applications (Figure 6). The swelling behaviour and
mechanical properties are very important when determining a relationship between these
properties and the structural parameters of polymer hydrogels.
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4.1. Mechanical Properties

The cross-linked density and the water content determine the mechanical properties of
a polymer gel. The mechanical properties of polymer gels are determined using rheological
analysis used to measure the viscoelastic properties. When stress is applied to a sample,
the response under deformation is measured.

A dermal filler hydrogel was synthesized using hyaluronic acid cross-linked with
polyethylene glycol diglycidyl ether and containing calcium hydroxyapatite, glycine, and
proline [60]. The physical-chemical characterization was carried out by measuring G′

(elastic modulus), G” (viscous modulus), and tan δ (phase angle tangent). This showed
similar trends under different thermal conditions. The results showed that the product
was not affected by storage conditions. It highlighted that the material has a pseudoplastic
behaviour (non-Newtonian shear thinning) and that the viscosity of the dermal filler
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decreased with the increase of the shear rate, under all the conditions in which it was
tested [60]. The characteristics of this hyaluronic acid hydrogel make it recommendable for
use in the cosmetic industry as a filling material for facial rejuvenation by forced injection
through a needle into the tissues.

A hybrid hydrogel was made using a mixture of synthetic and natural polymer
building blocks (gelatin and PAOx used as precursor materials). These polymers were
chosen to use a combination of the mechanical stability of synthetic polymers with the
cell-interactive properties of natural polymers [81]. Thiolated gelatin (SH-gel) was prepared
and a hybrid hydrogel obtained using thiolene radical crosslinking, which ensured the
interconnectivity of PAOx and gelatin precursors. Figure 7 shows the formation of the
hybrid hydrogel composed by gelatin and functionalized with thiol and PAOx, which have
been functionalized with alkene. The obtained material showed an increased mechanical
stability as well as a thermosensitive behaviour at temperature variations around 30 ◦C [81].
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4.2. Polymer Hydrogel Swelling Properties

The swelling behaviour of biopolymer hydrogels can be described using simulated
biological fluids. The swelling properties depend on pH, ionic strength, and tempera-
ture [82]. The free and bounded water in relation to the total water content indicated the
swelling properties. The water content can be established using thermal analysis methods.
By knowing the swelling properties, the degree of crosslinking, the mechanical properties,
and the rate of degradation can be calculated.

4.3. Porosity

Porosity has a significant role in the applications of polymer hydrogels. The swelling
and release rate of drugs are influenced by the network porosity of polymer hydrogels [83].
There are several techniques that can be used to assess the polymer gels porosity, like
gas absorption, optical microscopy, scanning electron microscopy, transmission electron
microscopy, atomic force microscopy, and capillary flow porosity.

The high porosity of the polymer hydrogel made it very permeable to various types
of drugs, making it suitable for drug delivery in controlled conditions [84–89]. In a drug
delivery study, the polymer gel’s ability to release drugs in a sustained manner for a long
period represents a considerable advantage, following an increase in a drug’s concentration
over a long time. Both physical and chemical methodologies can be employed to increase
the affinity between the polymer hydrogel matrix and the drug, and to extend the release
time [90,91].

5. Applications of Polymer Gels

Polymer hydrogels possess a broad range of applications due to their distinctive
patterns and their capability to be applied and to function in various environments. As a
result of the water content of polymer hydrogels, they are sufficiently adaptable for use in



Gels 2023, 9, 161 11 of 27

a large variety of industrial, pharmaceutical, and biological applications. In Figure 8, some
of the biomedical applications of polymer hydrogels are shown [92].
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A summary of different categories of polymer gels cross-linked by physical, chemical,
or irradiation methods used in biomedical applications is presented in Table 2.

Table 2. Applications of polymer gels cross-linked by physical, chemical or irradiation methods.

Type of Polymer Gels Gels Physically
Cross-Linked

Gels Chemically
Cross-Linked

Gels
Cross-Linked by

Irradiation
Applications References

Methylcellulose
hydrogel yes _ _ Thermoresponsive

materials [93]

Nanocomposite
hydrogel materials
(cellulose polymers
and biodegradable

nanoparticles)

yes _ _

3D printing,
adhesives,
injectable

biomaterials, and
foods

[94]

iota-carrageenan (Ci)
phenylboronic acid

functionalized
hydroxylpropyl-
methyacrylate

copolymer
(PBA)-based (Ci-PBA)

gel

yes _ _ Gels for
contraception [95]

Hyaluronic acid (HA)
cross-linked using

DVS or BDDE, alone
or in combination with

fibrin

yes _ _
In vivo

remodelling
processes

[96]
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Table 2. Cont.

Type of Polymer Gels Gels Physically
Cross-Linked

Gels Chemically
Cross-Linked

Gels
Cross-Linked by

Irradiation
Applications References

Gel platform based on
poly(ethylene glycol)

(PEG) with
poly(hydroxyethyl

methacrylate-acrylic
co-acid)

yes _ _

Multi-functional
gel for wearable
electronics, soft
actuators, and

robotics (inclusive
3D-printing)

[97]

polyvinyl alcohol
(PVA), acrylic acid
(AA), ammonium

persulfate
(APS) and Fe3+

yes _ _ High-performance
strain sensors [98]

Xanthan hydrogels
with both alkaline and
acid solutions as new

solid electrolytes

yes _ _

High-conductivity
solid electrolytes

for Al-air primary
cells

[99]

Highly viscously
thiol-modified

cross-linked
hyaluronate (TCHA)

-_ yes _
Clinical field

(Vitreous Body
Substitute)

[100]

Poly(N-
isopropylacrylamide)
(PNIPPAm) gel with

ethanol

_ yes _
polymeric gel

storage for liquid
fuels

[101]

Highly carboxylated
cellulose nanofibril

(CNF) cryogel beads
using maleic

anhydride (MA)

_ yes _ Heavy metal ions
(Cu (II)) removal [102]

Maleimide-modified
c-polyglutamic acid

(c-PGA-MA) and thiol
end-functionalized

4-arm poly (ethylene
glycol) (4-arm

PEG-SH) hydrogel

_ yes _

Clinical field (for
the subcutaneous

delivery of
trastuzumab to

treat breast cancer)

[103]

Cellulose nanocrystals
(CNCs) and

polysilsesquioxane
(PSS) aerogels with a

porous hybrid
structure

_ yes _ Biomedical area
(Absorbents) [104]

Acrylic Acid/Gelatin
Hydrogels _ yes _

Study of the effect
of pH and

composition on
swelling and drug

release
(pheniramine

maleate used for
allergy treatment

was loaded as
model drug)

[105]
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Table 2. Cont.

Type of Polymer Gels Gels Physically
Cross-Linked

Gels Chemically
Cross-Linked

Gels
Cross-Linked by

Irradiation
Applications References

Scallop myosin with
1-ethyl-3-(3-

dimethylaminoprolyl)
carbodiimide

hydrochloride (EDC),
glutaraldehyde (GA),
or transglutaminase

(TG) gels

_ yes _

Study of the effects
of cross-linking on
enzyme activity of

myosin and of
morphological

features of myosin
gel on the actins

movement

[106]

Photoinduced
cross-linked porcine
skin gelatin with bi-

and trifunctional
tetrazoles

_ _ yes

Applications of
polyfunctional

tetrazoles in
photoinduced

cross-linking of
biological
polymers

[107]

collagen poly(vinyl
pyrrolidone)

(PVP)-poly(ethylene
oxide) (PEO)

cross-linked by e-beam
irradiation in an

aqueous polymeric
solution

_ _ yes

Development of a
new class of

superabsorbent
hydrogels

[108]

Polymeric gels (cream)
with Glucantime (Sb

V) and gel (cream)
with silver

nanoparticles

_ _ yes

Biomedical for
alternative

treatment of
cutaneous

Leishmaniasis

[109]

Polyvinyl alcohol
(PVA) cross-linked

with N,N′-methylene
bis-acrylamide for the
synthesis of branched
polymer Dextran-graft

Polyacrylaamide
(D-g-PAA)

_ _ yes

Comparative study
of thermal

behaviour of the
hydrogels for their

further use in
medicine

[110]

Sodium alginate
microgels modified by
the partial grafting of
phenol groups on the

backbone, in the
presence of the Ru(II)

catalyst complex

_ yes yes Applications in
biology [111]

Gelatin hydrogels
cross-linked by γ -ray
irradiation using 60Co

_ _ yes

Absorption of
cationic dyes and
their controlled

release

[112]

5.1. Drug Delivery

In order to use polymer hydrogels as drug delivery systems, they must have the
following properties: (i) a porous structure [113]; (ii) an adequate release rate [114]; (iii) the
ability to protect the drug [114], and (iv) biodegradable and biocompatible [115–117].
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For transdermal drug delivery, novel, non-aqueous, directly-compressed tablets con-
taining drugs formulated from common solid pharmaceutical tablet excipients have been
developed for use with arrays of microneedle patches in hydrogel form. These patches
were prepared and tested for in vivo delivery of amoxicillin, levodopa, and levofloxacin at
therapeutically significant concentrations in rats [118].

Using chitosan as a natural polymer and polyurethane containing azomethine as a
synthetic polymer, biodegradable hybrid hydrogels were developed for controlled release
applications of drugs like 5-fluorouracil. These hydrogels showed good drug release be-
haviours of 50% of 5-fluorouracil, proving themselves able to be used for this purpose [119].

For the delivery of a drug with antioxidant and anti-inflammatory properties, an
injectable hydrogel depot and tissue adhesive loaded with epigallocatechin-3-gallate was
prepared. It showed a good response in the sustained release of the drug and could be used
as a promising treatment in tissue degeneration to improve inflammatory disorders. [120].

A new smart hydrogel was developed as a sustained release material in the form of a
compressed tablet, based on natural polysaccharides isolated from the seeds of Salvia spinosa.
The sustained release potential of this hydrogel was investigated for its pH-dependent and
salt-sensitive swelling in two steps, both before and after the tablet was prepared in tablet
form. The study on the controlled release of theophylline (<80%) from the seeds of Salvia
spinosa was monitored at the pH of the gastrointestinal tract. This pH-sensitive material
showed good potential for sustained and targeted drug delivery [121].

Polymer hydrogels are ideal materials to adsorb and store different types of drugs to
release them in a predetermined way for a fixed period [122].

For colorectal cancer therapy, guar-chitosan dialdehyde-based hydrogels cross-linked
in situ for dual drug release were synthesized. These aimed at both simultaneous chemother-
apy and pain relief in colorectal cancer therapy. Hydrogels based on guar gum and chitosan-
dialdehyde cross-linked in situ were prepared for controlled dual release of curcumin and
aspirin. The hydrogels protected the drugs against absorption in the stomach and small
intestine, showing potential as a combined therapy for colorectal cancer [123].

5.2. Wound Healing

The wound healing process comprises four stages, shown in Figure 9 [124].
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In order to be efficient and to have the best performance, an ideal wound dressing
requires several properties: (i) to protect the wound from infection caused by microorgan-
isms; (ii) to be biocompatible; (iii) to have the capacity of moisture retention; (iv) to have a
gas permeability; and (v) to provide a moist environment in order to reduce the formation
of scar [125].
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Ying et al. obtained an extracellular matrix mimic hydrogel containing collagen I and
hyaluronic acid by covalent cross-linking of hyaluronic-acid-tyramine (HA-Tyr) through
horseradish peroxidase and H2O2 for use as effective wound dressing [126]. The prepared
hydrogel has the capacity of autonomous healing promotion by growing vascular cells and
then encouraging the closure of wound.

Ding et al. developed a collagen, chitosan, and dialdehyde-terminated polyethylene
glycol self-healing polymer gel based on dynamic imine bonds for wound dressing [127].
The obtained hydrogels have shown good healing capacity, thermal stability, antibacterial
activity, exceptional hemostatic ability, and injectability.

Yu et al. [128] developed an injectable hydrogel of carboxymethyl chitosan with
γ-polyglutamic acid and polydopamine hydrogel for antibacterial applications and the
avoidance of tumor recurrence. The carboxymethyl chitosan-based hydrogel showed a
good biocompatibility.

5.3. Bone Regeneration

Bone infections, trauma, or bone diseases caused by aging, fractures, cartilage dam-
age, or bone defects, including osteoarthritis, substantially affect people’s quality of life.
Bioactive materials-based hydrogels can stimulate bone regeneration by acting as a bionic
extracellular matrix. Recently, biomimetic polymer hydrogel materials have gained atten-
tion in bone repair as they facilitate adhesion, proliferation, and differentiation of stem
cells [129,130]. An important role in sustaining the balance of the mineral supply in the
organism is played by mineral ions like copper, magnesium, calcium, and zinc. These metal
ions are linked to the polymer chains in order to form efficient polymer hydrogels which
can accelerate the regeneration of the bone.

A macroporous GelMA-structured hydrogel obtained by incorporating MgO nanopar-
ticles based on thiol-ene click reactions was developed [131]. These hydrogels presented
good mechanical properties and a porous structure. In vivo experiments revealed an extra-
cellular matrix microenvironment for enhancing the osteogenic differentiation to promote
bone tissue regeneration.

5.4. Cancer Treatment

As a worldwide health problem, cancer has become the primarily cause of mortality.
The treatment of cancer in different stages is currently done using surgery, radiotherapy,
chemotherapy, immunotherapy, and targeted molecular therapy [64]. Chemotherapy is
the classic treatment and is usually used in the targeted treatment of certain types of
tumors or types of cancer. The main disadvantages are the side effects (which are severe,
most of the time) and the low specificity of many antitumor drugs that fail to induce the
selective death of tumor cells. Due to the side effects associated with the high cytotoxicity
of chemotherapeutic compounds, a significant interest has focused on the design and
manufacture of a new effective system for cancer treatment. Among numerous other
formulations, like films, suspensions etc., polymer hydrogels represent the most adequate
drug delivery systems in cancer therapy. Temperature, pH, and ionic responsive hydrogels
are efficient as drug release systems. In response to various stimuli like temperature, pH,
light, magnetic, or electric fields, or enzymes, drugs are released from the smart polymer
gels. In response to the side effects of anticancer therapies, sustained studies have been
carried out in recent years to reduce the amount of their cardiotoxicity. Thus, to improve
their biocompatibility, as well as their efficiency, significant effort has been made to develop
new delivery systems as alternatives to classic cytotoxic anticancer drugs [132].

A new type of magnetic PVA gel containing nickel nanoparticles was developed
through a simple one-step procedure (Figure 10) [133].
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nanoparticles [133].

The obtained material could be used in anti-cancer drug delivery and biotechnology
(Figure 11).
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Gao et al. [134] developed a hybrid, injectable, thermosensitive hydrogel system for
the simultaneous delivery of co-encapsulated norcantharidin nanoparticles and doxoru-
bicin via intratumoral administration for hepatocellular carcinoma. The in vivo testing
on a mice tumor model, inhibited tumor growth and angiogenesis. Recently, different
thermosensitive hydrogels for localized cancer therapy were developed, based on Pluronic
F127 with titanium carbide [135], poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide)
with indocyanine green [136], chitosan and silk sericin with tegafur - protoporphyrin het-
erodimers [137], chitosan and hyaluronic acid with indocyanine green, imiquimod, and
cyclophosphamide [138], methylcellulose with IR820 [139], and Pluronic F127 with black
phosphate nanosheets and docetaxel [140].

5.5. Hygiene Products

Recently, numerous studies have been conducted on the incorporation of natural poly-
mers like cellulose, starch, alginate, and xanthan gum to produce natural, biodegradable,
non-toxic, and biocompatible superabsorbent materials [141–143].

As a superabsorbent biopolymer, chitosan has been intensively studied for the cosmetic
industry in the manufacture and production of various sanitary products for women and
children [144–146].

Dry hydrogels in the form of covalently cross-linked sodium carboxymethyl cellulose
and hydroxyethyl cellulose films were synthesized, employing citric acid as a cross-linking
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agent. The films showed excellent water absorption and can be targeted as absorbent
materials for personal care [147].

Two new superabsorbent hydrogels based on carboxymethyl guar cross-linked with
bentonite borax and fumed silica particle reinforcement were synthesized. The incorpora-
tion of silica particles showed a positive effect on water absorption capacity, showing that
the hydrogels can be used as disposable hygiene products [148].

In recent years, significant attention was focused on the production and characteriza-
tion of the stability, formulation, and antimicrobial assessment of hand sanitizers to ensure
their stability and efficiency.

The gel formulation as hand sanitizer must fulfil several requirements: (i) to avoid the
risk of leakage; (ii) a pleasant smell; (iii) fast absorption; (iv) no reduction of the rate of
alcohol (the optimal content being from 60% to 90%) [149].

Due to the significant biocompatibility of cellulose, its use as cellulose-based hydro-
gel is widely studied [150–152]. A gel hand sanitizer was manufactured utilizing silver
nanoparticles as the antimicrobial agent and coated with chitosan in different concentrations
as the stabilizing agent [153].

5.6. Antimicrobial Applications

Severe wound infections are one of the primary factors that cause disease, disability,
and even death. To avoid infections, modern treatment is dependent on antimicrobial drugs
like antibiotics, that can act to destroy the pathogens or to inhibit their growth. Antibiotic
treatment frequently proves to be ineffective in destroying infections in chronic non-healing
wounds due to the development of multiresistant microbes [154,155]. Antimicrobial wound
dressings have drawn wide-ranging attention in the last few years.

Gupta et al. reported the fabrication of silver nanoparticles loaded in a biosynthetic
bacterial cellulose hydrogel to develop a wound hydrogel dressing [156]. The nanoparticles
of silver were obtained by a green procedure using an aqueous solution of curcumin and
hydroxypropyl-β-cyclodextrin. The obtained biocompatible hydrogel dressings demon-
strated a broad spectrum of antimicrobial activity against three pathogenic microbes that
usually infect wounds: Pseudomonas aeruginosa, Staphylococcus aureus, and Candida auris. An
injectable hydrogel based on poly(vinyl alcohol), silk sericin loaded with microspheres of
poly(vinyl alcohol) containing gentamicin, vancomycin, and their combination was devel-
oped to accelerate the healing of burn wounds and for infection prevention. The synthesis
method was based on inverse emulsion cross-linking [157]. The results have shown the syn-
ergistic antimicrobial effects of gentamicin and vancomycin against Staphylococcus aureus,
Pseudomonas aeruginosa, and Escherichia coli. In vivo studies on a rat burn model showed
a cell migration and collagen deposition that promoted the early re-epithelialization and
burn wound healing.

5.7. Bio-Sensing Applications

Polymer hydrogel-based biosensors have received significant attention in recent years
since they are extremely sensitive, easy to fabricate, and can be applied in a range of fields
(detection of drugs, diagnosis of many diseases, and environmental domain for detecting
the aqueous contaminants).

Their use in the biomedical domain is due to their resemblance to biological tissue and
their biocompatibility.

The preparation of hydrogels in the form of porous cell-like films incorporating
Prussian blue nanoparticles and various enzymes on electrode surfaces for electrochemical
biosensing has been reported. They were made by drop-casting composite hydrogels
on the surface of SPE-type screen-printed flexible electrodes. The two amperometric
biosensors developed based on hydrogel composites integrating glucose oxidase and
alcohol dehydrogenase showed a high sensitivity for the rapid detection of glucose and
ethanol in serum. Hydrogels can be considered electrochemical biosensing platforms due
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to the possibility of the efficient immobilization of some enzymes and nanomaterials in
their matrix for the detection of a variety of analytes [158].

A new enzymatic biosensor was prepared for the detection of trimethylamine N-
oxide (TMOA) which contains three enzymes: trimethylamine N-oxide-reductase, glucose
oxidase, and catalase. It presented a signal linearly dependent on the TMOA concentration
in a range between 2 µM and 15 mM, with the lowest detectable concentration being
10 µM TMOA [159].

A new additive manufacturing strategy to efficiently produce layered gelatin hydrogel
microfibers bonded to 3D printed thermoplastic structures of various shapes has been
developed. This can be applied to optimize the preparation and 3D modeling of electrospun
hydrogel fibers using cross-linked hydrophilic polymers and oligomers, for various cell
cultures or bio-sensing applications [160].

Different electrochemical biosensors for monitoring microbial metabolites and biomark-
ers for different types of human microbiome, especially on the gastrointestinal microbiome,
have been studied to improve the diagnosis and monitoring of diseases such as gastroin-
testinal diseases [161].

A new hybrid hydrogel material was developed using mechanochemical incorporation
of 3-((7-hydroxy-4-methylcoumarin)methylene)aminophenylboronic acid into the aragose
matrix. This hydrogel can selectively and rapidly detect biogenic polyamines spermine
and spermidine using a fluorescence turn-on method. The obtained smart platform can be
further used to measure the spermine levels in blood plasma and human urine [162].

Wang et al. [163] have produced a new, highly-sensitive, and cost-effective DNA
hydrogel sensor for visually (with the naked eye) quantitative detection of miRNAs with
potential uses in nucleic acid biosensing. An enzyme polysaccharide hydrogel was designed
and manufactured to be targeted by β-mannosidase for delivering bovine serum albumin
and lysozyme when it is subjected to β-mannosidase in vivo [164].

An important role in specific biomolecule detection is provided by the three-
dimensional (3D) polymer hydrogel network structure. The cross-linked functionalization
of DNA with PEG can be used for the detection of short oligonucleotides in complex
media [165]. The scheme of the detection assay is presented in Figure 12.
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Several protease matrix metalloproteinase responsive hydrogels have been explored
as possible protein-responsive drug delivery approaches [166,167], as cancer biomarkers,
for the measurement of protein biomarkers [168–171], and as enzyme-responsive polymer
hydrogel for rapid detection of strains such as Escherichia coli, Staphylococcus aureus, and
Pseudomonas aeruginosa [172–175].

Table 3 illustrates some of the latest polymer hydrogels used in possible applications.
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Table 3. Most recent biomedical applications of polymer hydrogels.

Application Polymer Hydrogel Description Reference

Drug delivery

oxidized succinoglycan (OSG) and
a poly (N-isopropyl

acrylamide-co-acrylamide)
[P(NIPAM-AM)] copolymer.

stimuli-responsive drug
delivery systems [176]

vinyl alginate (SA), acrylamide, and
the hydrophobic molecule
N,N′-(disulfanediylbis(4,1-
phenylene))diacrylamide

(SPDAAm)

controlled release of poorly
water-soluble molecules [177]

lidocaine (LID) loaded with
carboxymethyl chitosan (CCS)

cross-linked with sodium alginate
(SA) hydrogels

local anesthetic effect [178]

nano-polydopamine-reinforced
hemicellulose-based hydrogels

next generation of flexible
materials proper for health

monitoring and
self-administration

[179]

Wound healing

protocatechuic acid (PA)-mediated
carboxylated chitosan (CCS)

conjugated with oxidized
hyaluronic acid (OHA)

antibacterial properties
against common pathogens [180]

chitin/PEGDE-tannic acid (CPT)
hydrogels

good antibacterial,
antioxidant, and hemostatic

activities
[181]

incorporated gold nanorods and
Ca2+ into polyacrylic acid and

polyvinyl alcohol

the obtained hydrogel
dressing could remove the

wound bacterial biofilm and
promote infected wound

healing in vivo

[182]

Cancer treatment

bio-printed polyethylene
glycol-derived hydrogels (PEG),

functionalized with adhesion
peptides (RGD, GFOGER and

DYIGSR) and gelatin-derived and
thiolated-gelatin crosslinked with

PEG-4MAL)

therapy assessment in
patient-derived breast cancer

organoids
[183]

cross-linked chitosan-dialdehyde
guar gum Schiff-base hydrogels

chemotherapy and pain relief
in CRC therapy [123]

Biosensing
ureido pyrimidinone/tyramine

(Upy/Tyr) difunctionalization of
gelatin

a bidirectional neural interface
for both neural recording and
therapeutic electrostimulation

[184]

6. Conclusions and Future Perspectives

The present review aims to provide an overview of polymer hydrogels, their classi-
fication depending on different categories, and the possible applications based on their
cross-linking. The biomedical applications of polymer hydrogels are also discussed.

In summary, polymer hydrogels represent a large system made of small monomers
physically or chemically cross-linked. The most representative properties, like biocompati-
bility and biodegradability, make them suitable for pharmaceutical, biological, biomedical,
food industry, and environmental applications.

A future development can be seen in the inclusion of various nanomaterials into the
polymer hydrogels matrix for use in specific target applications. This possibility can be
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applied to develop new stimuli-sensitive hydrogels responsive to like light, temperature,
pH, and electric field.

The rapid development of the science of polymer gels is a consequence of the impor-
tance of these materials and their application in both material and biomedical domains.
Nevertheless, there are still various challenging problems that must be addressed in order
to fully understand their properties from a more fundamental point of view.

Due to their functional versatility that offers the possibility of their application
in many differing fields, including some high-tech disciplines that present a potential
for future development, polymer gels deserve sustained efforts towards future study
and development.

Author Contributions: Conceptualization, M.C. and A.M.M.; methodology, M.C. and A.M.M.; data
curation, M.C.; and A.M.M.; writing—original draft preparation, M.C. and A.M.M.; writing—review
and editing, A.M.M.; visualization, A.M.M.; supervision, A.M.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Giuffrida, S.G.; Forysiak, W.; Cwynar, P.; Szweda, R. Shaping Macromolecules for Sensing Applications—From Polymer

Hydrogels to Foldamers. Polymers 2022, 14, 580. [CrossRef] [PubMed]
2. Zhao, F.; Yao, D.; Guo, R.; Deng, L.; Dong, A.; Zhang, J. Composites of Polymer Hydrogels and Nanoparticulate Systems for

Biomedical and Pharmaceutical Applications. Nanomaterials 2015, 5, 2054–2130. [CrossRef] [PubMed]
3. Smith, D.K. Molecular Gels: Structure and Dynamics; Weiss, R.G., Ed.; Royal Society of Chemistry: Cambridge, UK, 2018;

pp. 300–371.
4. Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.;

Khademhosseini, A. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv.
Mater. 2014, 26, 85–124. [CrossRef] [PubMed]

5. Seliktar, D. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science 2012, 336, 1124–1128. [CrossRef] [PubMed]
6. van Bemmelen, J.M. The hydrogel and the crystalline hydrate of copper oxide. Z. Anorg. Chem. 1894, 5, 466–483. [CrossRef]
7. Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [CrossRef]
8. Lim, F.; Sun, A.M. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science 1980, 210, 908–910. [CrossRef]
9. Yannas, I.V.; Gordon, P.L.; Huang, C.; Silver, F.H.; Burke, J.F. Crosslinked Collagen-Mucopolysaccharide Composite Materials.

U.S. Patent US4280954A, 28 July 1981.
10. Horkay, F. Polyelectrolyte Gels: A Unique Class of Soft Materials. Gels 2021, 7, 102. [CrossRef]
11. Masuda, T.; Akimoto, A.M.; Yoshida, R. Self-Oscillating Polymer Materials. In Biomaterials Nanoarchitectonics; Ebara, M., Ed.;

William Andrew Publishing, Elsevier: Amsterdam, The Netherlands, 2016; pp. 219–236. [CrossRef]
12. Bhattacharya, S.; Shunmugam, R. Polymer based gels and their applications in remediation of dyes from textile effluents. J.

Macromol. Sci. Part A 2020, 57, 907–926. [CrossRef]
13. Lu, S.; Bo, Q.; Zhao, G.; Shaikh, A.; Dai, C. Recent advances in enhanced polymer gels for profile control and water shutoff: A

review. Front. Chem. 2023, 11, 1067094. [CrossRef]
14. Hassan, P.; Verma, G.; Ganguly, R. Soft Materials—Properties and Applications. In Functional Materials; Elsevier: Amsterdam, The

Netherlands, 2012; pp. 1–59. [CrossRef]
15. Nasution, H.; Harahap, H.; Dalimunthe, N.F.; Ginting, M.H.S.; Jaafar, M.; Tan, O.O.H.; Aruan, H.K.; Herfananda, A.L. Hydrogel

and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022, 8, 568. [CrossRef] [PubMed]
16. Hong, W.; Liu, Z.; Suo, Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct.

2009, 46, 3282–3289. [CrossRef]
17. Douglas, J.F. Weak and Strong Gels and the Emergence of the Amorphous Solid State. Gels 2018, 4, 19. [CrossRef] [PubMed]
18. Tanpichai, S.; Phoothong, F.; Boonmahitthisud, A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci. Rep.

2022, 12, 8920. [CrossRef]
19. Zhao, W.; Jin, X.; Cong, Y.; Liu, Y.; Fu, J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J. Chem.

Technol. Biotechnol. 2013, 88, 327–339. [CrossRef]

http://doi.org/10.3390/polym14030580
http://www.ncbi.nlm.nih.gov/pubmed/35160568
http://doi.org/10.3390/nano5042054
http://www.ncbi.nlm.nih.gov/pubmed/28347111
http://doi.org/10.1002/adma.201303233
http://www.ncbi.nlm.nih.gov/pubmed/24741694
http://doi.org/10.1126/science.1214804
http://www.ncbi.nlm.nih.gov/pubmed/22654050
http://doi.org/10.1002/zaac.18940050156
http://doi.org/10.1038/185117a0
http://doi.org/10.1126/science.6776628
http://doi.org/10.3390/gels7030102
http://doi.org/10.1016/b978-0-323-37127-8.00013-3
http://doi.org/10.1080/10601325.2020.1782229
http://doi.org/10.3389/fchem.2023.1067094
http://doi.org/10.1016/b978-0-12-385142-0.00001-5
http://doi.org/10.3390/gels8090568
http://www.ncbi.nlm.nih.gov/pubmed/36135281
http://doi.org/10.1016/j.ijsolstr.2009.04.022
http://doi.org/10.3390/gels4010019
http://www.ncbi.nlm.nih.gov/pubmed/30674795
http://doi.org/10.1038/s41598-022-12688-2
http://doi.org/10.1002/jctb.3970


Gels 2023, 9, 161 21 of 27

20. Park, K.R.; Nho, Y.C. Preparation and characterization by radiation of hydrogels of PVA and PVP containingAloe vera. J. Appl.
Polym. Sci. 2004, 91, 1612–1618. [CrossRef]

21. Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S. Synthesis of porous poly(N-isopropylacrylamide) gel beads
by sedimentation polymerization and their morphology. J. Appl. Polym. Sci. 2007, 104, 842–850. [CrossRef]

22. Hu, Y.; Wu, X.; JinRui, X. Self-Assembled Supramolecular Hydrogels Formed by Biodegradable PLA/CS Diblock Copolymers
and β-Cyclodextrin for Controlled Dual Drug Delivery. Int. J. Biol. Macromol. 2018, 108, 18–23. [CrossRef]

23. Yapar, E.A.; Ýnal, Ö. Poly(Ethylene Oxide)–Poly(Propylene Oxide)-Based Copolymers for Transdermal Drug Delivery: An
Overview. Trop. J. Pharm. Res. 2012, 11, 855–866. [CrossRef]

24. Sen-Britain, S.; Hicks, W.L.; Hard, R.; Gardella, J.A. Differential orientation and conformation of surface-bound ker-
atinocyte growth factor on (hydroxyethyl)methacrylate, (hydroxyethyl)methacrylate/methyl methacrylate, and (hydrox-
yethyl)methacrylate/methacrylic acid hydrogel copolymers. Biointerphases 2018, 13, 06E406. [CrossRef]

25. Lanzalaco, S.; Armelin, E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical
Applications. Gels 2017, 3, 36. [CrossRef]

26. Silverstein, M.S. Interpenetrating polymer networks: So happy together? Polymer 2020, 207, 122929. [CrossRef]
27. Singhal, R.; Gupta, K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polym. Technol.

Eng. 2015, 55, 54–70. [CrossRef]
28. Mohite, P.B.; Adhav, S.S. A hydrogels: Methods of preparation and applications. Int. J. Adv. Pharm. 2017, 6, 79–85.
29. Chen, M.; Cui, Y.; Wang, Y.; Chang, C. Triple physically cross-linked hydrogel artificial muscles with high-stroke and high-work

capacity. Chem. Eng. J. 2023, 453, 139893. [CrossRef]
30. Tang, Z.; Liu, D.; Lyu, X.; Liu, Y.; Liu, Y.; Yang, W.; Shen, Z.; Fan, X. Ultra-stretchable ion gels based on physically cross-linked

polymer networks. J. Mater. Chem. C 2022, 10, 10926–10934. [CrossRef]
31. Mahmood, S.; Khan, N.R.; Razaque, G.; Shah, S.U.; Shahid, M.G.; Albarqi, H.A.; Alqahtani, A.A.; Alasiri, A.; Basit, H.M.

Microwave-Treated Physically Cross-Linked Sodium Alginate and Sodium Carboxymethyl Cellulose Blend Polymer Film for
Open Incision Wound Healing in Diabetic Animals—A Novel Perspective for Skin Tissue Regeneration Application. Pharmaceutics
2023, 15, 418. [CrossRef]

32. Wu, M.; Chen, X.; Xu, J.; Zhang, H. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels
and hydrogels of curdlan with tunable mechanical properties. Carbohydr. Polym. 2022, 278, 119003. [CrossRef]

33. Guo, Y.; Wu, M.; Li, R.; Cai, Z.; Zhang, H. Thermostable physically crosslinked cryogel from carboxymethylated konjac
glucomannan fabricated by freeze-thawing. Food Hydrocoll. 2022, 122, 107103. [CrossRef]

34. Sarmah, D.; Karak, N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically
strong hydrogel. Carbohydr. Polym. 2022, 289, 119428. [CrossRef]

35. Dong, X.; Yao, F.; Jiang, L.; Liang, L.; Sun, H.; He, S.; Shi, M.; Guo, Z.; Yu, Q.; Yao, M.; et al. Facile preparation of a thermosensitive
and antibiofouling physically crosslinked hydrogel/powder for wound healing. J. Mater. Chem. B 2022, 10, 2215–2229. [CrossRef]
[PubMed]

36. Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J.
2015, 65, 252–267. [CrossRef]

37. Horkay, F.; Douglas, J.F. Polymer Gels: Basics, Challenges, and Perspectives. In Gels and Other Soft Amorphous Solids; American
Chemical Society: Washington, DC, USA, 2018; Chapter 1; pp. 1–13. [CrossRef]

38. Zhou, Y.; Chu, R.; Fan, L.; Meng, X.; Zhao, J.; Wu, G.; Li, X.; Jiang, X.; Sun, F. Study on the mechanism and performance of
polymer gels by TE and PVA chemical cross-linking. J. Appl. Polym. Sci. 2022, 139, 52043. [CrossRef]

39. Khan, R.; Zaman, M.; Salawi, A.; Khan, M.A.; Iqbal, M.O.; Riaz, R.; Ahmed, M.M.; Butt, M.H.; Alvi, M.N.; Almoshari, Y.; et al.
Synthesis of chemically cross-linked pH-sensitive hydrogels for the sustained delivery of ezetimibe. Gels 2022, 8, 281. [CrossRef]

40. Barbero, C.A.; Martínez, M.V.; Acevedo, D.F.; Molina, M.A.; Rivarola, C.R. Cross-Linked Polymeric Gels and Nanocomposites:
New Materials and Phenomena Enabling Technological Applications. Macromol 2022, 2, 440–475. [CrossRef]

41. Wang, P.; Meng, X.; Wang, R.; Yang, W.; Yang, L.; Wang, J.; Wang, D.; Fan, C. Biomaterial Scaffolds Made of Chemically
Cross-Linked Gelatin Microsphere Aggregates (C-GMSs) Promote Vascularized Bone Regeneration. Adv. Healthc. Mater. 2022,
11, 2102818. [CrossRef]

42. Zhao, W.; Dong, Z.; Zhao, L. Radiation synthesis of polyhedral oligomeric silsesquioxanes (POSS) gel polymers. Radiat. Phys.
Chem. 2022, 198, 110251. [CrossRef]

43. Sala, L.; Perecko, T.; Mestek, O.; Pinkas, D.; Homola, T.; Kočišek, J. Cisplatin-Cross-Linked DNA Origami Nanostructures for
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