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Abstract: Aloe vera-based hydrogels have emerged as promising platforms for the delivery of thera-
peutic agents in wound dressings due to their biocompatibility and unique wound-healing properties.
The present study provides a comprehensive overview of recent advances in the application of Aloe
vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and
properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released
from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed.
In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the
reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The
incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into
Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe
vera-based hydrogels for wound dressing applications are considered. This review provides valuable
information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents
in wound dressings and highlights their potential to improve wound healing outcomes.
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1. Introduction

Medicinal plants have been used since ancient times. It has even been estimated that
nearly 80% of the world’s population relies on traditional herbal medicine for primary
health care [1]. Herbal therapies have recently shown an upward trend for a variety
of ailments in parallel with the development of modern medicine. Many new drugs
and treatments derived from medicinal plants are being developed and prescribed today.
According to the World Health Organization (WHO), almost 25% of modern medicines are
derived from plants that were used in traditional medicine. Additionally, many drugs are
synthetic analogues obtained from model compounds isolated from plants [2]. This review
summarizes the preparation, structural features, and properties of Aloe vera-based hydrogels
and recent advances in Aloe vera-based hydrogels for wound dressing applications.

Aloe vera (AV) belongs to the Liliaceae family, of which the best-known species is Aloe
Barbadensis Miller, and has been used for thousands of years in traditional medicine [3].
Being one of the most famous medicinal plants in the world, it is considered a miracle gift
of nature due to its many therapeutic benefits [4].

References to the medicinal use of the AV plant date back 4000 years, but the first
inscriptions mentioning the plant were found on a collection of Sumerian clay tablets from
2100 BC [5,6]. Additionally, in the Egyptian Ebers Papyrus of 1552 BC, the plant was
mentioned as a laxative [5]. The first populations to identify and appreciate the healing
properties of Aloe plants were the Egyptians, Romans, Greeks, Arabs, and Indians [7].
There were many legends, which said that the Aloe plant was used by the Egyptian Queen
Nefertiti (1353 BC), considered “the most beautiful woman who ever lived”, and by Queen
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Cleopatra VII (69–30 BC) in their usual beauty treatments, but also as medicine. According
to legend, in 333 BC, Aristotle advised Alexander the Great to capture the island of Socotra
in the Indian Ocean for its famous AV plantations, which were needed to treat his wounded
soldiers [5].

Starting in the 1950s, Aloe leaf gel began to be industrialized and commercialized.
The global AV extracts market size is projected to grow from USD 2.65 billion in 2023 to
USD 4.55 billion by 2030 at a compound annual growth rate of 8.0% during the forecast
period [8]. The market demand for AV products is now widespread globally and has
been steadily increasing, driven by consumer awareness of its various health benefits
associated with medicinal and cosmetic properties and the growing preference for natural
and organic herbal products, including (i) health and wellness products such as dietary
supplements, herbal remedies, and functional beverages, for their potential health benefits
such as aiding digestion and supporting the immune system; (ii) skin care products and
cosmetics, e.g., lotions, creams, gels, and face masks, due to its soothing and moisturizing
properties; (iii) pharmaceuticals: AV extracts are used in the production of ointments,
creams, and oral medications for burns, wounds, psoriasis, and gastrointestinal disorders;
(iv) agriculture and farming: AV is used in soil improvement and as a natural fertilizer.
Gel-based pharmaceutical and skin care products account for approximately 80% of the
market size.

AV is a shrubby plant with fleshy green leaves, conical and filled with a clear, viscous
gel. It grows perennially in many areas of the globe [9,10]. AV gel has been used for curative
and therapeutic purposes, and numerous bioactive components have been discovered in
the inner gel. It was believed that the special biological activities of AV gel are due to the
synergistic effect of the multitude of biochemical components present in its composition.
It exhibits numerous biological benefits such as astringent, anti-diabetic, anti-ulcer, an-
tibacterial, anti-inflammatory, antimicrobial, antioxidant, hemostatic, and anti-carcinogenic
properties and also effectiveness in treating gastrointestinal disorders [11,12].

AV is a plant often cultivated in people’s homes around the world as a natural com-
pound intended for widespread use by both adults and children and recognized in clinical
practice as a tool for wound healing [13–17]. AV gel has been particularly associated
with the treatment of skin injuries such as cuts, burns, frostbite, radiation, and electrical
injuries [18–21].

Depending on the evolution of the recovery process, wounds can be classified into
two broad categories: acute and chronic wounds [22,23]. Acute wounds are injuries with
complete healing within up to 12 weeks [24,25]. In contrast, chronic wounds take more
than three months to heal. This may be due to repeated tissue damage or associated
physiological conditions such as poor primary treatment, infections, diabetes, malignancy,
severe injury, or a compromised immune system [26–28].

Wound care is necessary to prevent or mitigate possible infection, the most common
complication for compromised skin. Dressings are mainly applied to prevent microorgan-
isms from reaching the wound, to keep the wounded area hydrated, and to absorb exu-
dates [29,30]. Traditionally, sterile gauze dressings have been widely applied to wounded
areas [31–33]. However, they are not always effective because they do not provide hy-
dration, and sometimes their removal becomes painful because they stick to the wounds.
Additionally, to prevent the development of infections, different creams and ointments with
antimicrobial action are used, which must be removed and reapplied constantly [34–36].
Modern dressings are adapted to different types of injuries and patient typologies to
avoid infection and promote scarless healing. They are designed to provide hydration and
interact with wounds by releasing bioactive molecules to accelerate the wound-healing
process [37,38].

With the adaptation of synthesis methods and the evolution towards ecological chem-
istry, it is absolutely necessary to use non-toxic solvents for the production of dressings.
Thus, dressings such as dermal patches, foams, hydrogels, hydrocolloids, nanoparticles,
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nanofibers, films, membranes, and three-dimensional (3D) printed scaffolds can be obtained
with various bio-based adaptive features [39–44].

Hydrogels are a class of materials often applied in the soft tissue engineering of skin,
blood vessels, and muscles [45,46]. With a three-dimensional porous structure, hydrogels
are formed by physically or chemically crosslinked bonds of hydrophilic polymers [47–49].
They are also insoluble and have an exceptional capacity to absorb wound exudates and
allow oxygen diffusion to accelerate healing [25,50–52]. They can retain several times more
water compared to their dry weight and maintain good hydration in the injured area [53,54].
Due to these unique physical properties, hydrogels are the most suitable dressings to cover
skin wounds [55–57]. Hydrogel design and development can provide a platform for the
encapsulation of cells, antibacterial agents, or bioactive factors. As dressings, hydrogels
must be biocompatible, have suitable physical and mechanical properties, and ensure cell
proliferation in wounds [58–60].

Throughout history, humans have used native AV gel, which has been shown to have
exceptional properties in the wound-healing process and in promoting tissue regeneration.
The huge potential of AV gel is due to the advantages of the biocompatible, bioavailable,
and biodegradable matrix, as well as the ability to heal wounds easily and effectively
without leaving scars [52,61,62]. Native AV gel not only releases bioactive components but
also moisturizes the wound to increase flexibility, acts as a barrier against foreign microbes,
and helps reduce pain at nerve endings [21].

2. Phytochemical Constituents of Aloe vera

Numerous studies have demonstrated the exceptional healing potential of AV and
identified the many bioactive compounds responsible for wound healing. The structure
of the Aloe leaf is configured in the form of three layers. The inner layer consists of a
transparent gel containing 99% water and 1% solid matter that compresses over 75 different
compounds (such as glucomannans, amino acids, lipids, sterols, and vitamins), the middle
layer is a bitter latex in the form of yellow juice rich in glycosides and anthraquinones, and
the outer layer is a thick cortex that produces carbohydrates and proteins (Figure 1) [63–67].
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Depending on the species, the influence of climatic conditions, and the diversity of
the ecosystem to which they belong, the phytochemical constituents can be different in
AV plants. Harvested from the inside of the leaves of the AV plant, the gel is a gelatinous
substance that contains a complex variety of several bioactive compounds, and the analysis
of the dry matter of the dry AV gel showed that it mainly contains polysaccharides (approx.
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55%), sugars (approx. 17%), minerals (approx. 16%), proteins (approx. 7%), lipids (4%), and
phenolic compounds (approx. 1%) [4,68–72]. One of the most important compounds of the
gel is acemannan, which is used in many pharmacological and biological applications in
medical and industrial fields, such as dentistry [73], metabolic disorders [74], cardiovascular
diseases [75], and tumor diseases [76]. It has also been used for wound treatment [77] and
drug delivery [78,79]. Other constituents, such as amino acids, are building blocks for body
and muscle proteins; sugars control cholesterol levels, proper digestion, liver function,
and help strengthen bones. Anthraquinones have an antiviral effect, enzymes catalyze
the biochemical reactions, inorganic compounds have a role in the proper functioning of
several enzymes in various metabolic pathways, vitamins have a strong antioxidant action
in neutralizing free radicals, proteins have an antitumor effect, and hormones and sterols
promote wound healing.

It is believed that the power to adjust the various biological and therapeutic implica-
tions of AV gel is due to the synergistic effect of all the active phytochemical components.
This unique composition enabled the gel to harmoniously integrate into human tissues,
promoting natural healing and regeneration processes. Applied topically to a wound,
AV gel acts gently but as a potent antimicrobial and anti-inflammatory agent, inhibiting
bacterial growth and reducing inflammation [21,80–84]. Table 1 summarizes the main
biocomponents of AV. Additionally, the active compounds of the gel stimulate the pro-
duction of new cells and collagen, which is an essential protein in the process of tissue
regeneration (Figure 2) [68,85]. Thus, wounds treated with AV gel heal faster and without
leaving unsightly scars.
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Table 1. Compounds found in Aloe vera [64].

Type Compounds

Anthraquinones/anthrones Aloe-emodin, aloetic-acid, anthranol, aloin A and B (collectively known as barbaloin)
isobarbaloin, emodin, ester of cinnamic acid

Carbohydrates
Pure mannan, acetylated mannan, acetylated glucomannan, glucogalactomannan,

galactan, pectic substance, arabinogalactan, galactoglucoarabinomannan,
galactogalacturan, xylan, cellulose, acemannan

Enzymes Alkaline phosphatase, amylase, carboxypeptidase, carboxylase, catalase, cyclooxidase,
phosphoenolpyruvate, cyclooxygenase, superoxide dismutase, lipase, oxidase

Inorganic compounds Calcium, chlorine, phosphorous, chromium, copper, magnesium, iron, manganese,
potassium, sodium, zinc

Non-essential and essential amino acids
Alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, hydroxyproline,

isoleucine, leucine, lysine, methionine, proline, threonine, tyrosine, valine,
phenylalanine

Proteins Lectins, lectin-like substance

Saccharides Mannose, glucose, L-rhamnose, aldopentose,

Vitamins B1, B2, B6, C, β-carotene, choline, folic acid, α-tocopherol

Miscellaneous Arachidonic acid, γ-linolenic acid, potassium sorbate, steroids (campesterol, cholesterol,
β-sitosterol), triglycerides, triterpenoid, gibberellin, lignins, salicylic acid, uric acid

3. Preparation of Aloe vera Hydrogels

AV gel can serve as a natural and biocompatible matrix for hydrogel. It can be obtained
by extracting the gel from mature AV leaves that are healthy and free from any damage
or discoloration, removal of the yellow latex layer, which can be irritant, and processing
the clear gel in the inner leaf to remove any impurities by washing with distilled water or
ethanol. After purification and excess water draining (a concentration of 1–10% (w/v) is
typically used for hydrogel formulations), the gel can be mixed with a cross-linking agent,
such as a suitable polymer, considering factors such as gelation time, biocompatibility, and
stability of the cross-linked hydrogel, to form a hydrogel. Finally, the gel is washed with
distilled water to remove any unreacted cross-linking agent or by-products and stored
refrigerated in a moisture-sealed container to maintain its moisture content (Figure 3). In
Figure 4, the procedure for the AV hydrogel network preparation for its use in regenerative
medicine is represented [86,87].

The specific procedure for preparing AV-based hydrogels can vary depending on the
desired application and the chosen cross-linking method. It is essential to follow good
laboratory practices and refer to relevant literature or established protocols to ensure the
reproducibility and quality of the hydrogel preparation. It is worth mentioning that the in-
corporation of therapeutic agents, such as antimicrobial and anti-inflammatory agents, into
AV-based hydrogels can enhance their potential for wound healing and other biomedical
applications. By combining AV medicinal properties and wound healing effects with the
controlled release capabilities of hydrogels, it is possible to develop advanced biomaterials
with improved therapeutic outcomes. Therapeutic agents can be added to the AV gel
solution before or during the cross-linking process. This can be achieved by dissolving
the agents in a suitable solvent and then mixing them with the gel solution. The concen-
tration of the agents can be varied to control the release rate and dosage. Additionally,
the incorporation of therapeutic agents can be attained by the selection of appropriate
therapeutic agents with desired antimicrobial and anti-inflammatory effects based on the
specific application. Examples of antimicrobial agents include silver nanoparticles [88],
antibiotics [89], or natural antimicrobial compounds [90], while anti-inflammatory agents
may include corticosteroids [91] or non-steroidal anti-inflammatory drugs (NSAIDs) [92].
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The cross-linking and gelation of AV hydrogels are crucial steps in the preparation
process to convert the AV gel solution into a solid hydrogel matrix. Cross-linking is the
process of creating covalent or physical bonds between polymer chains, resulting in a
three-dimensional network that gives the hydrogel its structural stability and enhanced
mechanical properties. Gelation refers to the transformation of the liquid gel solution
into a solid gel form. The gelation process involves mixing the AV gel solution with an
appropriate concentration of cross-linking agent and allowing it to react for a specific
period. The AV gel solution containing therapeutic agents can be cross-linked using a
suitable method, such as chemical cross-linking or physical cross-linking. Cross-linking
agents are substances that promote the formation of covalent bonds between polymer
chains, resulting in a three-dimensional network structure. This network improves the
gel’s strength, elasticity, and resistance to dissolution in aqueous environments, making
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it suitable for wound healing applications. Various cross-linking mechanisms and agents
can be utilized for AV-based hydrogels. Chemical cross-linking may involve the addition
of a cross-linking agent that reacts with hydroxyl groups in AV to form covalent bonds,
leading to gelation; while physical cross-linking can be achieved through temperature,
pH-incorporating temperature, or pH-responsive polymers, the hydrogel forms as the
polymer chains undergo a conformational change by simply heating the gel solution to a
specific temperature or adjusting the pH. Certain polymers, such as alginate, can undergo
ion-induced gelation in the presence of divalent cations such as calcium ions. Calcium
chloride (CaCl2) is commonly used to initiate gelation in Aloe vera-alginate composite
hydrogels. The gelation occurs as the calcium ions form ionic cross-links with the alginate
chains [93]. A few commonly employed cross-linking methods are: (i) temperature-induced
gelation: AV polymers can undergo gelation when the temperature is raised above a critical
point, forming a physical cross-linked network; (ii) ionic gelation: addition of multivalent
cations, such as calcium ions (Ca2+), can induce gelation by creating ionic interactions
between the AV polysaccharides; (iii) natural agents such as glutaraldehyde, genipin,
and tannic acid can be used to chemically cross-link AV hydrogels, these agents react
with the functional groups present in the polymer chains, forming stable covalent bonds;
(iv) carbodiimides such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), can
facilitate the formation of amide bonds between carboxylic acid groups of AV polymers
and amine groups from other molecules, resulting in cross-linking; (v) radiation-induced
cross-linking: hydrogels can be cross-linked using ionizing radiation, such as gamma rays
or electron beams, these high-energy radiations cause the formation of free radicals within
the polymer chains, leading to cross-linking. These cross-linking mechanisms and agents
help improve the mechanical integrity, swelling behavior, and biocompatibility of AV-based
hydrogels used in wound dressings. They promote the stability of the hydrogel structure,
prevent rapid dissolution in contact with wound exudate, and ensure the sustained release
of beneficial components from AV for wound healing purposes. It is important to note
that the specific choice of cross-linking agent and method may depend on factors such
as desired properties, safety considerations, and compatibility with the wound healing
environment. During cross-linking and gelation, it is important to control parameters such
as temperature, pH, and reaction time to achieve the desired gel properties. The gelation
time can be influenced by factors such as the concentration of cross-linking agents, AV gel
concentration, and the specific method used. It is crucial to optimize these parameters to
obtain hydrogels with desirable properties, such as mechanical strength, swelling behavior,
and drug release characteristics. After gelation, it is common to wash the hydrogel to
remove any unreacted cross-linking agents or by-products. The resulting AV hydrogel can
be characterized and evaluated for its physical, chemical, and biological properties, such
as gelation time, swelling behavior, mechanical strength, and drug release profile. In vitro
and in vivo studies can be conducted to assess the antimicrobial and anti-inflammatory
efficacy of the hydrogel, as well as its biocompatibility, to ensure its suitability for various
applications, including wound healing, drug delivery, and tissue engineering. Figure 5
presents a schematic illustration of the synthesis and characterization of three composite
hydrogels with different concentrations of AV, 5%, 10%, and 20% (w/v), and the assessment
of their properties [94]. The natural polymer-based hydrogels with high AV content, from
38% to 71% by weight in dry gel, demonstrated improved pharmacotechnical properties,
including swelling ratio, spreadability, elasticity, and tensile strength. The hydrogel with AV
content of 10% (w/v) in solution and 55% by weight in dry gel exhibited the highest strength,
elasticity, and absorption capacity and also a slightly higher spreadability, indicating it for
application in wound care [94].
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4. Biological and Pharmacological Effects of Aloe vera

AV gel has multiple functions. It can be used in the food field due to its proven
biological properties such as antioxidant, antiviral, antibacterial, antifungal, and antiochra-
toxigenic activity against Aspergillus carbonarius, Aspergillus niger, Penicillium digitatum,
Penicillium expansum, and Botrytis cinerea [63,95–98]. It is widely used to produce gel-
containing healthy drinks and juices, including sports drinks [99]. It can be a functional
food in the activation of lipolysis and the prevention of metabolic changes related to obesity
since the phytosterols of Aloe gel are effective in reducing visceral fat due to the interaction
with cholesterol and also has an effect on glucose metabolism, reducing blood sugar in
the experimental mouse model [100]. It acts in intestinal disorders (combats constipation)
due to its laxative, anti-dysenteric, anti-hemorrhoidal, and cicatrizing properties [101–103].
Moreover, even AV flowers are consumed more often today, knowing that diets rich in
antioxidants reduce the risks of cardiovascular diseases and cancers [104].

Additionally, AV gel can be used in the medical field due to its demonstrated phar-
macological effects on several components of the metabolic syndrome, such as effects
against dyslipidemia, hyperglycemia, hypertension, and obesity [105]. Numerous studies
have highlighted the beneficial anti-inflammatory, anti-diabetic, immunomodulatory, and
anticancer (neoplastic disease) capacity [106–108].

At the same time, it has been studied for its active capabilities, such as hepato-
protective, anti-ulcer, anti-arthritic, and anti-rheumatic properties [109–111]. Many in-
vestigations have shown that the dental uses of AV are multiple, with a positive impact
on the oral area [112–114]. In the case of broken, avulsed teeth, the extract (50%) of AV
determined the increase in the cell viability of the stem cells in the dental pulp. This result
is due to polysaccharides and especially acemannan, which have a positive effect on the
growth factor, the expressions of specific osteogenic genes, and DNA synthesis [115,116].

AV has a crucial contribution in reducing pain, combating inflammation, moisturizing
the wound, improving the quantitative and qualitative composition of collagen, and im-
proving the migration of neighboring epithelial cells of the wound [117]. AV has valuable
pharmaceutical properties both through the contained gel and the whole leaf extract, which
include the possibility of co-administration of bioavailable vitamins to humans. In a study
on human subjects, Aloe was found to increase the absorption of both vitamins C and
E through a slower absorption mechanism, and the vitamins last longer in plasma with
Aloe. Aloe is said to be the only supplement known to improve the absorption of both
vitamins and should be considered a true supplement [118]. Figure 6 presents a graphical
representation of the interrelationship between the properties and composition of AV.
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The versatile nature of AV gel has significant potential in the field of pharmaceutical
applications, particularly in improving the absorption capabilities of poorly absorbed orally
administered drugs. Different formulations can encapsulate poorly absorbed drugs, while
AV gel acts as a stabilizing and enhancing agent [119–121]. Due to its outstanding efficacy
and compatibility with different drug carriers, the use of AV can be further expanded in
potential applications and provides a flexible platform for optimizing oral drug delivery.

The release of therapeutic agents from AV-based hydrogels can occur through several
mechanisms, including diffusion, swelling, and degradation of the hydrogel matrix. These
mechanisms play a crucial role in controlling the release rate and duration of the therapeutic
agents. Here is an overview of these mechanisms:

Diffusion-controlled release: Diffusion is the most common mechanism for the release of
therapeutic agents from hydrogels. The hydrogel matrix acts as a barrier, and therapeutic
agents diffuse through the gel network. The release rate is governed by the concentration
gradient between the hydrogel and the surrounding medium. The diffusion coefficient of
the therapeutic agent in the hydrogel matrix, as well as the pore size and structure of the
hydrogel, influence the release kinetics. Factors such as the molecular weight and solubility
of the therapeutic agent also affect diffusion-controlled release [122].

Swelling-controlled release: AV-based hydrogels have the ability to absorb water and
swell, affecting the release of therapeutic agents. When the hydrogel comes into contact
with an aqueous medium, it absorbs water and swells, leading to an expansion of the
gel network. The swelling of the hydrogel creates channels or pores, facilitating the
release of therapeutic agents. The release rate depends on the degree of swelling, which
can be influenced by factors such as hydrogel composition, cross-linking density, and
environmental conditions (e.g., pH and temperature) [123].

Degradation-controlled release: Some AV-based hydrogels can undergo controlled degra-
dation over time. The hydrogel matrix degrades through processes such as hydrolysis,
enzymatic degradation, or biodegradation, leading to the release of therapeutic agents.
The degradation rate is influenced by factors such as the composition of the hydrogel,
cross-linking density, the presence of enzymes or catalysts, and the physicochemical envi-
ronment. As the hydrogel degrades, the therapeutic agents are gradually released into the
surrounding medium [124,125].
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These release mechanisms can occur individually or in combination, depending on the
specific formulation and properties of the AV-based hydrogel, as well as the characteristics
of the therapeutic agents. The choice of cross-linking agents, gel composition, and hydrogel
architecture can be tailored to optimize the release profile, achieving sustained or controlled
release over a desired period. The release of kinetics can also be influenced by external
factors such as temperature, pH, and mechanical forces. Additionally, the interactions
between the therapeutic agents and the hydrogel matrix, such as electrostatic or chemical
interactions, can also impact the release behavior. Therefore, it is essential to carefully
design and characterize AV-based hydrogels to achieve the desired release profile for
specific therapeutic applications.

AV-based formulations have both inhibitory and stimulatory properties that can
influence inflammatory processes and wound healing. Its inhibitory system refers to its
capacity to reduce inflammation and exhibit anti-inflammatory activity. On the other
hand, its stimulatory system refers to its power to promote wound healing. Together,
these dual systems allow AV to modulate the complex interplay between wound healing
and inflammation beneficially. Both the native gel and hydrogels based on AV showed
beneficial effects and proved effective in different applications, in oral and topical therapies.
They accelerate the rate of wound closure and skin healing and alleviate mucocutaneous
problems, including gingivitis. As a natural medicine, it is used in oral mouthwashes,
toothpaste, submucosal fibrosis, vaginal atrophy in menopausal women, and mucosal
lesions induced by chemotherapy and radiotherapy or in veterinary practice. Here, we
highlight some main beneficial effects of AV hydrogels in wound healing.

4.1. Reduction of Inflammation

Psoriasis is an immune disease, provoked by an unclear cause, which is characterized
by inflammation caused by the dysfunction of the immune system and is manifested by an
itchy rash, most commonly on the knees, elbows, trunk, and scalp. This disease can cause
inflammation in the body and can also affect other organs or tissues in the body. Worldwide,
approximately 125 million people suffer from this disease. Plaque psoriasis is associated
with several comorbidities, including inflammatory arthritis, cardiometabolic disease, and
depression. The American Academy of Dermatology—National Psoriasis Foundation
guidelines recommend biologics as alternatives for the first-line treatment of moderate to
severe plaque psoriasis due to their therapeutic efficacy and acceptable safety profiles [126].
AV has often been used for topical applications in the treatment of psoriasis. A study on rats,
in which hydrogels based on AV mucilage were developed and prepared with 80% w/w of
gel for topical applications, demonstrated good efficiency in controlling hyperkeratinization,
showing a 61% reduction of the stratum corneum on the tested animals. The results
confirmed the keratolytic action of AV hydrogel, which can be used to treat psoriasis.
The effect of AV leaf extract has been attributed to polysaccharides, rich in glucomannan
and acemannan, pectic compounds, cellulose, and hemicelluloses, which determine most
of the plant’s therapeutic properties [127]. The antipsoriatic properties of AV have been
combined with the healing activity of Natural Rubber Latex to produce new economic
occlusive dressings recommended for the treatment of psoriasis symptoms. In total, 58.8%
of loaded AV, present on the surface and inside the dressing, was released after 4 days.
An in vitro study on human dermal fibroblasts and sheep blood, respectively, confirmed
the biocompatibility and hemocompatibility of the new dressings, the preservation of
approximately 70% of the free antioxidant properties of AV, and the total content of
phenolic compounds 2.31 times higher in these dressings compared to natural rubber
latex without AV [128].

4.2. Prevention of Bacterial Infection

Chitosan and AV films encapsulating thymol were prepared to be used in preventing
the possibility of bacterial infection and showed a high thymol encapsulation efficiency of
95.3% with good dispersibility. Test results against various pathogenic microbes such as
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Bacillus, Staphylococcus, Escherichia, Pseudomonas, Klebsiella, and Candida showed that the
films were effective against bacterial colonization in a thymol concentration-dependent
manner. The addition of AV increased the water absorption of the films, which is one of
the primary factors of healthy wound healing and helped by improving the antioxidant
activity and in vitro release efficiency of thymol [129]. New polymer composite films based
on polyvinyl alcohol and AV have been prepared for wound healing and prevention of
surgical wound infections. Films tested for antibacterial and antifungal activity against
E. coli, P. aeruginosa, Aspergillus flavus, and Aspergillus tubingensis showed antimicrobial
activity against all strains; the lowest concentration of AV (5%) showed the highest activity
against all strains. Sutures of wounds covered with films based on polyvinyl alcohol and
AV showed that the new composites have antibacterial effects and the potential to be used
in the prevention of infections at the surgical site and can be used for wound healing
purposes [130]. Films based on alginate, AV gel, honey, and cellulose nanocrystals can be
used for applications as antibacterial dressings. The morphological, swelling, mechani-
cal, and biological properties of the films prepared and tested against the Gram-negative
organisms Salmonella typhi, Klebsiella pneumoniae, Escherichia coli, and the Gram-positive
organism Staphylococcus aureus were estimated. The films showed superior biocompati-
bility, good mechanical properties, and excellent antibacterial capabilities [131]. Blended
nanofiber membranes for new types of antibacterial wound dressings were made based on
polycaprolactone/chitosan/Aloe vera (PCL/CS/AV) nanofiber (NFM) by electrospinning.
The characterizations and tests carried out showed that the addition of AV increased the
hydrophilicity and the pore size of the membranes and led to the improvement of the
antibacterial performance against Streptococcus aureus and E. coli and the biocompatibility
in 5 days. The membranes produced were proposed as suitable for short-term dressing or
acute wounds (1–4 days) [132]. Nanofiber membranes were developed based on natural,
biocompatible, and biodegradable composites from AV extract, pullulan, chitosan, and
citric acid, through Forcespinning® technology. The morpho-structural characterization
and thermogravimetric analysis of the membranes indicated their good properties, as well
as good water absorption capacities and synergistic antibacterial activity against Escherichia
coli, which promoted cell attachment and growth. Due to their porous structure and large
surface area, the membranes can be recommended as potential dressing applications due
to their ability to absorb excessive blood and exudates, their thermal stability, and the
protection they offer against infection [133]. Novel sodium alginate/poly(vinyl alcohol)
(SA/PVA) hydrogel dressing films enriched with AV were produced by a simple method.
The influence of different amounts (5, 10, 15, 20, and 25%, v/v) of AV solution on the
chemical structure and properties of sodium alginate/poly(vinyl alcohol) hydrogel films
was studied. The structural, morphological, mechanical, and thermal characterization
confirmed that rigid and thermally stable three-dimensional structures were obtained.
The results regarding the release profile of the polysaccharides from the hydrogel matrix
showed that the active substance was released in a prolonged, gradual manner, even for
a week. It was shown that the presence of AV within the cross-linked polymer network
improved the active substance delivery properties of the hydrogel films. At the same time,
the cytotoxicity of the materials was studied, and the results indicated good adhesion
properties and a lack of toxicity. In vitro experiments on normal human dermal fibroblasts
showed very good cell attachment to AV hydrogel discs, which promoted cell spreading
and proliferation. As such, SA/PVA/AV sustained-release AV films have been proposed
for applications such as interactive wound dressings [134]. Recent studies have concluded
that AV gel is an effective antibacterial agent to prevent wound infection caused by various
bacteria: P. Aeruginosa [135], Campylobacter rectus, Provetella intermedia [136], and Escherichia
coli (E. coli) [137].

4.3. Skin Regeneration

The skin is part of the body’s integumentary system and consists of the epidermis and
dermis, with a subcutaneous fatty layer, the hypodermis [138,139]. It protects us against
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external factors and prevents bacteria and germs from entering the body and blood and
causing infections [140,141]. At the same time, the skin is vulnerable and can be affected
by acute or chronic wounds [142]. Wound healing is a complex physiological process,
which is achieved through four explicit phases: hemostasis, inflammation, proliferation,
and remodeling and involves the epidermis-containing keratinocyte, melanocyte, and
Langerhans cells, dermis, including fibroblast, neutrophil, mast cell, and dermal dendritic
cells, and the hypodermis, which contains mesenchymal stem cells (Figure 7) [22,143–145].
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Figure 7. Structure of human skin: the epidermis (which contains keratinocytes, melanocytes,
and Langerhans cells) and dermis (which includes fibroblasts, neutrophils, mast cells, and dermal
dendritic cells), as well as subcutaneous hypodermis (which contains mesenchymal stem cells) [145].

The wound-healing process consists of four highly integrated and overlapping phases:
(i) hemostasis, (ii) inflammation, (iii) proliferation, and (iv) tissue remodeling or resolu-
tion [146]. Figure 8 shows the main stages of the normal wound-healing process [145]. Each
stage is characterized by key molecular and cellular events and is coordinated by a series
of secreted factors that are recognized and released by wound response cells. Hemostasis is
the first stage. It involves coagulation, which changes the blood from a liquid to a gel. The
inflammation phase begins at the time of injury and lasts up to four days. As inflamma-
tory cells undergo apoptosis, wound healing progresses to the proliferative phase. This
phase begins approximately three days after the injury and overlaps with the inflammatory
phase, while the tissue remodeling phase, characterized by the formation of granulation
tissue, angiogenesis (formation of blood vessels), wound contraction, and the process of
epithelialization, can continue for six months to one year after the injury, which leads to
the formation of scar tissue. Many variables can disrupt one or more phases of this process,
thereby producing inadequate or incorrect healing of skin wounds. The main elements
that affect wound healing are oxygenation, infection, age, stress, diabetes, obesity, drugs,
alcoholism, smoking, repeated trauma, diet, and poor blood circulation [147–149]. Infection
is the most common complication for injured skin; therefore, prevention or mitigation of
infection is of utmost importance.
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Using an ecological preparation method, a natural, degradable, and environmentally
friendly hydrogel dressing was developed using AV as an active ingredient. The hydrogel
dressing was prepared using only natural ingredients, composed of sodium hyaluronate
(SH), dopamine (DA), chitosan (CS), and AV, and using a natural deep eutectic green solvent
(DES) as the green solvent. The newly synthesized hydrogel showed good cytocompatibility
tested on NIH-3T3 fibroblast cells and antibacterial properties against both Gram-positive
(S. aureus) and Gram-negative (E. coli). Additionally, in a study on mice, the hydrogel
promoted the regeneration of skin tissue and healed the skin wound after surgery within
12 days. The authors concluded that the newly prepared hydrogel, which is natural,
degradable, and ecological and uses AV as an active ingredient, shows great potential
in wound healing applications [150]. A study on the emergency treatment of vaginal
tissue by local application of AV and alginate hydrogel for the release of mesenchymal
stem cells derived from the maternal endometrium with the aim of promoting maternal
injury relief and early healing was carried out in a simulated injury model at birth. It was
observed that in the absence of therapy, fibrotic healing can occur in many cases. Local
injection of hydrogel-containing mesenchymal cells significantly improves smooth muscle
and elastin content, as well as decreases tissue stiffness after 6 weeks. The findings of the
study highlighted that immediate treatment of severe vaginal birth trauma with therapeutic
mesenchymal stem cells delivered in AV and alginate hydrogel might become a potential
new treatment strategy for faster healing of birth injuries and prevention of pelvic organ
prolapse (Figure 9) [151].



Gels 2023, 9, 539 14 of 30

Gels 2023, 9, x FOR PEER REVIEW 14 of 32 
 

 

maternal injury relief and early healing was carried out in a simulated injury model at 
birth. It was observed that in the absence of therapy, fibrotic healing can occur in many 
cases. Local injection of hydrogel-containing mesenchymal cells significantly improves 
smooth muscle and elastin content, as well as decreases tissue stiffness after 6 weeks. The 
findings of the study highlighted that immediate treatment of severe vaginal birth trauma 
with therapeutic mesenchymal stem cells delivered in AV and alginate hydrogel might 
become a potential new treatment strategy for faster healing of birth injuries and preven-
tion of pelvic organ prolapse (Figure 9) [151]. 

 
Figure 9. The retention of injected treatments with hydrogel and SUSD2+mCherry+eMSC (A) Hyd 
T; (B) Hyd/eMSC T (yellow dotted lines); (C,D) red arrows—zoom area of hydrogel and black ar-
rows—zoom area of collagen; (E) SUSD2, (F) mCherry, and (G) merge image of SUSD2 + mCherry 
in rat vaginal sections after 1 week. Reprinted with permission from ref. [151] Copyright 2023, Else-
vier. 

Another study explored the potential for acute and chronic wound healing using pip-
erine as a new bioactive compound. New systems of bioactive hydrogels based on carbo-
pol 934 containing piperine mixed with AV gels of different gel strengths were prepared 
and characterized (Figure 10). The developed formulation system was investigated in an 
excisional wound healing model in the rat model. The results of the in vivo study and 
histopathological examination showed that the piperine-containing bioactive hydrogel 
system compared with the piperine-free bioactive hydrogel system, leads to early and in-
trinsic wound healing (Figure 11). Thus, the findings of the study emphasized that the 
new piperine-containing bioactive hydrogel is a promising therapeutic approach for the 
application of wound healing [152]. 

Figure 9. The retention of injected treatments with hydrogel and SUSD2 + mCherry + eMSC
(A) Hyd T; (B) Hyd/eMSC T (yellow dotted lines); (C,D) red arrows—zoom area of hydrogel
and black arrows—zoom area of collagen; (E) SUSD2, (F) mCherry, and (G) merge image of
SUSD2 + mCherry in rat vaginal sections after 1 week. Reprinted with permission from ref. [151]
Copyright 2023, Elsevier.

Another study explored the potential for acute and chronic wound healing using
piperine as a new bioactive compound. New systems of bioactive hydrogels based on
carbopol 934 containing piperine mixed with AV gels of different gel strengths were pre-
pared and characterized (Figure 10). The developed formulation system was investigated
in an excisional wound healing model in the rat model. The results of the in vivo study
and histopathological examination showed that the piperine-containing bioactive hydrogel
system compared with the piperine-free bioactive hydrogel system, leads to early and
intrinsic wound healing (Figure 11). Thus, the findings of the study emphasized that the
new piperine-containing bioactive hydrogel is a promising therapeutic approach for the
application of wound healing [152].

Studying the influence of a commercial hydrogel formulation based on AV with
1,2-propanediol (propanediol) and triethanolamine (TEA) on skin wound healing was
investigated in female Wistar rats. Additionally, the study aimed to show that the presence
of specific additives, propanediol and triethanolamine, does not exert any negative effect
on wound healing.

The results showed that the prepared hydrogel had a positive effect on inflammation,
angiogenesis, and wound contraction and reduced the total healing time by 29%, with the
total closure of the wound being achieved in 15 days (Figure 12). The paper highlighted the
influence of the bioactive components of AV, related to rhamnogalacturonan and pectin-like
acemannan, which improved the healing process of skin wounds [153].
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A novelty in the area of efficient ecological materials is the new system of biocompati-
ble hydrogels based on AV that was prepared by a completely green synthesis method for
wound healing applications (Figure 13).
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Hydrogels with different concentrations of AV (5 and 10%, respectively) also contain
other natural components such as salicylic acid, allantoin, and xanthan gum. The hydrogels’
rheological properties, morphology, cell viability, biocompatibility, and cytotoxicity, were
studied. The preliminary examinations showed that the hydrogels are very well supported
on a wound, without stinging even more; they quickly penetrated the tissue and ensured
good hydration of the area. Testing the antibacterial activity of the hydrogels was evalu-
ated both on Gram-positive strains, Staphylococcus aureus, and on Gram-negative strains,
Pseudomonas aeruginosa. The results showed that they have good antibacterial properties
(Figure 14i). Moreover, the in vitro scratch test demonstrated the suitable ability of these
“green” hydrogels to accelerate cell proliferation and migration and induce closure of a
wounded area, making them suitable for wound healing applications (Figure 14ii) [154].
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Figure 14. (i) Live/dead fluorescent images of L929, control, (A)—untreated and treated with AV5 
(B–F) and AV10 (G–K) hydrogels at different concentrations for 48 h. (B,G)—10 mg/mL; (C,H)—25 
mg/mL; (D,I)—50 mg/mL; (E,J)—75 mg/mL; (F,K)—100 mg/mL. (ii) Light microscope images (a) 
after in vitro generation of a wound for 24 h. (b) ImageJ analysis of wound closure percentage [154]. 

Figure 14. (i) Live/dead fluorescent images of L929, control, (A)—untreated and treated with
AV5 (B–F) and AV10 (G–K) hydrogels at different concentrations for 48 h. (B,G)—10 mg/mL;
(C,H)—25 mg/mL; (D,I)—50 mg/mL; (E,J)—75 mg/mL; (F,K)—100 mg/mL. (ii) Light microscope
images (a) after in vitro generation of a wound for 24 h. (b) ImageJ analysis of wound closure
percentage [154].

4.4. Healing Burns

A clinical study was conducted on 30 patients with similar types of second-degree
burns in two places on different parts of the body. This research was conducted to eval-
uate the effectiveness of AV cream for partial thickness burns and to compare its results
with those of silver sulfadiazine. Each patient had one burn treated randomly with top-
ical silver sulfadiazine ointment and one treated with Aloe cream. The mean time to
re-epithelialization and healing of partial-thickness burns was significantly shorter for
the Aloe group at 15.9 ± 2 days versus 18.73 ± 2.65 days for the SSD group (p < 0.0001).
Both sites were negative for microbial contamination on days 3, 7, and 13. Study results
showed that AV cream promoted better wound healing with smaller lesions and had
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shorter healing times than silver sulfadiazine [155]. A similar international study was
accomplished on 50 patients with second-degree burns and evaluated the effectiveness of
AV gel compared with 1% silver sulfadiazine cream as a special dressing for the treatment
of superficial and partial thickness burn wounds. The study used 98% unrefined gel from
the inner leaf of the plant. Thermal burn patients bandaged with AV gel showed improve-
ments compared to those bandaged with silver sulfadiazine cream in terms of early wound
epithelialization, early pain relief, and cost-effectiveness of treatment management [156].
Another double-blind, randomized clinical trial in 11 patients treated once daily for 14 days
compared the efficacy of herbal AV cream with 1% silver sulfadiazine in reducing the pain
of second-degree burns. The herbal cream was prepared from AV gel and essential oils of
Lavandula stoechas and Pelargonium roseum. In total, 56 patients were treated with herbal
cream, and another 55 were treated with silver sulfadiazine 1%. Study results demonstrated
that pain intensity at 14 days was significantly reduced in both groups compared to baseline
(p < 0.001). However, a greater reduction in pain from baseline to the 7- and 14-day mark
was observed in the herbal cream group (p = 0.014 and p = 0.05). One case of infection was
reported in the herbal cream group; however, it cleared up with continued treatment. The
findings of this clinical trial showed that the herbal cream was superior to silver sulfadi-
azine in relieving pain for superficial second-degree burns [157]. In an additional clinical
case study, the therapeutic impact of AV gel on chronic skin burns in a 17-year-old patient
with a rejected skin graft is presented. This is a before–after comparative study design in a
case of fire burn in which initiation of AV gel treatment is accompanied by the promotion
of wound repair. Before being treated with gel, the patient who had suffered burns on
30–40% of her body surface for 40 days had a healthy skin graft operation on her previous
chest, which was rejected after 5 days. Following chronic unhealed skin lesions, the patient
was treated with AV gel for 21 days continuously. The skin healing process began with the
formation of granulation tissue and epithelization of the wounds. During the treatment, no
sign of skin infection and no topical side effects of AV gel, such as allergic reactions and
itching, were observed. This study on the impact of AV gel in the healing of burns can be
considered a cheap and quick effect of substitution therapy instead of surgery [158].

4.5. Protection against Chemoradiation Secondary Effects in Cancer Treatment

A multicenter, randomized, double-blind, controlled trial was performed on 120 patients
with head and neck cancer treated with concurrent chemoradiation. Patients received
either AV gel or placebo gel and were assessed for adverse levels of skin toxicity with
the Radiation-Induced Skin Reaction Rating Scale (RISRAS). At the 5th and 6th week of
treatment, grades moderate to severe erythematous skin at values of 13.6% and 24.1%
versus 27.8 and 42.6% were observed for members of the AV gel group and the placebo
group, respectively (p = 0.05 for the 5th week and p = 0.038 for the 6th week). At week 7, in
the placebo group, moderate to severe cases of wet scaling were observed in eight patients
(19.0%) (p = 0.001), as well as a burning sensation with RISRAS scores of 3–4, representing
only 11.9% of patients (p = 0.016). The study authors concluded that there was no pro-
phylactic efficacy for radiation-induced dermatitis in the AV gel group compared with
the placebo group but that topical applications of AV gel along with a routine skin care
program from starting radiation would reduce the severity of any burning sensations,
along with the incidence of erythematous, moist scaling of the skin in head and neck cancer
patients receiving concurrent chemoradiation [159].

4.6. Summary of Clinical Effects of AV on Prevention and Healing of Skin Wounds

An earlier systematic study [121] concluded that AV helps to retain skin moisture
and integrity and prevents skin ulcers due to its content of mucopolysaccharides, amino
acids, zinc, and water. Furthermore, AV was found to be ‘much more effective and less
costly compared to the currently available alternative treatments’ in terms of quality and
speed of wound healing. Considering the tendency to promote traditional medicine as
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well as the rare side effects of AV, the use of this medicinal plant for the healing of skin
wounds is recommended.

AV gel has been demonstrated to be active in wound healing through several reported
mechanisms [31], including increased epithelial cell viability, proliferation, and migration,
moisture retention [160], increased quantity and cross-linking of collagen [161], and hin-
dering inflammation through the decrease of proinflammatory cytokines [162–166]. The
various active components of AV include acemannan, aloesin, aloe-emodin, aloin, emodin,
and glucomannan [68]. Acemannan is known to stimulate epidermal keratinocytes and the
production of fibrotic cytokines [167,168]. Glucomannan, a water-soluble mucopolysaccha-
ride, stimulates fibroblast growth factor production and the activity and proliferation of
these cells, leading to the increased amount of collagen on the wound site with enhanced
transversal connections [21,64,169]. Emodin emodinolin, anthraquinone derivatives found
in AV, act as competitive inhibitors of thromboxane synthetase and have significant anti-
inflammatory properties [21]. The anti-inflammatory properties of AV are related to the
inhibition of proinflammatory cytokines [162,164,165], hindering ROS production [162,164],
and blocking the signalling of JAK1-STAT1/3 [68]. The anti-inflammatory effects and
increased collagen production and cross-linking promote the rearrangement of epithelial
tissues [12], reducing the wounded area and accelerating the healing process [170]. Various
studies have confirmed that topical AV creams heal first- and second-degree burns in less
than half the time than standard treatment with silver sulfadiazine [21,171–173]. AV has
an anti-erythema activity similar to that of the positive control group (i.e., hydrocortisone
gel) after 6 days of treatment [174]. AV gel has also demonstrated potent angiogenic ac-
tivity, an essential process in wound healing, attributed to angiogenic compounds such as
beta-sitosterol [175,176]. Table 2 summarizes various beneficial effects of AV compounds
for wound healing reported in clinical studies.

Table 2. Beneficial effects for wound healing of AV gels.

Enhanced Reported References

Cell viability Sholehvar et al. [115], Liu et al. [177]

Epitelial cell proliferation Moriyama et al. [167], Hashemi et al. [170], Shanmugan et al. [178], Teplicki et al. [179]

Epitelial cell midration Teplicki et al. [179], Negahdari et al. [180], Wahedi et al. [181], Muller et al. [182]

Moisture retention Dal’Belo et al. [160], Hamman et al. [183]

Keratinocyte proliferation Moriyama et al. [167]

Collagen quantity Hekmatpou et al. [21], Rahman et al. [64], Nabipour et al. [121], Abdel Hamid
et al. [169], Hashemi et al. [170], Shanmugan et al. [178]

Collagen cross-linking Hekmatpou et al. [21], Rahman et al. [64], Abdel Hamid et al. [169], Shanmugan
et al. [178]

GSH activity Liu et al. [177]

SOD activity Liu et al. [177]

Antioxidant enzyme activity Anilakumar et al. [184], Hassanpour et al. [185]

Accelerated wound healing
Moriyama et al. [167], Maenthaisong et al. [171], Somboonwong et al. [173], Shanmugan

et al. [178], Negahdari et al. [180], Wahedi et al. [178–181], Hormozi et al. [186], Ali
et al. [187]

Growth factors production Hashemi et al. [170], Wahedi et al. [181]

Wound closure Curto et al. [188]

Lysosomal stabilization Paul et al. [165], DeOliveira et al. [189]

Stimulate fibrotic cytokines Wahedi et al. [181], Zeng et al. [190]

Angiogenesis Moon et al. [175], Choi et al. [176]

Block the signaling of JAK1-STAT1/3 Sánchez et al. [68]
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Table 2. Cont.

Enhanced Reported References

Thromboxane reduction Zeng et al. [21], Hekmatpou et al. [189]

Hindering IL-6 Ma et al. [162], Jiang et al. [164]

Hindering IL-8 Leng et al. [163], Na et al. [191]

Hindering IL-12 Ahluwalia et al. [163], Leng et al. [166]

TNF alpha levels reduced Leng et al. [163], Jiang et al. [164], Paul et al. [165], Ahluwalia et al. [166]

Erythema reduction Fox et al. [174], Reuter et al. [192]

Pain reduction Hekmatpou et al. [21], Rompicherla et al. [119]

T cell proliferation suppressed Li et al. [193]

Lipid peroxidation reduced Liu et al. [177]

Proinflammatory cytokines reduced Ma et al. [162], Leng et al. [163], Jiang et al. [164], Paul et al. [165], Ahluwalia et al. [166]

Type IV collagen degradation Curto et al. [188]

ROS production hindered Ma et al. [162], Jiang et al. [164]

Inflammation reduction Hekmatpou et al. [21], Paul et al. [165]

Recent studies on AV gels with added therapeutic agents have reported the positive
interaction between graphene oxide/reduced graphene oxide (GO/rGO) and AV hydrogels
to be a strongly promising strategy for the advancement of therapeutic approaches for
wound healing (Figure 15) [178].
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Jales et al. further confirmed the great potential of AV mucilaginous hydrogel with
a high keratolytic effect that can be used in psoriasis treatment [127]. Puliero et al. in-
vestigated the use of AV extracts for ocular therapeutic or preventive purposes. They
demonstrated that the best lenses allowing for the high and stable release of AV extract to
the corneal surface are those composed of ionic hydrogels [194]. Capsaicin, a powerful anti-
inflammatory and analgesic agent, poorly water-soluble, was successfully incorporated
into AV gel for topical drug delivery and to reduce skin irritation caused by capsaicin [119].
The AV gels softness, biocompatibility, and fast spreading or penetrating capacity are
particularly useful features to encapsulate and deliver various nanoparticles with antimi-
crobial properties (e.g., ZnO or TiO2) [195], drugs, cell culture, both for wound healing,
and bio-sensing applications [196]. The combination of AV and Rheum palmatum root can
promote the migration of human primary fibroblasts (Figure 16) [182].
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Figure 16. Actin staining of fibroblasts with phalloidin (A); the average length of the fibroblasts
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None of the dressings available on the market today are fully capable of reproducing
all the characteristics of native skin. An asymmetric bilayer membrane with a top dense
polycaprolactone layer that provides mechanical support and a bottom porous layer of
chitosan and AV, aiming to improve the healing process, was designed to mimic both
layers of the skin [197]. The results obtained revealed the potential of these asymmetric
membranes to be applied as wound dressings in the future.

5. Side Effects

No serious adverse reactions were demonstrated following the topical application of
AV inner gel products. AV used in dietary supplements appears to be safe [198]. The inner
gel was evaluated by the Cosmetic Ingredient Review Expert Panel as noncytotoxic [199].
However, due to the cytotoxicity, mutagenicity, and carcinogenicity of anthraquinones, it is
crucial to monitor the content of these phenolic compounds in AV whole leaf extract and
latex [200,201]. Topical and oral use of AV whole leaf extract in humans can cause adverse
clinical effects: skin irritation, hives, cramping, and diarrhea to those who are allergic to
plants in the lily family, for example, onion and tulips [202–204].
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6. Conclusions and Future Prospective Studies

It is important to apply modern delivery techniques to develop affordable products
based on efficacious traditional natural medicines for wound healing and to improve their
therapeutic effect.

Further research is needed to ensure that these formulations reach the pharmaceutical
market. Chemotherapy treatments for cancer are associated with the presence of ulcers in
the oral mucosa that causes pain, bleeding, and difficulty swallowing or speaking. There is
no effective standard treatment, and few studies have been published on the therapeutic
effects of natural products such as AV to improve the local retention period.

Future treatments may arise from medicinal plants, which have fewer side effects and
improved bioavailability for the wound-healing process. In addition, in the future, a great
challenge is represented by the development of an intelligent treatment that presents anti-
inflammatory, antimicrobial, and antioxidant cumulative properties for the treatment of all
types of wounds. Furthermore, the commercialization and use in preclinical research and
clinical practice of natural products used in wound healing must be increased significantly
to discover the potential of these products, considered natural bioactive molecules, in the
treatment and regeneration of skin tissue. Future research should be considered to find
new natural bioactive compounds related to their usage in the wound-healing process and
their ability to act as substitutes for existing antibiotics.

By incorporating therapeutic agents into AV-based hydrogels, it is possible to develop
multifunctional biomaterials that provide sustained release of agents, promote wound
healing, reduce inflammation, and prevent or treat microbial infections. However, it is
important to note that the specific formulation and efficacy of such hydrogels may vary
depending on the therapeutic agents chosen, their concentration, crosslinking method, and
other factors. Extensive research and testing (rheological analysis, drug release profiles,
permeability, and stability studies) are required to optimize the formulation and ensure its
safety and effectiveness for clinical use and to promote human well-being worldwide.

Author Contributions: Conceptualization, M.C., A.M.M. and J.C.M.; methodology, M.P., M.C. and
J.C.M.; data curation, M.C. and A.M.M.; resources, J.C.M.; writing—original draft preparation,
M.C., A.M.M., M.P. and J.C.M.; writing—review and editing, A.M.M. and J.C.M.; visualization,
M.P.; supervision, A.M.M. and J.C.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front.

Pharmacol. 2014, 10, 177. [CrossRef] [PubMed]
2. Khan, M.S.A.; Ahmad, I. Chapter 1-Herbal Medicine: Current Trends and Future Prospects; New Look to Phytomedicine; Khan, M.S.A.,

Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 3–13, ISBN 9780128146194. [CrossRef]
3. Surjushe, A.; Vasani, R.; Saple, D.G. Aloe vera: A short review. Indian J. Dermatol. 2008, 53, 163–166. [CrossRef] [PubMed]
4. Kumar, R.; Singh, A.K.; Gupta, A.; Bishayee, A.; Pandey, A.K. Therapeutic potential of Aloe vera—A miracle gift of nature.

Phytomedicine 2019, 60, 152996. [CrossRef] [PubMed]
5. Manvitha, K.; Bidya, B. Aloe vera: A wonder plant its history, cultivation and medicinal uses. J. Pharm. Phytochem. 2014, 2, 85–88.
6. Mehta, D.I. “History OF Aloe vera” – (A Magical Plant). IOSR J. Humanit. Soc. Sci. 2017, 22, 21–24.
7. Gao, Y.; Kuok, K.I.; Jin, Y.; Wang, R. Biomedical applications of Aloe vera. Crit. Rev. Food Sci. Nutr. 2019, 59, S244–S256. [CrossRef]
8. Available online: https://www.fortunebusinessinsights.com/aloe-vera-extract-market-103893 (accessed on 20 May 2023).
9. Deep, A.; Kumar, D.; Bansal, N.; Narasimhan, B.; Marwaha, R.K.; Sharma, P.C. Understanding mechanistic aspects and therapeutic

potential of natural substances as anticancer agents. Phytomed. Plus 2023, 3, 100418. [CrossRef]

https://doi.org/10.3389/fphar.2013.00177
https://www.ncbi.nlm.nih.gov/pubmed/24454289
https://doi.org/10.1016/B978-0-12-814619-4.00001-X
https://doi.org/10.4103/0019-5154.44785
https://www.ncbi.nlm.nih.gov/pubmed/19882025
https://doi.org/10.1016/j.phymed.2019.152996
https://www.ncbi.nlm.nih.gov/pubmed/31272819
https://doi.org/10.1080/10408398.2018.1496320
https://www.fortunebusinessinsights.com/aloe-vera-extract-market-103893
https://doi.org/10.1016/j.phyplu.2023.100418


Gels 2023, 9, 539 23 of 30

10. Noori, A.S.; Mageed, N.F.; Abdalameer, N.K.; Mohammed, M.K.; Mazhir, S.N.; Ali, A.H.; Jaber, N.A.; Mohammed, S.H. The
histological effect of activated Aloe vera extract by microwave plasma on wound healing. Chem. Phys. Lett. 2022, 807, 140112.
[CrossRef]

11. Kim, S.-T.; Pressman, P.; Clemens, R.; Moore, A.; Hamilton, R.; Hayes, A.W. The absence of genotoxicity of Aloe vera beverages: A
review of the literature. Food Chem. Toxicol. 2023, 174, 113628. [CrossRef]

12. Sánchez-Machado, D.I.; López-Cervantes, J.; Sendón, R.; Sanches-Silva, A. Aloe vera: Ancient knowledge with new frontiers.
Trends Food Sci. Technol. 2017, 61, 94–102. [CrossRef]

13. Altinkaynak, C.; Haciosmanoglu, E.; Ekremoglu, M.; Hacioglu, M.; Özdemir, N. Anti-microbial, anti-oxidant and wound healing
capabilities of Aloe vera-incorporated hybrid nanoflowers. J. Biosci. Bioeng. 2023, 135, 321–330. [CrossRef] [PubMed]

14. Hattingh, A.; Laux, J.-P.; Willers, C.; Hamman, J.; Steyn, D.; Hamman, H. In vitro wound healing effects of combinations of Aloe
vera gel with different extracts of Bulbine frutescens. S. Afr. J. Bot. 2023, 158, 254–264. [CrossRef]

15. Movaffagh, J.; Khatib, M.; Bazzaz, B.S.F.; Taherzadeh, Z.; Hashemi, M.; Moghaddam, A.S.; Tabatabaee, S.A.; Azizzadeh, M.; Jirofti, N.
Evaluation of wound-healing efficiency of a functional Chitosan/Aloe vera hydrogel on the improvement of re-epithelialization in
full thickness wound model of rat. J. Tissue Viabil. 2022, 31, 649–656. [CrossRef] [PubMed]

16. Abdel-Mohsen, A.M.; Frankova, J.; Abdel-Rahman, R.M.; Salem, A.A.; Sahffie, N.M.; Kubena, I.; Jancar, J. Chitosan-glucan
complex hollow fibers reinforced collagen wound dressing embedded with Aloe vera. II. Multifunctional properties to promote
cutaneous wound healing. Int. J. Pharm. 2020, 582, 119349. [CrossRef] [PubMed]

17. Ghorbani, M.; Nezhad-Mokhtari, P.; Ramazani, S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen
for wound healing. Int. J. Biol. Macromol. 2020, 153, 921–930. [CrossRef]

18. Farid, A.; Haridyy, H.; Ashraf, S.; Ahmed, S.; Safwat, G. Aloe vera gel as a stimulant for mesenchymal stem cells differentiation
and a natural therapy for radiation induced liver damage. J. Radiat. Res. Appl. Sci. 2022, 15, 270–278. [CrossRef]

19. Razia, S.; Park, H.; Shin, E.; Shim, K.-S.; Cho, E.; Kang, M.C.; Kim, S.Y. Synergistic effect of Aloe vera flower and Aloe gel on cuta-
neous wound healing targeting MFAP4 and its associated signaling pathway: In-vitro study. J. Ethnopharmacol. 2022, 290, 115096.
[CrossRef]

20. Sharifi, E.; Chehelgerdi, M.; Fatahian-Kelishadrokhi, A.; Yazdani-Nafchi, F.; Ashrafi-Dehkordi, K. Comparison of therapeutic
effects of encapsulated Mesenchymal stem cells in Aloe vera gel and Chitosan-based gel in healing of grade-II burn injuries. Regen.
Ther. 2021, 21, 30–37. [CrossRef]

21. Hekmatpou, D.; Mehrabi, F.; Rahzani, K.; Aminiyan, A. The Effect of Aloe vera Clinical Trials on Prevention and Healing of Skin
Wound: A Systematic Review. Iran J. Med. Sci. 2019, 44, 1–9. [CrossRef]

22. Tejiram, S.; Kavalukas, S.L.; Shupp, J.W.; Barbul, A. 1-Wound healing. In Ågren, Wound Healing Biomaterials; Magnus, S., Ed.;
Woodhead Publishing: Sawston, UK, 2016; pp. 3–39. [CrossRef]

23. Clark, R.A.F.; Musillo, M.; Stransky, T. Chapter 70—Wound repair: Basic biology to tissue engineering. In Principles of Tissue
Engineering, 5th ed.; Lanza, R., Langer, R., Vacanti, J.P., Atala, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1309–1329.
[CrossRef]

24. Frykberg, R.G.; Banks, J.; Deptuła, M.; Karpowicz, P.; Wardowska, A.; Sass, P.; Sosnowski, P.; Mieczkowska, A.; Filipowicz, N.;
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