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Abstract: This study introduced a D-optimal design mixture to assess the physicochemical properties
of a hydrocolloid-based functional food fortified with C. lentillifera. The combination incorporated
vital jelly constituents, including extract (10–15%), sweeteners (20–29%), gelling agents (K-carrageenan
and locust bean gum (LBG)), and preservatives (0–0.05%). The dependent variables were pH,
Total Soluble Solid (TSS) value, and moisture content (MS). By employing the D-optimal design
approach, a quadratic polynomial model was developed, demonstrating strong correlations with
the experimental data with coefficient determinations (R2) of 0.9941, 0.9907, and 0.9989 for pH, TSS,
and MS, respectively. Based on the D-optimal design, the study identified the optimum combination
of significant factors with a desirability of 0.917, comprising 14.35% extract, 23.00% sucrose, 21.70%
fructose, 26.00% K-carrageenan, 13.00% LBG, 1.95% CaCl2, and 0% methylparaben. The percentage
of residual standard error (RSE) was less than 5%, indicating the reliability of the developed model.
Furthermore, color analysis revealed significant differences among the jellies (p < 0.05). HPLC
analysis demonstrated that the total sugar content in the fortified jellies was 28% lower compared
to commercial jelly. Meanwhile, the bitterness level according to e-tongue showed a reduction of
up to 90.5% when compared to the extract. These findings provide a valuable benchmark for the
development of functional food products, ensuring their quality, safety, and extended shelf-life.

Keywords: Caulerpa lentillifera; color; D-optimal; hydrocolloid; jelly; K-carrageenan; locust bean gum;
mixture design; pH; sugars

1. Introduction

Seaweed has been a part of the human diet for centuries: in Japan, it has been con-
sumed since the fourth century, and in China, since the sixth century [1]. Today, seaweed
aquaculture is a major industry in many Asian countries. In 2019, Asia produced 99%
of the world’s seaweed, with China, Indonesia, and the Philippines being the leading
producers [2]. Meanwhile, in the other part of the world such as Europe, although seaweed
consumption is not as common as it is in Asia, it has gradually expanded in recent decades
due to the discovery of its health benefits [3,4]. Of the more than 100 Caulerpa species that
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have been identified, only seven are edible. The most common edible Caulerpa species are
C. lentillifera and C. racemose [1]. Some Caulerpa species, such as C. cylindracea and C. toxifilia,
are invasive and may cause harm to the environment [5]. C. racemosa and C. lentillifera, also
known as “sea grape” or “green caviar” [6], are usually eaten fresh as a snack, in salads
and sushi, or in salt-preserved form in Japan, Korea, and Southeast Asian countries [7].
They are nutritious food sources and strong candidates to ensure food security for growing
populations, especially in coastal tropical areas, due to their high nutritional composition,
which includes polyunsaturated fatty acids, antioxidant activity, vitamins, minerals, and
bioactive compounds. C. lentillifera is preferable as it is reproduced through fragmentation
at lower costs of infrastructure or specialized expertise [8,9] and is better adapted in pond
water compared to C. racemosa [10]. Similarly, to other seaweed species, C. lentillifera con-
tains a lot of water, making exportation and transportation challenging because it could
quickly deteriorate. Hence, the parental algae may encounter dehydration stress before
reaching their destinations, increasing the likelihood of significant impacts. During storage
and shipment, chlorophyll pigments might be totally or partially lost, where certain erect
branches will turn white. In some cases, prolonged dehydration will lead to broken erect
branches and the separation of spherical ramuli from erect branches [11]. Worst of all,
C. lentillifera might lose its bioactive compounds and health benefits through the processes.

Thus, incorporating bioactive compounds into jellies as as a functional food has
attracted scientists. Jellies are a ready-to-eat, shelf-stable food that can be transported
almost anywhere, even into space, and are especially popular with kids [12]. Functional
food based on jellies could also attract the elderly, for example, those with dysphagia who
have difficulty swallowing pills and capsules [13,14]. Customers’ growing awareness of
health and wellness goods, such as vitamins, minerals, and antioxidants, has included food
containing bioactive substances [15]. The gel structures are essential, as they could give the
food an appealing and distinctive texture and mouth feel [16].

In the development of jellies, hydrocolloids such as gelatin have always been used as
gelling and foaming agents [17]. Gelatin is a product of the partial hydrolysis of collagen
derived from animal skin, white connective tissue, and bones [18]. The primary sources
of commercialized gelatin are cow or pig skins, which may be cheaper than other sources.
However, this food is prohibited in some religions such as Islam, Judaism, and Hinduism.
In addition, it is not suitable for vegetarians. Thus, driven by the demand for halal/kosher
and gelatin-free products, the search has led to replacement with fish gelatin. In some
cases, fish gelatin for example, is expensive and sometimes has a fishy odor. Substitution
with plant hydrocolloids such as starch/modified starch, pectin, carrageenan, and agar has
become an incredible alternative [18]. Of these choices, carrageenan has specific properties
that differentiate it from other hydrocolloids, such as the ability to form gels with potassium
and sodium ions, reactivity with milk protein, formation of thermoreversible gels, and
synergism with different food hydrocolloids. In jellies, kappa carrageenan (K-carrageenan)
is predominantly used in the Asian market. It is frequently combined with other gums,
such as konjac or locust bean gum (LBG), to provide more mouthfeel and jelly texture
experiences [19]. This clarifies why konjac or LBG are combined with carrageenan in jellies.

Multivariate statistical analyses, such as response surface methodology (RSM) and Box–
Behnken design (BBD), can be used to optimize factors that might influence formulation.
However, D-optimal design is preferable, as it is the most suitable approach, especially
for the food, pharmaceutical, and cosmeceutical industries. For example, it is suitable
for identifying the desired characteristics and functional stability of the elements studied,
as well as for statistically evaluating multiple variables and identifying interactions [20].
D-optimal design can reduce the number of experimental runs needed, which overcomes
the disadvantages of traditional techniques.

This study presents a valuable investigation into the physicochemical properties of a
hydrocolloid-based functional food fortified with C. lentillifera using a D-optimal design
mixture. It offers insights into the composition, structure, and behavior of the developed
food, which can serve as a foundation for future research. The evaluation of key properties
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such as pH, total soluble solids, and moisture content improves quality control and food
safety. Furthermore, the examination of color’s impact on the jellies’ composition enhances
our understanding of consumer perception and taste expectations. By considering these
vital elements, this study provides important information for the development of functional
foods and advances the scientific community’s knowledge in this area.

2. Results and Discussion
2.1. Analysis of the Adequacy of the Fitted Model

In total, 17 runs of the D-optimal design were used to create the mixture of active
components and excipients. The design maintains the excipients of interest and levels of
the remaining formulation [21]. However, three runs in each response, specifically pH
(8, 12), TSS (1, 6, 16), and MS (3, 6, 16), were marked as missing independent variables
(outliers). These runs were not included in the construction of the model. Table 1 represents
the number of runs and the responses obtained through the D-optimal design.

Table 1. The mixtures and responses of the fortified jellies from the D-optimal mixture design.

No. A B C D E F G pH TSS, % MS, %

1 12.50 24.89 21.63 26 13 1.95 0.03 5.94 45.1 38.7
2 15.00 22.03 22.02 26 13 1.95 0 5.97 41.5 41.3
3 13.75 21.63 23.66 26 13 1.95 0.01 5.96 48.0 42.9
4 12.50 23.28 23.27 26 13 1.95 0 5.93 47.4 35.4
5 12.50 20.00 26.55 26 13 1.95 0 5.91 48.5 36.9
6 15.00 24.00 20.00 26 13 1.95 0.05 6.20 43.1 49.3
7 12.50 26.53 20.00 26 13 1.95 0.02 5.93 45.6 40.4
8 10.00 20.00 29.00 26 13 1.95 0.05 5.83 48.8 39.9
9 10.00 29.05 20.00 26 13 1.95 0 5.87 50.1 35.6

10 10.00 24.51 24.51 26 13 1.95 0.03 5.83 49.7 30.4
11 15.00 24.05 20.00 26 13 1.95 0 6.10 45.0 42.5
12 15.00 24.05 20.00 26 13 1.95 0 5.98 44.5 43.1
13 10.00 20.00 29.05 26 13 1.95 0 5.88 48.7 32.7
14 15.00 20.00 24.03 26 13 1.95 0.02 5.98 44.5 47.7
15 10.00 29.00 20.00 26 13 1.95 0.05 5.82 51.8 38.7
16 10.00 29.00 20.00 26 13 1.95 0.05 5.84 52.5 39.2
17 11.25 21.63 26.13 26 13 1.95 0.04 5.87 45.5 38.0

Extract (A), sucrose (B), fructose (C), carrageenan (D), locust bean gum (E), CaCl2 (F), and methylparaben (G).

2.2. Agreement between Model Prediction and Observed Value

The agreement to fit in the models was evaluated through the Fisher test value
(F-value), the p-value of the model, p-values of lack of fit, coefficient of determination
(R2), adjusted coefficient of determination (Adjusted R2), predicted R2, and adequate preci-
sion of the model parameters and CV% from analysis of variance (ANOVA). Polynomial
models were utilized to determine the ideal production conditions. Table 2 represents the
parameter estimates and ANOVA of the model responses.

The ANOVA results showed F-values of 94.31, 47.49, and 217.37 for the pH, TSS, and
moisture content models were significant, respectively. There was only a 0.01% chance
that an F-value this large could occur due to noise. This was supported by the finding that
the probability is p < 0.05, indicating that the model was significant [22]. In addition, the
lack of fit was not significant for all responses relative to the pure error. The high R2 of
pH (0.9941), TSS (0.9907), and moisture content (0.9980) also demonstrated the presence of
significant correlations. The high R2 readings indicated the quality of the fit for the selected
models [23]. The significance of the adjusted R-square (Adj. R2) in assessing the model’s
descriptive power was crucial. The values of Adj. R2 for pH, TSS, and MS were 0.9836,
0.9699, and 0.9934, respectively, indicating the predictability of the models in determining
the optimum conditions necessary to achieve the desired outcomes for the jelly [22]. The
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findings verified the models’ predictability for determining the optimal conditions required
to achieve the desired target, as shown in Figure 1.

Table 2. Analysis of variance (ANOVA) and p-values of the physical analysis of the fortified jellies.

Sources
Physical Parameters

pH TSS, % MS, %

Model Significant Significant Significant
R2 0.9941 0.9907 0.9980
Adjusted R2 0.9836 0.9699 0.9934
Predicted R2 0.9354 0.9344 0.9226
Adequate Precision 38.2014 25.0094 50.4348
p-value <0.0001 0.0010 <0.0001
F value 94.31 47.49 217.37
C.V. % 0.21 0.83 1.04
Standard deviation 0.0123 0.3880 0.3955
PRESS 0.0083 4.26 0.9980
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The results showed that the adequate precision of all the responses was greater than 4,
indicating that there was an adequate signal and that the model could be used to navigate
the design space [24]. The coefficients of variation (CV) of the pH (0.21%), TSS (0.83%),
and MS (1.04%) responses were acceptable, as they were less than 20%. The outcome
demonstrated the reproducibility of the models.

The quadratic polynomial models for all responses are shown in Equations (1)–(3).
The generated equations describe the empirical relationship between independent and
dependent variables for each response. The positive values in the regression equation
represent an effect that favors optimization due to the synergist. Negative values, on the
other hand, indicate an antagonistic effect between the factors and responses [24]. In these
equations, A represents the extract, B sucrose, C fructose, and G methylparaben. The linear
coefficients of the pH model were all positive. However, the coefficients for TSS and MS
were negative. This means that the interaction between sucrose and glucose could have a
positive effect on the pH value of the jelly, but a negative effect on the TSS and MS values
of the jelly. The coded equations for all responses are as follows:

pH = 6.01A + 5.87B + 5.88C + 5292.56G + 0.1291AB − 0.0297AC − 5237.68AG + 0.0973BC − 5324.94BG − 5334.20CG (1)

TSS = 36.48A + 51.58B + 48.72C − 1.139e + 06 G + 12.10AB + 8.07AC + 1.138e + 06AG − 10.27BC + 1.142 + 06BG + 1.145e + 06CG (2)

MS, % = 49.34A + 35.63B + 32.68C − 3.43e + 05G − 1.25AB − 1.31AC + 3.473e + 05AG − 21.65BC + 3.438e + 05BG + 3.467e + 05CG (3)

2.3. D-Optimal Analysis

The response surface design was established by D-optimal design using Design Expert
Software, based on responses from the physicochemical analysis of the jellies. In the
design, the range of ingredients used in the jellies was designated based on the values
of the responses, and the response optimizer was used to meet the desired content of
elements [25]. The reactions are also essential for adjusting the product and packaging and
improving consumer acceptance in the future.

2.3.1. pH Response Analysis

In Figure 2, increasing the amount of extract and reducing the amount of sucrose
produced the maximum pH values. The same antagonistic trend was observed in the
interaction between the amounts of extract and fructose. The antagonistic effects between
the amount of extract and sweeteners are likely caused by free hydrogen ion activity in
the mixture [26]. A prior study also noted that pH decreased with additional sugar as a
result of organic acid action [27]. However, an increasing amount of extract, sucrose, and
fructose and a decreasing amount of methylparaben led to small changes in pH. This is
likely because the range of methylparaben used was low.

The pH values of the fortified jellies in this study are higher than those of other jellies,
which are typically between 2.7 and 3.6. This might be contributed to the pH of the extract.
Similar pH in Caulerpa extract was also found to be alkaline, as reported [28]. A previous
study found that higher pH values can reduce the rate of syneresis in jellies, while lower
pH values can cause the molecules to lose bonding, resulting in a weak or runny gel [29].
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However, too high a pH value could cause the gel to develop a liquid or syrup-like
consistency. In addition, prolonged consumption of low-pH or acidic food (mostly below
pH 4.9) can contribute to symptoms in the upper gastrointestinal tract such as ulcers and
reflux. Acidic food can alter the gut bacteria’s viability due to unfavorable gastrointestinal
physiological conditions (GI tract and bile secretions) [30]. To provide health benefits to
the host, these bacteria must be viable upon consumption and have a substantial chance of
surviving the journey to the GI tract [31]. The range of fortified jellies in this study has a
suitable pH for the growth of lactic acid bacteria such as Streptococcus thermophilus (pH 6.5),
Lactobacillus bulgaris (pH 5.8–6), and Lactobacillus lactis subsp. cremoris (pH 6.3–6.9) [32].
Based on the pH range, fortified jellies in this study have a strong potential to be prebiotic
jellies and contribute to human health, similar to probiotics [33].

2.3.2. Total Soluble Solid (TSS) Response Analysis

The TSS values decreased in response to increasing amounts of extract and decreasing
amounts of sucrose and fructose. This is expected, as the extract is a non-sugar component
that could dilute the sugar concentration in the solution, reducing the TSS values. Further-
more, when sucrose and fructose are added to the mixture, they will completely dissolve
in water and distribute the sugars evenly throughout the mixture. In contrast, extracts
frequently contain ingredients or particles that are only partially soluble in water, which
could cause them to settle to the bottom of the container. This may also lead to a lower
TSS value due to a decreased sugar concentration in the solution. Figure 3 illustrates the
three-dimensional surface shows the interaction between three variables on TSS.

Even though the TSS level in this study was slightly lower than that of earlier studies
(60–65%), it was nonetheless equivalent to the TSS levels in commercially available jelly [34].
These variations could be due to the amount and type of sugar used in the mixture. These
factors could influence the jelly structure rather than the TSS values. Too much sugar makes
jelly solid and hard, whereas insufficient sugar weakens the jelly structure [35]. Likewise,
high sugar consumption could contribute to the occurrence and development of fatty acid
synthesis, dyslipidemia, insulin resistance, hyperuricemia, and cardiovascular diseases [36].
Therefore, it is preferable to incorporate a moderate amount of sugar in the mixture.
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2.3.3. Moisture Analysis

Moisture analysis is crucial as moisture is a “signal” that indicates the physical appear-
ance in factors such as shape, color, texture, taste, weight, shelf life, freshness, quality, and
resistance to bacterial contamination [37]. In Figure 4, the moisture content increased when
high amounts of extract and low amounts of sucrose and fructose were used in the mixture.
This is due to several reasons, including hygroscopicity, water activity, and the role of sugar
as a humectant. The extracts are often hygroscopic, meaning they have a strong affinity for
water molecules in the air. A high extract content in the mixture will attract moisture from
the surroundings and contribute to the overall moisture content of the product. Meanwhile,
the amount of water activity (aw) in the product could also increase the moisture content
because the extract contains a significant amount of water. Low sugar levels may also
increase overall moisture content due to the reduced availability of humectants to maintain
the product’s moisture content.

The moisture content of the fortified jellies was found to be comparable to the red
dragon fruit peel jelly [38]. However, the moisture content of jellies can vary widely, with
reported values being as low as (18%) [39] or as high as 93.83% [40]. The moisture content
range for similar products could be due to several reasons, including the type and total
amount of humectant, the types of sugars used, the processing conditions involved [37], the
packaging and storage of the jellies, and the ingredients or raw materials used in the mixture.
Adding gelling agents such as carrageenan to the mixture can indirectly affect the moisture
content of the food by preventing the separation of liquid and solid elements in the food.
The hydrocolloids from carrageenan can also reduce the amount of free water and bind a
significant volume of water (H2O) due to their free OH ions, consequently strengthening
bonding in the jellies [41]. A reduced amount of free water and moisture content within
the food can significantly improve the shelf life of the food products. Carrageenan was also
reported to be effective in capturing water during the gel-forming process compared to
other hydrocolloids such as methoxyl pectin, carboxymethyl cellulose, and sago starch [42].
It is suggested to store food products in an environment with relative humidity (RH) of
between 55% and 65% to prolong the shelf life of the food products [43].
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2.4. Selection of the Design

The selected design for the mixture was predicted using Design Expert Software based
on the results for the physicochemical properties of pH, TSS, and moisture content of
the jellies. Desirability is defined as the precision of the mixture and the significance of
each response [23]. In the selected mixture, the desirability value was 0.917, meaning
that the combination used will produce a product with 91.7% of the characteristics of the
desired target. This mixture consists of extract (14.35%), sucrose (23.00%), fructose (21.70%),
K-carrageenan (26.00%), LBG (13.00%), CaCl2 (1.95%), and no methylparaben. With these
proportions, the pH should be around 5.97, with TSS at 45.80% and moisture content at 40%.

2.5. Verification of Constructed Model

The experimental and predicted response values were compared by calculating the
Residual Standard Error (RSE) percentages, as shown in Table 3. An RSE value of less
than 5% indicates that the model is acceptable and the predicted and actual values are not
significantly different.

Table 3. The actual and predicted data for the model verification.

Independent Variables Responses

pH TSS MS

No. A B C D E F G X Y RSE X Y RSE X Y RSE

1 14.3 23.0 21.7 26.0 13.0 1.9 0 5.97 5.96 0.17 45.8 44.8 2.18 40.0 38.4 4.00
2 14.1 23.0 21.8 26.0 13.0 1.9 0 5.96 5.93 0.50 45.9 46.8 1.96 39.5 37.8 4.30
3 14.1 23.5 21.3 26.0 13.0 1.9 0 5.97 5.94 0.51 46.3 46.8 1.07 39.9 38.2 4.26

Note: (A): extract, (B): sucrose, (C): fructose, (D): K-carrageenan, (E): LBG, (F): CaCl2 (G): methylparaben, (X):
predicted value, (Y): actual value, and RSE (%).

2.6. Color Analysis

Color analysis is essential for jellies, as it influences the product’s aesthetic appeal
and the perception of consumers. Thus, most food products in the market are often
supplemented with artificial coloring, which generally offers more appealing than natural
coloring [44]. Color analysis based on L*, a*, and b* of the jellies were compared using
one-way analysis of variance (ANOVA), as shown in Supplementary Table S1.

There was a significant difference (p < 0.05) in the jellies’ L*, a*, and b*. Generally, the
L* values of jellies with 15% of the extract are lower than those of jellies with 10% of the
extract, which indicates that lightness decreased with increasing amounts of extract. The
color from the extract of C. lentillifera may contribute to the color of the jelly. Caulerpa is
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rich in chlorophylls a and b and acts as a natural color additive in food and pharmaceutical
products. In addition to adding value to the products, chlorophyll is an established
antioxidant with demonstrated anti-cancer properties [45]. The natural color of C. lentillifera
in the jellies could be a brilliant alternative, as prolonged consumption of synthetic dyes has
been shown to be carcinogenic, result in hypersensitivity reactions, and cause behavioral
issues, particularly in children [46].

In addition, the types and quantities of sweeteners and gelling agents used could also
affect the results. A prior study found that the color values of carrageenan-based jellies can
be affected by the type of sugar used, due to their molecular structure and properties [38].
For example, the sugar used can cause pigment destruction or non-enzymatic browning
during heating. During thermal treatment, sucrose can degrade into glucose and fructose,
which can promote the Maillard reaction. This reaction occurs among amino groups and
reduces sugars under high temperatures, resulting in changes in the food’s aroma, taste,
and color [47].

The chromatic coordinates a* and b* represent the color spaces between red (+a*)
and green (−a*) and between yellow (+b*) and blue (−b*). The a* coordinates of the
jellies ranged from −5.28 ± 1.28 to 0.40 ± 0.31. The extracted sample, however, has a
positive a*. The low a* indicates that the jellies and extract are slightly green compared to
red. The b* coordinates were positive in all the runs, indicating intense yellow coloration
compared to blue. The same pattern of color coordination was observed in orange and
berry gummies [48] when no artificial coloring was added.

2.7. Sugar Analysis Using HPLC

In addition, Total Soluble Solids (TSS), and the details of monosaccharides and saccha-
rides in the jelly were also obtained. The jellies were chosen based on the high, medium,
and low amounts of extract used in the mixture. Table 4 shows the types of monomers and
their quantities present.

Table 4. Sugar analysis of jelly using HPLC.

Sample/Sugar Fructose Glucose Sucrose Maltose Total, %

Jelly Run 4 0.22 ± 0.01 4.19 ± 0.054 25.17 ± 0.48 2.77 ± 0.09 32.37
Jelly Run 10 0.18 ± 0.00 4.52 ± 0.062 26.91 ± 0.42 3.01 ± 0.72 34.63
Jelly Run 12 0.20 ± 0.035 3.89 ± 0.074 24.35 ± 1.21 2.55 ± 0.06 31.00
Control ND 4.72 ± 0.035 29.76 ± 0.473 3.22 ± 0.13 37.73
Extract 3.687 ± 0.04 3.754 ± 0.023 ND ND 7.37
Commercial jelly 1.23 ± 0.00 11.937 ± 0.00 24.658 ± 0.07 5.70 ± 0.16 43.53
p-value 0.0000 0.0000 0.0000 0.0000

ND: not detected.

The total sugar content of the fortified jellies was significantly different (p < 0.05) from
the control jelly (without the extract) and the extract of C. lentillifera. The total sugar content
of the fortified jellies was reduced by up to 28%, compared to the control jelly (without the
extract) and commercial market products. This provides a better dietary option that can
reduce the risk of health problems such as obesity, metabolic dysregulation, cardiovascular
disease, and type 2 diabetes [49].

This study found that the fortified jellies had a higher glucose content than the extract
alone. The increase in glucose content in the jellies may be attributed to the sucrose and
fructose in the mixture. However, the glucose content in the fortified jellies was lower
than in commercial products, which had a glucose content of 11.937 ± 0.00%. Glucose
is an essential nutrient that maintains glucose homeostasis, which is vital to the normal
physiology of cells [50]. A previous study reported that K-carrageenan can reduce blood
glucose in diabetic male Wistar rats (Ratus norvegicus) [51]. Glucose is an important energy
source that is the primary fuel for the brain and muscles. It can regulate blood sugar levels,
which is beneficial for people with diabetes or at risk of developing diabetes. Glucose can
also improve gut health by acting as a prebiotic to aid in digestion and boost immunity
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by supporting the production of white blood cells. However, it is important to consume
glucose in moderation, as excessive amounts can lead to obesity and other health problems.

The fructose content was reduced in all fortified jellies, while the sucrose content was
increased due to the addition of sucrose as one of the ingredients in the mixture. The
sweetness of the jellies was achieved by the glycosidic bond between glucose and fructose,
which is formed between C1 and C2 of glucosyl and fructosyl in the sucrose molecule [52].
The sugars in jelly bind directly to K-carrageenan to stabilize the intermolecular hydro-
gen bonding between individual strands in a typical junction zone. This is achieved by
forming intermolecular, cross-linking hydrogen bonds between the OH groups of the sugar
cosolvent and K-carrageenan [53,54]. Sucrose has been found to have a positive effect on
the quality and stability of gels. Previous studies have elucidated that adding sucrose can
increase the gelation temperature of mixtures and improve the freeze–thaw stability and
combination of tapioca starch [55]. Additionally, sucrose has been found to improve the
strength and thermal stability of azuki bean starch (ABS) gels [56].

2.8. E-Tongue

Electronic tongues are a reliable instrument for assessing the bitterness of medicines
in the pharmaceutical sector [56,57]. Figure 5 compares the change in membrane potential
caused by adsorption (CPA) values obtained using an ANO sensor.
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Figure 5. Comparison of the change in membrane potential caused by adsorption (CPA) values
obtained using an ANO sensor on selected runs. Each bar represents the mean ± standard error of
the triplicate tests.

The bitterness levels of the extract and the fortified jellies were compared based on the
CPA values measured with the ANO sensor. CPA stands for change in membrane potential
caused by adsorption, which corresponds to the aftertaste. The ANO sensor was composed
of a lipid-phosphoric acid didodecyl ester of lipid and a plasticizer-dioctylphenyl phos-
phate [58,59]. Therefore, the ANO sensor is sensitive to basic materials such as solifenacin
succinate or amplopodone besilate [60]. This sensor can also detect various bitter substances
and taste sensors that detect non-charged bitter substances. The results for the extract
and the fortified jellies in this study showed a significant difference (p < 0.05). However,
there was no significant difference (p > 0.05) between Runs 4, 10, and 12. Although the
fortified jellies have a slightly basic pH, it was possible to successfully reduce the bitterness
intensity level of C. lentillifera from 22.97 mv to 2.56 mv (Run 4), 2.31 mv (Run 10), and
2.18 mv (Run 12), which represent approximate reductions of 88.85%, 89.94%, and 90.50%,
respectively. This is due to the sugars [61] and gelling agents [62] used in the mixture, which
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masked the bitterness of the extract. This is consistent with a previous study, which showed
that sugars can decrease bitterness and intensify sweetness in food [61] and conceal the
bitter taste in active pharmaceutical ingredients [63]. Sugars can counteract bitter flavors by
activating the taste receptors on the tongue that are responsible for detecting sweetness [64].

Previous research has shown that gelling agents such as alginate beads can effectively
mask the bitter taste of Momordica charantia extract [62]. Other gelling agents, such as
xantham gum, locust bean gum, and agar have been reported to reduce the bitterness of
ambroxol hydrochloride [65]. The gelling agents will modify the overall texture of the jelly,
masking the unpleasant taste of the extract and creating a smoother and more cohesive
mouthfeel. This can help to improve overall palatability [65].

3. Conclusions

A D-optimal design mixture was successfully applied to develop a hydrocolloid-based
functional food fortified with C. lentillifera and evaluate its physicochemical properties.
The ANOVA and R2 values of the pH, TSS, and MS were 0.9941, 0.9907, and 0.9989,
respectively. This indicates that the developed quadratic models were well-formed. The
desirability values of 0.917 suggest that actual values under the optimum conditions (14.35%
extract, 23.00% sucrose, 21.70% fructose, 26.00% K-carrageenan, 13.00% LBG, 1.95% CaCl2,
and without methylparaben) corresponded closely to the predicted values, as the RSE
percentage was less than 5%. Furthermore, significant (p < 0.05) color variations were found
among the jellies. The total amount of sugar in the fortified jellies was up tp to 28% lower
than commercial jelly. This gives consumers the opportunity to make healthier choices and
avoid health problems, such as obesity and its associated consequences. Additionally, the
pH range of the jellies in this study suggests that they have strong potential as prebiotic
jellies, which can have a positive impact on human health. Through e-tongue analysis, the
fortified jellies were able to mask the bitterness level of C. lentillifera by up to 90.5%.

4. Materials and Methods
4.1. Experimental Materials

Caulerpa lentillifera was harvested in Port Dickson, Negeri Sembilan, Malaysia. Su-
crose and fructose were purchased from a local bakery, while K-carrageenan, CaCl2, and
locust bean gum (LBG) were procured from Modernist Pantry, LLC (Eliot, ME, USA). All
ingredients are food grade.

4.2. Extraction of C. lentillifera

Water extraction was performed by Ultrasonic Assisted Extraction (UAE) using a
Branson Digital Sonifier (Danbury, CT, USA), with a sample-to-solvent ratio of 1:20. The
parameters were set at 40% amplitude for 7 min. The extracts were filtered using a Whatman
filter paper (No. 1) and maintained at −20 ◦C until needed.

4.3. Selection of Excipients

The pH of the jellies is the vital element that needs to be considered because jellies will
not solidify under low pH conditions. In addition, oral jelly must have significant viscosity
and a soft structure to be easily squeezed out of the sachets [62]. Therefore, structure,
sweeteners, and product shelf life must be considered as they will affect the customer’s
preferences. Sucrose and fructose were used in the mixture because they are cost-effective,
have a mild flavor, and prevent crystallization [65]. Sugar is a structural agent that increases
viscosity, helps gels to form, and keeps them firm. Other sugar alternatives might not have
the same properties, and additional structures may be required. In addition, fructose is the
most soluble monosaccharide sugar, so it is less likely to crystallize, which is why it is often
used in high-sugar foods and beverages to preserve their desirable textures [66]. In addition,
non-nutritive sugars such as saccharin, sucralose, and aspartame have been shown to have
negative effects on urinary bladder tumors and gut microbiota [48]. K-carrageenan has
the best solidifying capability and is also thermo-reversible, anti-protein coagulating, hy-
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drophilic, non-toxic, biodegradable, and low-cost compared to other types of carrageenan
and has garnered much interest in the food, chemical, packaging, pharmaceutical, and edi-
ble cling film industries. This is due to the 3,6-anhydrous-D-galactopyranose residues in the
chain and one negatively charged sulfate group [67]. To improve the gel strength, texture,
and syneresis the K-carrageenan and locust bean gum (LBG) were added to the mixture. The
combination of these gelling and thickening agents is known to work synergistically [68]

4.4. Preparation of Jellies Fortified with C. lentillifera

The fortified jellies were prepared via heating and congealing methods, as reported [66].
The amounts of extract, gelling agents, and stabilizers were measured according to Table 1.
Thickening and emulsifying agents K-carrageenan and locust bean gum was prepared
separately at a ratio of 2:1 before being added to the mixture of sucrose and fructose. When
the mixture was dissolved completely, a stabilizer, methylparaben, and extract were added
and stirred again to enhance the softness of the jelly for a few minutes. The mixture was
transferred into molds that were 7.3 cm × 1.5 cm × 1.5 cm and allowed to solidify for 24 h
at 4 ◦C, covered with plastic wrap to avoid exposure to the outer environment.

4.5. Physicochemical Analysis

The pH of the fortified jellies was measured using a Mettler Toledo (Columbus, OH,
USA) desk pH meter. Total Soluble Sugar (TSS) was measured in terms of refractive index
and concentration (% Brix) of the mixture, using a digital refractometer (Hanna Instrument,
HI 96800, Cincinnati, OH, USA). Moisture content was measured using an Infrared Moisture
Analyser FD-660 (Kett Electric Laboratory Co. Ltd., Tokyo, Japan), and color analysis was
conducted using a WR-10 portable handheld color meter (FRU, Guangzhou, China), based
on lightness (L*), and chromatic values (a* and b*). All measurements were conducted
in triplicate.

4.6. Sugar Analysis

High-Performance Liquid Chromatography (HPLC) was performed using 5% of
standard solutions (fructose, glucose, sucrose, and maltose) dissolved in 50:50 acetoni-
trile/water (ACN/dH2O). The working sugar mixture solution was prepared by trans-
ferring 1 mL of each standard solution to a 10 mL volumetric flask, and then the final
volume was completed with distilled water. Meanwhile, the fortified jelly was weighed
to 1 g, dissolved in 25 mL of 50:50 (ACN/dH2O) and homogenized. The samples were
then centrifuged for 30 min at 3200 rpm before being filtered using a 0.45 µm nylon syringe
filter. About 1 mL of the sample was then transferred to the HPLC vial. Compounds were
separated using a Cosmosil ® 5C18-PAQ Packed Column 4.6 mml. D. × 250 mm, 1PKG
(Nacalai Tesque, Kyoto, Japan). The mobile phase consisted of (ACN/dH2O) (50:50 v/v) in
isocratic mode at a 1.0 mL/min flow rate and injection volume of 10 µL.

4.7. Electric Tongue Sensor

SA402B (Intelligent Sensor Technology, Inc., Kanagawa, Japan), was used to test the
bitterness intensity of the fortified jellies at the Formulation Design and Pharmaceutical
Technology Laboratory, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
(OMPU). The ANO sensor, which responds to the specific bitterness of hydrochloride, was
used to determine the bitterness of the jellies. The negatively charged membrane of the
ANO sensor makes it extremely sensitive to hydrochloride [57,67].

4.8. Experimental Design and Statistical Analysis

The pH, TSS, and MS of the fortified jellies were evaluated using Design Expert
software (Version 13.0.1, Stat-Ease, Inc. Minneapolis, MN, USA), while the color, sugar,
and bitterness levels of the jellies were analyzed through Minitab Statistical software.
Optimization was carried out to obtain an optimal response according to the desired
optimization target. The essential parameters were determined so that a solution formula
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could be identified during optimization to produce a solution mixture that would be chosen
based on the highest degree of desirability, which ranges from 0 to 1 [23]. Table 5 lists the
excipient proportion limitations in the fortified jelly.

Table 5. Summary of excipient proportion limitations.

Causal Factor Variables
Coded Level of Variable (%)

Low (−1) High (+1)

Extract 10 15
Sucrose 20 29.05
Fructose 20 29.05
Methylparaben 0 0.05

The total amount in the mixture is in percentages: (A) extract + (B) sucrose + (C) fructose + (D) (methylparaben)
+ other ingredients = 100%.

4.9. Verification of the Model

A quantitative comparison between the obtained experimental and theoretical predic-
tion values was performed to validate the models through residual standard error (RSE).
At the same time, the percentage of the calculated values was determined. The predicted
error was calculated according to the differences between the experimental values and the
predicted value per predicted value [21].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels9070531/s1, Table S1: The color analysis of the fortified jellies.
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