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Abstract: (1) Background: Infections of pathogenic microorganisms can be life-threatening due to
delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The
excessive presence of reactive oxygen species in damaged and infected tissues causes a negative
inflammatory response, resulting in failed healing. Thus, the development of hydrogels with antibac-
terial and antioxidant abilities for the treatment of infectious tissues is in high demand. (2) Meth-
ods: We herein describe the development of green-synthesized silver-composited polydopamine
nanoparticles (AgNPs), which are fabricated by the self-assembly of dopamine as a reducing and
antioxidant agent in the presence of silver ions. (3) Results: The facile and green-synthesized Ag-
NPs have a nanoscale diameter with mostly spherical shapes, with various shapes coexisting. The
particles are stable in an aqueous solution for up to 4 weeks. In addition, remarkable antibacterial
activity against Gram-positive and -negative bacterial strains and antioxidant capabilities were eval-
uated by in vitro assays. When incorporated into biomaterial hydrogels at concentrations above
2 mg L−1, the hydrogels produced powerful antibacterial effects. (4) Conclusions: This study de-
scribes a biocompatible hydrogel with antibacterial and antioxidant activities from the introduction
of facile and green-synthesized AgNPs as a safer tool for the treatment of damaged tissues.

Keywords: silver nanoparticle; antibacterial activity; antioxidant activity; hydrogel; dopamine

1. Introduction

Hydrogels are frequently considered medical options in tissue engineering and re-
generative medicine [1–4]. They support a damaged and injured site and can deliver
a variety of therapeutic or bioactive agents, including drugs and cells [5,6]. The hydro-
gel can be easily applied by injection to irregular three-dimensional areas or utilized to
protect the damaged site from pathogenic infection [7]. However, hydrogels are highly
biocompatible, so they can be vulnerable to bacterial pathogens due to the very moist
microenvironment of the hydrogels [8,9]. In particular, hydrogels for tissue regeneration
can be inhibited by bacterial infection, which can cause significant adverse events resulting
in treatment failure. Thus, controlling bacterial infection in hydrogels can be important to
achieve a proper therapeutic outcome in the use of hydrogels for tissue engineering and
regenerative medicine.

Monovalent silver ions are a well-known antibacterial agent that have a strong oligo-
dynamic effect [10]. The attention to silver-based agents as alternative antibacterial agents
against a wide range of microorganisms has developed because the use of antibiotics can
cause bacterial resistance. The silver ions can be formed into a nanosized colloidal sus-
pension resulting in the generation of silver nanoparticles (AgNPs) [11]. The antibacterial
activity of AgNPs is more effective than that of monovalent silver ions due to their electronic
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effects. With strong antibacterial activity, AgNPs have been used for effective regenera-
tion and treatment in biomedical applications [12–14]. AgNPs have been fabricated using
various techniques, including chemical reduction, gamma irradiation, microemulsion, elec-
trochemical procedures, microwaves, and laser ablation [15–17]. Although these techniques
produce AgNPs with good yields, there are limitations such as the use of toxic chemicals,
high operating costs, and high energy requirements that need to be addressed [16,18].
Given the shortcomings of these techniques, cost-effective and energy-efficient alternatives
have been considered for the synthesis of AgNP using eco-friendly approaches (called green
synthesis) involving microorganisms, plant extracts, and natural polymers as reducing and
stabilizing agents.

The green synthesis of AgNPs has been developed using plant extracts and biomaterials.
Dopamine has a unique property represented by mussel-inspired chemistry, and it has
received a great deal of attention in the fields of biology and medicine [19]. Dopamine
can easily polymerize under alkaline conditions through self-polymerization, resulting in the
fabrication of polydopamine nanospheres [20–23]. In particular, catechol groups of dopamine
can provide an active surface for reducing and absorbing metal ions and act as powerful
reactive oxygen species (ROS) scavengers [24]. Thus, polydopamine nanospheres are generally
considered safe biomaterials with excellent biocompatibility and biological properties.

Herein, we present a facile and green synthesis of AgNP with dopamine. There is no
need for additional reducing agents in this synthetic procedure (Scheme 1). Additionally, the
synthesized AgNPs are incorporated into the biomaterial hydrogels to generate a hydrogel that
can be widely applied in the field of tissue engineering. The characterization of AgNPs was
performed using dynamic light scattering (DLS), observation through electronic microscopy,
and UV–visible absorbance. Subsequently, the antibacterial activity against Gram-positive and
-negative bacteria of free AgNPs and AgNP-incorporated hydrogels, the antioxidant activity
for scavenging of ROS, and biocompatibility against bone marrow stromal cells (BMSCs) were
evaluated in vitro. We chose guanidylated chitosan and carboxymethyl cellulose (GC/CMC)
as well as gelatin methacryloyl (GelMA) hydrogels, which have different hydrogel-forming
mechanisms (electrostatic interaction and photocrosslinking, respectively). These two types of
hydrogels were used as model hydrogels.
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Scheme 1. Schematic illustration of AgNP-composite hydrogel with facile and green-synthesized
AgNPs with dopamine.

2. Results and Discussion
2.1. Preparation and Characterization of AgNPs

First, we synthesized AgNPs with dopamine as a reducing and stabilizing agent
through the oxidation reaction of the catechol group and the reduction of silver ions. The
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reaction was performed in an alkaline solution with two different conditions, resulting in
a synthesis of AgNP-1 (0.03 M dopamine and 0.06 M silver nitrate) and AgNP-2 (0.05 M
dopamine and 0.10 M silver nitrate). The oxidation of catechol groups in dopamine in
an alkaline solution generates nanoparticles by polymerization and self-assembly. In the
presence of silver ions during this process, the silver ions can bind with the catechol groups
of dopamine, resulting in metal coordination bonds between silver ions and catechol [25]. A
series of physicochemical characterizations, including size, zeta potential, and morphology
were determined using DLS measurements and SEM observations (Figure 1). The sizes
of AgNP-1 and AgNP-2 were 147.6 ± 9.6 and 166.3 ± 2.7 nm with a narrow distribution
(polydispersity index [PDI] < 0.2), respectively (Figure 1A). Additionally, the zeta potential
measurements demonstrated a highly positive charge (22.1 ± 0.5 mV for AgNP-1; 40.6 ±
8.8 mV for AgNP-2), indicating that they were stable in a colloidal solution. SEM obser-
vation also showed that the nanoparticles had an irregular nanoscale morphology and a
narrow distribution (Figure 1B,C).
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Figure 1. Physicochemical characterizations of AgNPs. Representative size distributions of (A)
AgNP-1 and AgNP-2. Representative SEM images with a low magnification (×10,000) of (B) AgNP-1
and (C) AgNP-2 (Inset: representative SEM images with a high magnification, ×100,000. Scale bars
indicate 200 nm).

The absorption spectra of the AgNPs were measured (Figure 2). No specific surface
plasmon of silver nanoparticles was shown by the samples because polydopamine has
intrinsic absorbance in a broad range of wavelengths; whereas the spectra for dopamine or
silver nitrate solution pre-reaction had no signal, so the absorbance signals of AgNPs were
significantly increased, indicating successful nanoparticle production. Furthermore, no
significant changes in the absorbance signal were observed over 28 days, indicating a stable
colloid, which provides an advantage that could develop into a future translation for clinical
use. AgNP-1 and AgNP-2 showed a difference in zeta potential values; a highly positive
charge can cause cytotoxicity, even though there is no significant difference between the
AgNPs in terms of physicochemical and optical properties. Based on these evaluations,
subsequent evaluations were performed using AgNP-1, which has a comparatively lower
zeta potential.
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2.2. In Vitro Antibacterial Activity

The antibacterial activity of the resulting AgNPs was determined against representa-
tive Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial strains by evaluating
the levels of minimum inhibitory concentration (MIC) using a broth dilution method and
minimum bactericidal concentration (MBC) in the presence or absence of AgNPs at a range
of concentrations, 0 to 500 mg L−1 (Figure 3) [26,27]. The AgNP in the MIC test showed
effective suppression against S. aureus with MICs of approximately 65 mg L−1 and E. coli
with an MIC of approximately 30 mg L−1 (Figure 3A,B). To assess MBC measurement, both
bacterial strains were incubated with AgNP solutions at various concentrations and further
grown on agar media (Figure 3C). The antibacterial activity significantly increased with the
increasing concentration of AgNPs in comparison to the control distilled water (DW) group.
The MBC, a concentration of complete bacterial killing, was observed at 100 or 50 mg L−1

against S. aureus and E. coli, respectively. These results indicate that the synthesized AgNP
shows excellent antibacterial properties against broad-spectrum bacterial strains resulting
in the complete killing of both Gram-positive and Gram-negative bacterial strains at low
concentrations. In particular, the antibacterial activity of our AgNPs is higher than the
commercially-available AgNP mentioned in the previous report [27]. The electrostatic inter-
action of positively charged AgNPs with negatively charged membranes of both bacterial
strains could promote the rapid adsorption of nanoparticles on the bacterial surface leading
to the destabilization of the membrane integrity. The results of a series of antibacterial
assays revealed that the concentration of E. coli for effective bacterial activity was lower
than that of S. aureus. These results can be reasonably understood based on the differences
in the presence of the cellular walls of Gram-positive strains and Gram-negative strains.
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We next performed further antibacterial assessments using the disk diffusion method
(Figure 4). The result showed dose-dependent bactericidal activity against both Gram-
positive (S. aureus) and Gram-negative (E. coli) strains, resulting in an increase in the
inhibition zone thickness (Figure 4A,C). While the control groups had no inhibition zone,
the concentration of all samples ranging from 38 to 750 mg L−1 clearly had inhibition zones.
Although high-dose treatment showed an effective killing of both bacterial strains, the an-
tibacterial activity against E. coli at a low dose, 38 mg L−1, was higher than that of S. aureus,
which is similar to the results of predetermined antibacterial capacities (Figure 4B,D).
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750 mg L−1 AgNPs, respectively.

2.3. In Vitro Antioxidant Activity

Since the catechol group of dopamine is well known to have antioxidant activity, it is
possible that the synthesized AgNPs in this study could scavenge free radicals and ROS that
can be produced during the regeneration processes of damaged and injured tissues [24,28].

Toward this aim, the antioxidant activity was assessed using a 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging assay (Figure 5). Antioxidants represent a form of opposite
oxidants that prevent or delay cell damage by oxidants such as ROS and free radicals [29].
DPPH is one of the assays that determine antioxidant capacity [8]. The purple color of
DPPH changes to a pale-yellow color when DPPH reacts with a hydrogen donor and is
converted to a reduced form. As shown in Figure 5A, the level of purple color reduction
depends on the antioxidant concentration. Since AgNPs scavenge ROS generation, the
purple color changes to pale yellow which presents excellent antioxidant activity. The
results clearly support the effective antioxidant potential of AgNPs. The antioxidant activity
of AgNPs at a concentration of 31 mg L−1 resulted in a decrease in the purple color for
DPPH radicals (Figure 5A). A concentration of more than 125 mg L−1 demonstrated near
complete scavenging of DPPH radicals. The quantitation of remaining DPPH radicals
was performed by measuring UV–visible absorbance at 570 nm (Figure 5B). The DPPH
antioxidant activity for AgNP was gradually enhanced by increasing the concentration of
AgNPs (9.0% for 31 mg L−1, 20.3% for 63 mg L−1, 41.9% for 125 mg L−1, and 73.5% for
250 mg L−1). Thus, this finding indicates that the synthesized AgNPs can scavenge ROS
and that they have excellent antioxidant properties.
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2.4. In Vitro Antibacterial Activity of AgNP-Incorporated Hydrogel Composites

Biomaterials for tissue engineering and regenerative medicine should be free from the
risk of infection from pathogenic microorganisms when delivered into a defected or injured
area. Thus, antibacterial activity is one of the critical necessities in clinics for the successful
treatment and regeneration of damage and injury. The first model, an injectable hydrogel
(GC/CMC), was prepared from guanidylated chitosan and carboxymethyl cellulose by
self-organization through electrostatic interactions [30]. Since the AgNPs were mixed before
gelation (in the sol state of hydrogels), there were no optical changes after the incorporation
of AgNPs into the hydrogels. The evaluation of antibacterial activity was performed with
S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria as model microorganisms
(Figure 6). An agar petri dish cultured with both microorganisms was placed with the
AgNP-incorporated hydrogels and incubated at 37 ◦C for a day to determine the inhibition
zones (Figure 6A,C). The bacterial strains on the plate were totally covered when no gels
had been placed. The AgNP-free hydrogel showed no antibacterial effect, and the AgNP-
incorporated hydrogels generated inhibition zones, which were extended with increasing
AgNP concentrations (Figure 6B,D).
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Figure 6. Bactericidal activity of AgNP-incorporated GC/CMC hydrogels. Representative image
of bacterial colonies formed by (A) S. aureus and (C) E. coli with the AgNP-incorporated hydrogels
placed on the agar petri dish for a day to analyze the inhibition zone. C = control, AgNP-free
hydrogels. Areas 1–5 = AgNP-incorporated hydrogels at concentrations of 2, 8, 15, 23, and 30 mg L−1

AgNPs, respectively. Quantitative inhibition zone area of bacterial colonies formed by (B) S. aureus
and (D) E. coli with the AgNP-incorporated hydrogels (n = 3).
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Next, we further confirmed the antibacterial activity of AgNPs with a photocrosslink-
able hydrogel, GelMA, which is a frequently used hydrogel platform as a second model
hydrogel [31–33]. After the bacterial strains on the agar plates were covered, the AgNP-
incorporated GelMA hydrogels were put on the plate (Figure 7). The occurrence of an
inhibition zone was observed after incubation for 24 h at 37 ◦C (Figure 7A,C). The hydrogels
were completely absorbed into the culture medium and remained in the inhibition area
after incubation. The AgNP-incorporated hydrogel successfully produced an inhibition
zone despite an extremely low concentration of AgNP (2 mg L−1). The size of the inhibition
zone was gradually extended as the concentration of AgNP increased (Figure 7B,D). These
results with both hydrogels suggest that bacterial growth was significantly inhibited by the
effect of the synthesized AgNPs. The mechanism of antibacterial activities before and after
incorporation into the hydrogel can be explained by silver ions and catecholamine groups
released from the AgNPs [3,29]. AgNPs can continually release silver ions, which adhere
to the cell walls and cytoplasmic membrane. The adhered ions increase the permeability
of the membrane and result in the disruption of the bacterial envelope. The uptake of
free silver ions into cells then generates reactive oxygen (ROS) species that disrupt the cell
membrane and DNA replication due to the interaction of silver ions with the sulfur and
phosphorus groups in DNA. Consequently, AgNPs result in damage to DNA replication
and cell reproduction and finally cause the termination of bacteria (Figures 4, 6 and 7) [34].
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Figure 7. Bactericidal activity of AgNP-incorporated GelMA hydrogels. Representative images of
bacterial colonies formed by (A) S. aureus and (C) E. coli with the AgNP-incorporated hydrogels
were placed on the agar petri dish for a day to analyze the inhibition zone. C = control, AgNP-free
hydrogels. Areas 1–5 = AgNP-incorporated hydrogels at concentrations of 2, 8, 15, 23, and 30 mg L−1

AgNPs, respectively. Quantitative inhibition zone area of bacterial colonies formed by (B) S. aureus
and (D) E. coli with the AgNP-incorporated hydrogels (n = 3).

We also determined a series of characterizations for AgNP-composite GelMA hy-
drogels, including swelling ratio (Figure S3A), water content (Figure S3B), degradation
(Figure S3C), and strain-dependent rheology (Figure S3D). The results showed that there
are no significant differences between GelMA with or without AgNPs, suggesting that the
incorporation of AgNPs does not significantly affect the physicochemical characteristics of
the hydrogels.
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2.5. Biocompatibility of AgNP-Incorporated Hydrogel Composites

The biocompatibility of AgNPs was determined in 2D and 3D cell cultures and an-
alyzed using the CCK-8 assay. There was no significant cytotoxicity at concentrations
up to approximately 0.01 g/L, supporting the notion that AgNPs are biocompatible with
cells (Figure 8). In particular, when the cells were incubated in the 3D AgNP-incorporated
hydrogels, the viability of the BMSCs was increased. These results strongly support that
the lower cytotoxicity of AgNPs in the hydrogels is because of the limited interaction
between the cells and AgNPs in the hydrogel network. In other words, the cell viability
demonstrated that the mechanism of AgNP cytotoxicity in 3D hydrogel results from the
interaction of positively charged moieties of AgNPs within a hydrogel network [35]. The
combinative use with negatively charged hydrogels, such as hyaluronan-based hydrogels,
would benefit biosafety improvements for future clinical uses. With predefined results,
these results indicate that the AgNP-incorporated hydrogels are highly biocompatible,
antibacterial, and antioxidant, resulting in their ability to support cells. Additionally, based
on the antibacterial, antioxidant, and cytotoxic potentials, the recommended optimum
concentration of AgNPs in the hydrogel is around 0.02 g/L.
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3. Conclusions

In summary, functional hydrogels with green-synthesized AgNPs were developed
by the self-assembly of dopamine as a reducing and antioxidant agent with silver ions.
The facile and green-synthesized AgNPs demonstrated irregular nanoscale shapes (mostly
spherical) with a positive charge, as determined by DLS measurements and SEM obser-
vation. The particles are stable in an aqueous solution for up to 2 weeks. In addition,
antibacterial activities against Gram-positive and Gram-negative bacterial strains and an-
tioxidant capabilities were evaluated against DPPH radicals. The GC/CMC and GelMA
hydrogels with AgNPs showed a powerful antibacterial effect with good cytocompatibility.
This study has shown that the biocompatible hydrogel has antibacterial and antioxidant ac-
tivities by introducing facile and green-synthesized AgNPs as a potential tool for protection
against pathogenic microorganism infections.

4. Materials and Methods
4.1. Synthesis of AgNPs

AgNPs were prepared by reducing silver ions with dopamine. A round bottom flask
was filled with 50 mL of DW, 0.5 mL (0.3 M for AgNP-1 and 0.5 M for AgNP-2) of dopamine
hydrochloride, and 0.5 mL (0.6 M for AgNP-1 and 1.0 M for AgNP-2) of silver nitrate. The
whole solution was vigorously stirred for an hour at pH 8.0–8.5. The solution was dialyzed
with a dialysis membrane (molecular weight cut-off; MWCO = 12,000–14,000; Labotec. Co.,
Ltd., Seoul, South Korea) in DW for 2 h. Then, the solution was freeze-dried for 3 days. The
final product was stored at under −20 ◦C for further use.
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4.2. Characterization of AgNPs

The UV–visible absorption spectra of AgNPs were recorded by a multimode microplate
reader (BioTek, Inc., Winooski, VT, USA) for 2 weeks. The field emission-scanning electronic
microscopy (FE-SEM) images of AgNPs were taken using a JSM-6700F (JEOL, Ltd., Tokyo,
Japan). The size and ζ-potential of AgNPs were measured using an ELSZ-2000ZS (Otsuka
Electronic Co., Osaka, Japan) with a set of automatic sampling times and analysis at room
temperature.

4.3. Antibacterial Activity of AgNPs

A culture of Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-
negative bacteria, Escherichia coli (E. coli) were prepared by suspending a single colony from
a lysogen broth (LB) agar culture in 5 mL of sterile LB medium. The counts of bacteria
were evaluated by measuring the absorbance of the medium at 600 nm (OD600) using a
UV–vis spectrophotometer. The value of OD600 was used to obtain the number of bacterial
colony-forming units (CFU) mL−1.

The determination of bacterial inhibition zones was performed using the disc diffusion
method [1]. A 100 µL sample with a bacterial solution of 106 CFU mL−1 was spread on an LB
agar plate, AgNP-absorbed paper discs were dipped directly in the AgNP solution and were
placed on the plate, and the plate was incubated at 37 ◦C for 24 h. To assess the hydrogels,
100 µL of AgNP-containing hydrogels were placed on the bacterial-covered plates.

A MIC test using a broth dilution method was conducted against both bacterial
strains. Bacterial suspensions (3 mL) in LB broth media were incubated at 37 ◦C for 24 h.
Subsequently, 100 µL of the solution was transferred to a 96-well plate and absorbance was
obtained at 600 nm using a multimode microplate reader (BioTek, Inc., Winooski, VT, USA).

4.4. Antioxidant Activity of AgNPs

The DPPH radical scavenging activity of AgNPs was assessed. A 0.1 mM solution of
DPPH was prepared in ethanol (95%). The DPPH solution (1 mL) was added to 150 µL of
AgNPs solution and then incubated in the dark with gentle shaking for 30 min. The activity
was assessed by measuring the absorbance at 516 nm.

4.5. Preparation of Hydrogels

For the synthesis of guanidylated chitosan (GC), chitosan (2% w/v) was dissolved
in 100 mL of 1% HCl. Then, 1.06 g of dicyandiamide was added, and the solution was
stirred for 2 h at 90 ◦C. The resulting solution was precipitated in cold ethyl alcohol (EtOH),
filtered, and washed several times with fresh cold EtOH. The final precipitates were dried
at 60 ◦C for 24 h. NMR spectra were recorded in deuterium oxide with a drop of deuterium
chloride at room temperature using a Bruker NMR Spectrometer at 500 MHz (Figure S1).
For the preparation of the GC/carboxymethyl cellulose (CMC) hydrogel, the 3% CMC
solution in DW was added dropwise into the 3% GC solution in DW under constant stirring.
The ratio of GC and CMC for the hydrogel was 1:1. AgNP was mixed with the GC/CMC
hydrogels to obtain the AgNP-incorporated hydrogels.

The synthesis of gelatin methacryloyl (GelMA) was conducted with the previous
preparation method [36]. In brief, gelatin (10 g) was dissolved in 100 mL of pH 7.4
phosphate-buffered saline (PBS) at 50 ◦C. MA (5 mL) was added to the solution and
stirred at 50 ◦C for 2 days. Then, the resulting solution was dialyzed with a dialysis
membrane (MWCO = 12,000–14,000; Labotec. Co., Ltd.) in DW at 50 ◦C for 2 days.
The final solution was freeze-dried and stored at −4 ◦C until further use. NMR spectra
were recorded in deuterium oxide using a NMR Spectrometer (Bruker, Billerica, MA,
USA) at 500 MHz (Figure S2). Visible-light-mediated GelMA hydrogel was prepared by
the previously published methods with modifications [37–40]. GelMA hydrogels in the
presence or absence of AgNPs were prepared by the irradiation of GelMA prepolymer
and a riboflavin (6 µM) initiator (200:1; volume ratio) under visible blue light (400–500 nm,
300 mW cm−2) for 2 min.
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The hydrogels were incubated in PBS for 24 h and freeze-dried. The water content
was evaluated using the following Equation (1):

Water content (%) =

(
Ww − Wd

Ww

)
× 100, (1)

where Ww and Wd indicate the weight of wet and dry GelMA hydrogels, respectively.
The swelling ratio of the hydrogel was calculated using the following Equation (2):

Swelling ratio (%) =

(
Ws

Wd

)
× 100, (2)

where Ws and Wd indicate the swollen and dry weights of GelMA hydrogels, respectively.
The degradation of hydrogel was calculated over a period of 4 weeks. The hydrogel

was incubated in PBS (0.01 M, pH 7.4) at 37 ◦C. The medium was replaced every 7 days.
The weight of the hydrogel was measured after lyophilization.

Residual weight (%) =

(
W0

Wt

)
× 100, (3)

where W0 and Wt indicate the weights of GelMA hydrogels at time 0 and t, respectively.

4.6. Cell Culture and Cell Viability

The mouse BMSC line (D1 cell, CRL-12424) was obtained from American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at
37 ◦C in 5% CO2. DMEM, FBS, penicillin, and streptomycin were obtained from Gibco
(Manassas, VA, USA).

Cell viability was measured using a CCK-8 assay (GlpBio). Briefly, BMSCs were
cultured in 96-well plates with 4 × 103 cells per well and then incubated overnight at 37 ◦C
in 5% CO2. AgNPs were added to each well in 100 µL of medium, and the plates were
returned to the incubator for 24 h. The cells were washed with PBS and incubated for 3 h
with a 10% CCK-8-containing medium. The CCK-8 absorbance was measured at 450 nm
using a microplate reader.

For 3D assays, the BMSCs were encapsulated in nanocomposite hydrogels with a
concentration of 1 × 106 cells mL−1. The BMSCs encapsulated in hydrogels were cultured
in culture media at 37 ◦C in 5% CO2. To assess the viability of BMSCs, the hydrogels were
washed with PBS and then incubated for 3 h with a 10% CCK-8-containing medium. The
CCK-8 absorbance was measured at 450 nm.

4.7. Statistical Analysis

Data are presented as mean ± standard deviation (SD) for all results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9030183/s1, Figure S1: 1H-NMR spectra of guanidylated
chitosan; Figure S2: 1H-NMR spectra of gelatin and gelatin methacrylate (GelMA); Figure S3: swelling
ratios of GelMA and GelMA with AgNPs, the water content of GelMA and GelMA with AgNPs, the
residual weight of GelMA and GelMA with AgNPs in PBS at 37 ◦C for 4 weeks, and strain-dependent
(ω = 10 rad s−1, 25 ◦C) rheology of GelMA and GelMA with AgNPs.
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