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Abstract: The growing impact of infections and the rapid emergence of antibiotic resistance represent
a public health concern worldwide. The exponential development in the field of biomaterials and its
multiple applications can offer a solution to the problems that derive from these situations. In this
sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expec-
tations in the medical management of infectious diseases due to their unique physicochemical and
biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional
cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water
or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low
toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present
review, we collect and discuss the most promising strategies in the development of AMH, which are
divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels
based on their composition. Then, we present an overview of the main translational applications:
wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D
printing, biosensing, and water purification.

Keywords: antimicrobial gels; antibiotics; drug delivery; wound healing; tissue regeneration

1. Introduction to Antimicrobial Hydrogels

Infections and antimicrobial drug resistance are significant global concerns that have
far-reaching implications for public health [1]. The rise in drug-resistant bacteria has led to
reduced treatment options and increased morbidity and mortality rates, imposing a sub-
stantial economic burden on healthcare systems [2–4]. Furthermore, the challenges posed
by drug-resistant infections undermine medical advancements and routine procedures,
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such as surgeries and organ transplants [5,6]. The global spread of drug-resistant bacteria
calls for collaborative efforts to contain their transmission and develop effective solutions.
Addressing the global concern of infections and bacterial drug resistance requires prudent
antibiotic use and robust infection prevention [7]. Additionally, investing in research and
development is vital for discovering new antimicrobial agents and alternative treatment
strategies such as antimicrobial gels.

The term “hydrogel” refers to a three-dimensional (3D) porous cross-linked network
with solid-like properties that can retain an extensive amount of water or biological fluids
while maintaining structural and functional integrity under a variety of environmental
conditions or when subjected to external stresses, which can include mechanical forces,
light, temperature, and electric or magnetic fields [8,9]. Hydrogels are composed of natural
polymers, synthetic polymers, or a combination of both and, in general terms, present good
biocompatibility due to their biochemical similarities to the human extracellular matrix
(ECM), e.g.,: high water content [10,11]. Other advantageous properties are low toxicity,
availability, viscoelasticity, and biodegradability, which allow for comfortable application
and adherence to various anatomical surfaces, facilitating targeted treatment [12]. In
particular, antimicrobial hydrogels (AMHs) can have inherent antimicrobial activity or
be loaded with metal and metal oxide nanoparticles, antibiotics, antimicrobial peptides
(AMPs), or biological extracts [13,14]. With their gel-like structure, AMHs provide a 3D
framework that facilitates sustained drug release, enabling localized and controlled delivery
of antimicrobial substances.

Hydrogels can be classified according to different criteria, i.e., source, cross-linking
mechanism, ionic charge, preparation, or stimuli response (see Figure 1) [14,15]. The
classification of AMHs according to the source of origin is determined by the materials used
to create the hydrogels: Natural hydrogels derive from naturally occurring materials such
as proteins, polysaccharides, and their combinations; synthetic hydrogels are created by
chemical synthesis using various monomers and crosslinking agents; and hybrid hydrogels
are a combination of both in order to improve existing formulations. The classification of
hydrogels will be discussed in depth in Section 2.
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Hydrogel synthesis typically involves the hydrolysis and condensation of selected
precursors, leading to the formation of a solid nanostructured network [16]. Cross-linking
agents or physical techniques are employed to connect polymer chains, resulting in the
formation of a 3D structure [17]. On the one hand, chemical cross-linking involves the
use of specific agents that establish covalent bonds between polymer chains, leading to
permanent and strong interactions [18]. On the other hand, physical cross-linking relies
on interactions such as molecular entanglements, ionic bonds, hydrophobic forces, and
hydrogen bonds, which are weak, reversible, and influenced by factors such as temperature,
pH, or ion-sensitive interactions [19].

Due to their unique properties, AMHs are used in wide-ranging biomedical applica-
tions [14,20,21]. They are utilized as wound dressings to prevent infections and promote
healing [22], as scaffolds in tissue engineering to prevent microbial contamination during
regeneration [23], and as drug delivery systems for controlled release of antimicrobial
agents [24]. Additionally, they are used as coatings on medical implants to reduce the
risk of infections. Moreover, in the field of 3D printing, antimicrobial hydrogels can be
used to fabricate customized medical implants, wound dressings, and tissue scaffolds with
inherent antimicrobial properties [25]. In biosensing, antimicrobial hydrogels can serve
as sensing elements [26,27] and have also been explored for water purification applica-
tions [28]. AMHs provide targeted antimicrobial treatment, minimize systemic side effects,
and contribute to improved patient outcomes in various biomedical settings as well as
environmental sustainability. Finally, AMHs represent a promising therapeutic approach
to combating bacterial resistance, as they deliver antimicrobial agents directly to the site
of infection and maintain higher concentrations of the drug at the target site, potentially
increasing efficacy while minimizing exposure to the rest of the organism [29].

Therefore, in this review, we aim to collect and summarize the state-of-the-art knowl-
edge on antimicrobial gels and explore their potential translational applications in the field.

2. Classification of Antimicrobial Hydrogels

As mentioned in the introduction, AMHs can be classified according to different
criteria (see Figure 1). Due to the objective of this review, we will explain the classification of
the most commonly used AMHs based on their composition, which allows researchers and
practitioners to select the most suitable gel type for specific applications, considering factors
such as antimicrobial spectrum, biocompatibility, stability, and desired release kinetics.

2.1. Hydrogels with Inherent Antimicrobial Activity

Hydrogels with intrinsic antibacterial activity pertain to polymers within these hydro-
gels that possess inherent antimicrobial properties. These hydrogels, which have emerged
as innovative antimicrobial agents, overcome conventional limitations. However, the com-
prehensive understanding of the bactericidal properties of these hydrogels is still not fully
elucidated. The primary categories of these hydrogels include the following.

2.1.1. Peptide-Based Hydrogels

Antimicrobial peptides (AMPs) are innate defense molecules found in multicellular
organisms offering protection against competing pathogenic microbes [30,31]. Their broad-
spectrum antimicrobial activity, including Gram-positive and Gram-negative bacteria,
fungi, and viruses, is attributed to their ability to disrupt microbial cell membranes or
interfere with intracellular processes. With their amphipathic properties, AMPs selectively
interact with microbial membranes while preserving host cells. In addition to antimicrobial
effects, AMPs contribute to immunomodulation and wound healing [32,33]. AMPs are
currently being investigated as promising alternatives to traditional antibiotics, specifically
for combating drug-resistant bacteria.

Certain antimicrobial peptides have the capability to spontaneously self-assemble into
supramolecular hydrogels, which often result in an improved antimicrobial efficacy [34].
In this sense, Salick et al. developed a hydrogel based on a 20 amino acid lysine-rich
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amphiphilic peptide, which acquires amphiphilic β-hairpin conformation in medium with
salts and rapidly self-assembles, leading to hydrogel formation [35]. MAX1 hydrogels
exhibit activity against both Gram-negative bacteria, such as E. coli and K. pneumoniae, and
Gram-positive bacteria, including S. aureus, S. epidermidis, and S. pyogenes. The solvent-
exposed cationic lysines present on the surface of the fibrils engage with negatively charged
bacterial cell surfaces, leading to the disruption of membranes. A second generation was
constructed through substitution of some lysine residues by arginine residues, MARG1,
and PEP6R hydrogels, which presented activity against methicillin-resistant Staphylococcus
aureus (MRSA) and P. aeruginosa [36,37]. Similarly, Liu et al. designed a peptide-based
AMH possessing peptide (KIGAKI)3-NH2 with antibacterial activity against Gram-positive
bacteria, which, in response to external stimuli such as pH, ionic strength, or heat, self-
assembles into a hydrogel with a cationic surface [38]. Zhou et al. developed an AMH
based on the AMP ε-poly-L-lysine modified with methacrylamide (EPL-MA) moieties
and cross-linked with polyethylene glycol diacrylate (PEGDA) [39]. It had impressive
wide-spectrum antimicrobial activity against bacteria and fungi. This can be affixed onto
plastic surfaces, providing a coating option for medical devices. Song et al. successfully
developed synthetic polypeptide hydrogels with antibacterial properties by cross-linking
poly(Lys)x(Ala)y copolymers using six-armed N-hydroxysuccinimide (NHS)-terminated
polyethylene glycol (PEG) [40]. It exhibited significant antibacterial activity against E. coli
and S. aureus. Their study also demonstrated that a specific formulation, poly(Lys)60(Ala)40,
exhibited excellent mammalian cell adhesion and proliferation capabilities, along with
significant antibacterial activity, highlighting its potential as a wound-healing hydrogel. Bai
et al. developed an amphiphilic peptide A9K2 with the ability to inhibit both Gram-positive
and Gram-negative bacterial strains [41]. The sol-gel transition was catalyzed either by
lysyl oxidase (LO) in fetal bovine serum (FBS) or plasma amine oxidase (PAO). The enzy-
matic hydrogel formed by A9K2 exhibited favorable biocompatibility and demonstrated
remarkable selectivity by promoting the adhesion and spreading of mammalian cells. These
investigations have presented the potential application of AMPs as antibiotic agents in
healthcare settings. However, significant challenges remain, primarily regarding the insta-
bility and easy degradation of AMPs. Further research is required to determine whether
AMPs can be effectively preserved within hydrogels for extended periods, necessitating
additional studies.

2.1.2. Amphoteric Ion Hydrogels

Amphoteric ion hydrogels are synthetic mimics (polymers) of AMPs and operate
similarly by employing electrostatic interactions due to the presence of both acidic and
basic groups. These interactions enable the hydrogel polymers to bind with the anionic
bacterial membrane. The resultant amphiphilic interactions disrupt the membrane struc-
ture, ultimately resulting in cell death [42]. Norbornene is a bicyclic compound that can
undergo polymerization to form a cross-linked network, resulting in the formation of a
poly(norbornene) hydrogel, which is a cationic polymer [43]. Specific modifications in
norbornene monomer, such as conjugation with thiol, PEG, or hyaluronic acid, increases
antimicrobial activity and biocompatibility [44–46]. Similar synthetic cationic polymers
have been developed, such as poly(acrylate)s, poly(acrylamide)s, poly-β-lactams, and
poly(carbonate)s [47–54].

Poly(vinylpyrrolidone) (PVP) hydrogels showed good cytocompatibility with human
oral mucosa stem cells (hOMSCs) in direct contact as well as PVP-coating for cylindri-
cal polyurethane scaffold [55–57]. Poly(carboxybetaine) (pCB) and poly(sulfobetaine)
(pSB) are zwitterionic polymers that present exceptional swelling capacity in salt solu-
tions, which highlights their potential as dressings for chronic wounds with high exudate
levels [58–60]. Amphiphilic 9-fluorenylmethoxycarbonyl (Fmoc) amino acids/dipeptides
display antibiofilm and anti-inflammatory properties [61,62]. Moreover, after self-assembly,
the Fmoc amino acids form potent antibacterial hydrogels with high rigidity and stability
against both Gram-positive and Gram-negative bacteria [63,64]. Similarly, Dutta et al.
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synthesized cholesterol-based amino acid-containing hydrogels, which were also am-
phiphilic [65]. To incorporate broad-spectrum antibacterial properties, the hydrogels were
utilized as a medium for in situ synthesis of silver nanoparticles (AgNPs) using sunlight.
The resulting amphiphile-AgNP soft nanocomposite demonstrated remarkable bactericidal
activity against both Gram-positive and Gram-negative bacteria.

2.1.3. Polysaccharide-Based Hydrogels

Polysaccharides are the most common natural polymers, and some of them have
inherent antimicrobial activity. Polysaccharides, which are complex polymers derived from
diverse renewable sources, offer excellent biocompatibility, non-toxicity, biodegradability,
abundance in nature, higher water retention, and cost-effectiveness [66,67]. Polysaccharides
are isolated from organisms such as plants (cellulose, guar gum, locust bean gum seeds,
and starch), algae (alginate, agarose, and carrageenan), animals (chitosan, hyaluronic acid,
chondroitin sulfate, collagen, and fibrin), and microbes (dextran, xanthan gum, and gellan
gum) [12,68]. However, polysaccharide-based hydrogels are inferior to synthetic hydrogels
in terms of mechanical properties and stability [69].

Among all the antimicrobial polysaccharide-based hydrogels, chitosan is the most
commonly used due to its unique properties. Chitosan is the deacetylated form of chitin,
which is naturally obtained from exoskeletons of crustaceans, insects, and fungi [70].
Chitosan is a linear polysaccharide composed of glucosamine and N-acetylglucosamine,
which in part mimics the ECM and cartilage tissue. The deacetylation of chitin increases
the amount of amino groups and, therefore, aqueous solubility, bio-compatibility, and
biodegradability [71]. It is the only cationic polymer in nature, whereas the previous
polysaccharides mentioned are neutral or anionic in charge [8]. The antibacterial features
of chitosan may be a result of its association with anions on bacterial cell walls, which
inhibits biosynthesis and interferes with transport across cell walls, killing bacteria [72].
Chitosan-based hydrogels can be either chemically or physically cross-linked. The former
presents more mechanical stability, whereas the latter can be adjusted more easily to be
stimuli-responsive [73].

Hyaluronic acid (HA) is a linear polysaccharide found in ECM of connective or ep-
ithelial tissue. There are different options of HA-based hydrogels, and the large majority
are designed for wound healing due to the biocompatibility, different cross-linking den-
sity to adjust the dosage, and hydrophilicity [74]. For example, Watson et al. designed a
gentamicin-loaded HA-based hydrogel for wound dressing, showing antimicrobial activity
against Gram-positive and Gram-negative bacteria [75]. However, Zhu et al. synthesized
an injectable elastin-like HA-based hydrogel for cartilage regeneration [76]. Cellulose is
the most important component of the plant cell wall, and it lacks antibacterial activity [77].
However, bacterial cellulose does exhibit antimicrobial properties, and Zhang et al. ob-
tained it from Acetobacter xylinumis, which is active against E. coli and S. aureus [78,79].
Another example of polysaccharide-based hydrogels with antibacterial properties is gelatin,
a derivative of collagen [79–81].

It is worth it to mention that most polysaccharide-based hydrogels can be loaded
with antimicrobial agents and acquire effective antimicrobial activity, as we review in the
next section.

2.2. Antimicrobial Agent-Loaded Hydrogels

As we previously reviewed, antimicrobial hydrogels possess good inherent antimicro-
bial properties and are biocompatible. However, when loaded with antimicrobial agents,
their efficacy is increased while allowing the dose of antimicrobial agents to be minimized
and resistance to emerge. In addition, antimicrobial agents are released directly at the
infected site, avoiding systemic toxicity. There exist five main groups of antimicrobial
agents incorporated into hydrogels: antibiotics, biological extracts, metal nanoparticles,
and AMPs [82–85].
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2.2.1. Antibiotic-Loaded Hydrogels

Local antibiotic administration has gained attention by delivering an adequate bac-
tericidal dose directly to the infection site without excessive systemic toxicity [86,87].
Hydrogels, as a local administration matrix, offer a high surface area-to-volume ratio and
structural controllability, enabling selective drug release at desired sites while maintaining
high water content and biocompatibility. Antibiotic-loaded hydrogels offer advantages
over conventional antibiotics, including targeted drug delivery, sustained release, reduced
resistance development, increased efficacy, improved patient compliance, application in
wound care and tissue engineering, and reduced risk of allergic reactions [88,89]. They
maintain therapeutic drug levels at the infection site, minimizing systemic side effects. The
antibiotics most commonly used are ciprofloxacin, gentamicin, vancomycin, nitroimida-
zoles, and sulfanilamides [90]. However, they are less studied for clinical use due to the
risk of developing bacterial resistance. Ciprofloxacin is the gold standard for topical appli-
cation in skin or eye infection. It acts through binding and inhibition of DNA gyrase [91].
Sharma et al. developed a chitosan-based hydrogel crosslinked with PEG and loaded with
ciprofloxacin and bovine serum albumin (BSA) protein, which mimics a growth factor [92].
The result was an effective, injectable, and self-healing AMH with sustained drug release
and potential proteins/growth factors that accelerate the healing process. Ciprofloxacin-
encapsulated graphene-silk fibroin macromolecular hydrogels have been designed for
burn wound injury and ciprofloxacin and ginsenoside Rh2-loaded poly (lactic-co-glycolic
acid)-microsphere thermo-sensitive hydrogel to treat S. aureus skin infections [82,93]. Lastly,
Giglio et al. designed two electrosynthesized hydrogel coatings loaded with ciprofloxacin
that are effective for preventing titanium implant-associated infections frequently related
to orthopedic surgery [94].

2.2.2. Biological Extract-Loaded Hydrogels

Biological extract-loaded hydrogels combine the inherent antimicrobial properties of
biological extracts or natural compounds from animals and plants with the unique char-
acteristics of hydrogel materials, resulting in versatile platforms for combating microbial
infections. The most common biological extracts are herbal extracts, curcumin, essential
oils, and honey [95]. These extracts typically contain a wide range of bioactive molecules,
such as phytochemicals, peptides, or proteins, that exhibit antimicrobial properties against
a broad spectrum of pathogens [96,97]. By loading them into hydrogels, the antimicrobial
activity can be preserved and harnessed for sustained release. The porous structure of
hydrogels allows for the efficient encapsulation and protection of the loaded extracts or
compounds, facilitating their controlled release over time and offering potential biocompat-
ibility and reduced toxicity [98]. The extensively researched groups of chemical compounds
originating from biological extracts encompass alkaloids, flavonoids, terpenoids, tannins,
and polyphenols [99,100].

Some examples of herbal extracts employed in AMH synthesis are the ethanolic and
methanolic extracts of Eupatorium glutinosum loaded into a cellulose hydrogel, which dis-
played, in addition to antimicrobial activity, antioxidative and antihemolytic activity [101].
Lin et al. developed a gelatin and carboxymethyl cellulose-based hydrogel that incorporates
several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus
emblica, and salicylic acid, that present anti-inflammatory, anti-irritant, and antibacterial
properties [83]. This gel was suitable for the treatment of acne vulgaris. Gavan et al. de-
signed a carbomer hydrogel loaded with ethanolic extracts of Rosmarinus officinalis aerial
parts, Achillea millefolium, and Calendula officinalis flowers [102]. The hydrogel with
extract of aerial parts of R. officinalis and the one that incorporates the blend of extracts had
good antimicrobial activity and therefore are proposed as novel wound-dressing materials.
It is worth it to mention that the ethanolic extracts decrease the consistency, firmness, and
adhesiveness of the hydrogel [102]. Synthetic PVA hydrogels have also been tested by
loading them with Calendula officinalis extract, which improves the adhesiveness and
was effective against both Gram-positive and Gram-negative bacteria [103]. Curcumin,
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obtained from the roots of Curcuma longa, is a hydrophobic polyphenolic compound with
remarkable bioactive properties, and promising results have been obtained by loading it
into chitosan or PVA hydrogels [104–107]. Some essential oils are derived from plants such
as lavender, thyme, peppermint, tea tree, rosemary, cinnamon, eucalyptus, and lemon-
grass [108]. They present antimicrobial properties, and attaching them to hydrogels increase
their stability, controlled release, and antimicrobial efficacy [109]. An example is the gelatin
hydrogel loaded with microdroplets of rosemary and orange essential oils [110]. Finally,
honey exhibits antimicrobial properties attributed to its low pH, low water activity, and the
presence of hydrogen peroxide, flavonoids, phenolic compounds, and defensin-1 [84,111].
Some examples are PVP or carboxymethyl cellulose hydrogels loaded with honey, which
are effective against S. aureus and E. coli in wound healing [112,113].

2.2.3. Metal Nanoparticle-Loaded Hydrogels

Currently, the most employed metal nanoparticles (NPs) are silver NPs (AgNPs),
gold NPs (AuNPs), and zinc oxide NPs (ZnONPs) [21]. The antibacterial effects of silver
nanoparticles involve the release of silver ions, which adhere to the cell membrane, disrupt
the bacterial envelope, interfere with enzyme activity, generate reactive oxygen species
(ROS), and disrupt DNA replication and protein synthesis [114,115]. A wide range of
hydrogels incorporating AgNPs exists, including chitosan, chitosan with dextran, chitosan-
grafted PVA, and carbopol-based hydrogels [85,116–120]. However, more research is
needed to propose the most efficient one [121].

There is much interest in AuNPs due to controlled geometrical, optical, and sur-
face chemical properties and the increasing number of biomedical applications under
study [122]. AuNPs exert antimicrobial effects by disrupting bacterial metabolism, inhibit-
ing ribosome function, and interacting with proteins and DNA. They generate oxidative
stress, leading to cell damage and death, while demonstrating lower toxicity to mam-
malian cells [123,124]. However, AuNps are usually loaded, in combination with AgNPs,
to hydrogels [125]. An interesting application is the use of these NPs for bone tissue engi-
neering. Ribeiro et al. developed a silk fibroin/nanohydroxyapatite hydrogel loaded with
AgNPs and AuNPs, which presented antimicrobial activity against both Gram-positive
and Gram-negative bacteria and cytocompatibility with osteoblastic cell lines [126]. Finally,
Fmoc-based hydrogels with AuNps or AuNPs/ciprofloxacin are being investigated for the
electrochemical detection of the neurotransmitter dopamine in biological fluids [127,128].

Lastly, ZnONPs exhibit antibacterial activity against both Gram-positive and Gram-
negative bacteria thermoresistant spores [129]. It seems that the mechanism is similar to that
of silver and gold NPs due to an increase in ROS production [130,131]. The most studied is
the alginate hydrogel loaded with ZnONPs, which shows excellent antimicrobial activity
against E. coli, S. aureus, Candida albicans, and MRSA [132,133]. Bajpai et al. synthesized a
ZnONP-loaded hydrogel made of polyacrylate and gum Arabic [134].

2.2.4. AMP-Loaded Hydrogels

AMPs exhibit selectivity for bacteria and safety for mammalian cells [135,136]. More-
over, AMPs do not develop resistance as fast as antibiotics and represent a promising
alternative for use alone or in combination with hydrogels [137]. However, in their free
state they have a very low half-life, from minutes to a few hours. Therefore, binding AMPs
to the hydrogel allows them to retain their antimicrobial activity and targets the infected
site directly. Encapsulation in hydrogels allows for controlled and sustained release of
AMPs, maintaining steady concentrations at the infection site. Hydrogels shield AMPs
from enzymatic degradation, reduce cytotoxicity to healthy cells, and prevent AMP ag-
gregation [138]. The hydrogel matrix provides a favorable microenvironment for AMPs,
ensuring proper folding and stability [139]. Enhanced adhesion and retention of hydrogels
at the infection site optimize AMP effectiveness. Rezaei et al. attached the AMP Piscidin-1
to a thermo-responsive chitosan hydrogel [140]. It presented antibacterial behavior against
resistant A. baumannii, excellent biocompatibility, and controlled release of the AMP and
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water uptake, placing it as a promising candidate for wound dressing. Another example
is the AMP RRP9W4N, which was incorporated into an amphiphilic synthetic hydrogel
based on Pluronic F127, a copolymer of ethylene and propylene oxide [96]. The result was
a mesoporous hydrogel (pore size between 2 nm and 50 nm), consisting of a cross-linked
lyotropic liquid crystal. It exhibited antibacterial activity across a wide range, including
Gram-positive, Gram-negative, and antibiotic-resistant bacteria, and AMP stability in
serum and antibacterial activity was notably increased.

3. Translational Applications
3.1. Drug Delivery Systems

Hydrogels also act as highly beneficial biocompatible drug delivery systems due
to their porosity and compatibility with the aquatic environment. Due to their versatile
nature, which allows them to be shaped into diverse physical forms such as films, slabs,
microparticles, and nanoparticles, hydrogels find extensive applications in the biomedical
field [141]. In swelling-controlled drug release from hydrogels, drugs are dispersed within
a glassy polymer that exhibits swelling behavior upon contact with a biofluid. This process
is also known as anomalous transport because it combines the processes of diffusion and
swelling to enable drug release [142]. The gradient between the dispersed drug in the
hydrogel and its surrounding environment allows the active ingredient to diffuse from the
region of higher concentration in the hydrogel to a lower one.

The development of hydrogels for hydrophobic drug delivery could provide patients
and clinicians with a number of benefits. These hydrogels have mostly been administered
in oral, subcutaneous, and transdermal modes of administration [142]. Although there
have been some difficulties with employing hydrogels for drug administration, ongoing
advancements are being made to find the hydrogel design that is best suited for various
drug delivery applications [143,144].

3.1.1. Wound Healing

Hydrogels may have a crucial benefit for wound management, as their antimicrobial
action may prevent or delay the development of microbial infections, which are a major
obstacle to wound healing and one of the main causes of chronic wounds failing to heal and
requiring complex treatment [145–149]. AMHs play a role in activating neutrophils and
macrophages to initiate the healing process, inhibiting metalloproteinases and controlling
the oxidation–reduction environment [150–152].

3.1.2. Tissue Engineering and Regeneration

Hydrogels have more recently been used in tissue engineering, where they can be used
as space fillers, as vehicles for the delivery of bioactive compounds, or as three-dimensional
structures that arrange cells and provide stimuli to assure the creation of a needed tis-
sue [150]. AMHs offer several advantages in tissue-engineering applications, including
their biocompatibility, tunable properties, and ability to provide a suitable microenviron-
ment for cellular activities [14]. In bone tissue engineering, antimicrobial hydrogels are
utilized to develop scaffolds for bone regeneration. These hydrogels can be loaded with
antimicrobial agents such as silver nanoparticles or antibiotics, which effectively inhibit
bacterial growth while promoting the attachment, proliferation, and differentiation of
bone-forming cells [153]. Wange et al. introduced hydroxyapatite microspheres to gelatin
methacryloyl hydrogel [154]. In contrast, for cartilage regeneration, the AMHs employed
are based on hyaluronic acid and elastin [76,155]. Furthermore, antimicrobial hydrogels
have been employed in dental tissue engineering, particularly in the development of an-
tibacterial root canal fillings. These hydrogels can release antimicrobial agents within the
root canal system to eliminate or suppress bacterial colonization, preventing reinfection and
promoting proper healing [156,157]. For example, in root canal disinfection, AMHs have
been loaded with diclofenac, chlorhexidine, and metronidazole or silver ions [158–160]. In
dental pulp regeneration, fibrin or chitosan hydrogels have been loaded with clindamycin-
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loaded poly (D,L)-lactic acid NPs or polyhexamethyleneguanidine hydrochloride (PHMB),
respectively, with promising results in vitro [161,162].

3.1.3. Oral Administration

Antimicrobial hydrogels represent a promising strategy for oral drug delivery to
effectively combat diverse oral infections, including periodontitis, dental caries, and oral
candidiasis [163,164]. These hydrogels can be formulated as gels or mucoadhesive patches,
enabling them to adhere to the oral mucosa, thereby facilitating sustained drug release
and localized action. Notably, in the context of periodontal diseases, antimicrobial agents
such as antibiotics can be incorporated into the hydrogel matrix [165,166]. Through its
adhesion to inflamed gingival tissues, the hydrogel ensures prolonged and direct contact
with the infected area, thereby preventing premature drug washout by saliva. This targeted
delivery approach enhances therapeutic efficacy while concurrently minimizing systemic
side effects [167,168]. The application of antimicrobial hydrogels in oral drug delivery holds
significant potential for advancing the treatment of oral infections, potentially improving
patient outcomes and overall oral health.

3.1.4. Intranasal Administration

Intranasal drug delivery represents a viable application of antimicrobial hydrogels
for the treatment of respiratory infections and sinusitis resulting from bacterial or fungal
pathogens [169,170]. By incorporating antimicrobial agents, these hydrogels can be formu-
lated as nasal sprays or gels. Following administration, the hydrogel undergoes gelation
within the nasal cavity, leading to the sustained release of antimicrobial drugs at the precise
site of infection [171,172]. Leveraging its bioadhesive properties, the hydrogel fosters pro-
longed drug retention on the nasal mucosa, thereby facilitating enhanced drug penetration
and improved therapeutic outcomes [173,174]. This approach holds significant promise
in combatting respiratory infections and sinusitis, offering potential benefits in terms of
targeted drug delivery, reduced systemic exposure, and the mitigation of adverse effects.

3.1.5. Intravaginal Administration

The intravaginal application of antimicrobial hydrogels offers a promising therapeutic
strategy for addressing vaginal infections, including bacterial vaginosis and vulvovaginal
candidiasis [175]. These hydrogels can be designed to maintain an appropriate pH environ-
ment, ensuring optimal drug activity and enabling the controlled release of antimicrobial
agents. Upon administration, the hydrogel adheres to the vaginal mucosa, facilitating the
sustained release of antimicrobial agents [176]. This prolonged release allows for effective
combating of infecting microorganisms while promoting the healing of vaginal tissues.
Furthermore, the mucoadhesive nature of the hydrogel enhances its retention within the
vaginal canal, thus reducing the frequency of reapplication and potentially enhancing
patient compliance [177].

3.2. Contact Lenses

The investigation of hydrogel technology has significantly impacted the daily lives of
millions of people through biomedical applications. One of the most notable contributions
of hydrogels to modern life, soft contact lenses, led to the development of a new class of
optically adjustable soft materials [178]. There are many materials used in contact lenses
nowadays. For example, making hydrogels using macromonomers, which are frequently
non-toxic, could potentially eliminate the requirement for purification [179]. According
to some research, a novel class of optically clear silicone thermoplastic hydrogel materials
could be used to make contact lenses [180,181]. The polymers’ general formula includes a
section made of silicone and produced from polyciliate that is joined by hydroxyl or amino
groups [182]. In addition, among the variety of their applications in vision correction, soft
contact lenses may also be utilized to administer medications to the eye [183,184]. The use
of these polymers in contact lenses is already well established.
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3.3. 3D Printing

In the biomedical field, hydrogel films have proven to be effective photonics devices
for detection and sensing applications. These films are often used in tabletop laboratory
investigations rather than being directly incorporated into biological tissues [185]. Similar
to other surface-based assays like physiologically relevant chemicals, lateral flow chips,
and fluids, analyte identification can be evaluated in these films [186,187]. Different types
of structures have been created for this proposal, adding 3D complexity to the constructs’
optical properties and biological compatibility. Another fabrication method that has be-
come increasingly popular in the field of bio-fabrication is 3D printing [188]. This method
makes it possible to incorporate complex shapes and control the precise deposition of
various materials and cells, which facilities the replication of the complexity of biological
tissue [189,190]. It is not impossible to combine several fabrication techniques, such as
optical fiber integration and 3D printing, into structures. Advanced in vitro tissue emula-
tion and real-time monitoring and reporting of pertinent responses through light-based
readouts could be combined using this strategy [191].

3.4. Biosensing

The analysis of biological markers utilizing a transducing mechanism is called biosens-
ing [192]. This is frequently used for the detection of a wide range of biological targets,
including cells, bacteria, viruses, and tiny molecules, including uric acid, glucose, and
H2O2, as well as biomacromolecules, nucleic acids, enzymes, proteins, and peptides. A
family of materials known as “smart materials” is capable of reacting to a variety of en-
vironmental factors, including temperature, pH, moisture, light, chemical compounds,
magnetic or electric fields, and bio-stimuli [193]. In this sense, hydrogels are considered
“smart” materials.

Biosensors made of hydrogels are typically used in water environments. Additionally,
there is a conflict between the swelling of the hydrogel caused by the fluid and the analysis,
which could influence how the analyte levels are assessed [194]. They are used in sensing
glucose, nucleic acids, proteins, and enzymes [195–197].

3.5. Water Purification

The deteriorating environment receives a critical requirement from green chemistry for
a sustainable addition to human society [198]. Water pollution in the human environment
is the biggest global concern, having a negative impact on many living things and leading
to major health problems [199].

Because of their unique characteristics, hydrogels can be used to purify water. They are
three-dimensional, branched polymers with exceptional water absorption capabilities [200].
The water absorption characteristic of hydrogels is important, as it allows them to absorb
and retain large amounts of water, increasing the contact time between water and antimi-
crobial agents, thereby enhancing their efficiency in purifying water and ensuring safe
drinking water supplies [201,202]. The hydrogel’s stretchability, pliability, and porousness
properties are sensitized to its capacity to absorb water [203]. Figure 2 and Table 1 provides
an overview of antibacterial hydrogels’ most promising potential uses.
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Table 1. Translational applications of antimicrobial hydrogels (AMHs).

Translational Applications Purpose Examples of AMHs References

Drug delivery
systems

Wound healing

Provide a controlled and sustained
release of antimicrobial agents to

combat infections while
simultaneously promoting tissue

repair and regeneration

Hyaluronic acid-based
Zn2+-loaded cellulose-based

AgNPs-loaded chitosan grafted
polyvinyl alcohol-based

[74,116,151]

Tissue engineering

Create an environment that
supports cell growth and tissue
regeneration while preventing
infections with the controlled
release of antimicrobial agents

Ag-doped hydroxyapatite
NPs-loaded gelatin
methacryloyl-based

Hyaluronic acid/elastin-like
polypeptide hybrid

[154,155]

Oral administration
Deliver targeted and sustained

release of antimicrobial agents to
treat oral infections

Poly(vinyl alcohol)-based
Methacrylated gelatin

andpoly(ethylene glycol)
diacrylate-based

[165]

Intranasal
administration

Provide localized and sustained
delivery of antimicrobial agents

for effective treatment of
respiratory infections

Carbopol and hydroxypropyl-β-
cyclodextrin-based

Amoxicillin trihydrate-loaded
bovine serum albumin

NPs-loaded poloxamer-based

[169,173]

Intravaginal
administration

Offer targeted and controlled
release of antimicrobial agents to
effectively treat vaginal infections

while promoting tissue healing
and minimizing the need for

frequent reapplication

Clotrimazole-loaded
poloxamer-based [177]

Contact lenses

Provide a protective and hygienic
surface, reducing the risk of

microbial infections and
promoting ocular health

Silicone-based
Epigallocatechin gallateloaded

starch-based
Mel4 peptide-coated

silicone-based

[180,183,184]
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Table 1. Cont.

Translational Applications Purpose Examples of AMHs References

3D printing
Develop biocompatible and

infection-resistant constructs for
biomedical applications

Alginate-based [190]

Biosensing Enhance the sensitivity and
specificity of biosensors

Protease-responsive hydrogels of
poly(ethyleneglycol) diacrylate
Estradiol-sensitive carboxylated

p(NIPAM)
Glucose-sensitive of chitosan

and dextran

[196,197]

Water purification

Remove and inhibit the growth of
microorganisms, enhancing the
safety and quality of drinking

water

Polyacrylamide/bentonite/graphitic
carbon 976 nitride

Lignin-containing cellulose
nanofibril-reinforced polyvinyl

alcohol

[198,200]

4. Conclusions and Future Perspectives

In conclusion, the reviewed literature highlights the rapid evolution and promising po-
tential of antimicrobial hydrogels in the medical management of infectious diseases. Their
unique physicochemical and biological properties, coupled with the ability for targeted
drug delivery, make them an attractive solution for combating infections and addressing
the challenges associated with antibiotic resistance. However, further research is necessary
to optimize the design, formulation, and efficacy of antimicrobial hydrogels, enabling
their widespread clinical implementation and ultimately improving patient outcomes.
Furthermore, exploring multi-modal approaches that combine antimicrobial hydrogels
with complementary therapeutic approaches may enhance their effectiveness in combat-
ing infectious diseases. Rigorous preclinical and clinical investigations are essential to
establish the safety and efficacy of antimicrobial hydrogels before their routine integration
into medical practice. As the field continues to advance, antimicrobial hydrogels hold
significant promise as an innovative and impactful approach to mitigate the global threat
of antimicrobial resistance.
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Biomedicine: Properties, Applications, and Challenges—A Concise Review. Int. J. Mol. Sci. 2023, 24, 2191. [CrossRef]

96. Atefyekta, S.; Blomstrand, E.; Rajasekharan, A.K.; Svensson, S.; Trobos, M.; Hong, J.; Webster, T.J.; Thomsen, P.; Andersson, M.
Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 1693–1702. [CrossRef]

97. Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and
Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [CrossRef]

98. Do, N.H.N.; Truong, Q.T.; Le, P.K.; Ha, A.C. Recent Developments in Chitosan Hydrogels Carrying Natural Bioactive Compounds.
Carbohydr. Polym. 2022, 294, 119726. [CrossRef]

99. Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant Secondary Metabolites: An Opportunity for Circular Economy.
Molecules 2021, 26, 495. [CrossRef] [PubMed]

100. Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal
Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [CrossRef]

101. Zamora-Mendoza, L.; Vispo, S.N.; De Lima, L.; Mora, J.R.; Machado, A.; Alexis, F. Hydrogel for the Controlled Delivery of
Bioactive Components from Extracts of Eupatorium Glutinosum Lam. Leaves. Molecules 2023, 28, 1591. [CrossRef] [PubMed]

102. Gavan, A.; Colobatiu, L.; Hanganu, D.; Bogdan, C.; Olah, N.K.; Achim, M.; Mirel, S. Development and Evaluation of Hydrogel
Wound Dressings Loaded with Herbal Extracts. Processes 2022, 10, 242. [CrossRef]

103. Pelin, I.M.; Silion, M.; Popescu, I.; Rîmbu, C.M.; Fundueanu, G.; Constantin, M. Pullulan/Poly(Vinyl Alcohol) Hydrogels Loaded
with Calendula Officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023, 15, 1674.
[CrossRef]

104. Chopra, H.; Bibi, S.; Mohanta, Y.K.; Kumar Mohanta, T.; Kumar, S.; Singh, I.; Saad Khan, M.; Ranjan Rauta, P.; Alshammari, A.;
Alharbi, M.; et al. In Vitro and In Silico Characterization of Curcumin-Loaded Chitosan–PVA Hydrogels: Antimicrobial and
Potential Wound Healing Activity. Gels 2023, 9, 394. [CrossRef]

105. Hao, P.Y.; Zhou, H.Y.; Ren, L.J.; Zheng, H.J.; Tong, J.N.; Chen, Y.W.; Park, H.J. Preparation and Antibacterial Properties of
Curcumin-Loaded Cyclodextrin-Grafted Chitosan Hydrogel. J. Sol-Gel Sci. Technol. 2023, 106, 877–894. [CrossRef]

106. Kenawy, E.R.S.; Kamoun, E.A.; Ghaly, Z.S.; Shokr, A.-b.M.; El-Meligy, M.A.; Mahmoud, Y.A.G. Novel Physically Cross-Linked
Curcumin-Loaded PVA/Aloe Vera Hydrogel Membranes for Acceleration of Topical Wound Healing: In Vitro and In Vivo
Experiments. Arab. J. Sci. Eng. 2023, 48, 497–514. [CrossRef]

107. Rashid, N.; Khalid, S.H.; Ullah Khan, I.; Chauhdary, Z.; Mahmood, H.; Saleem, A.; Umair, M.; Asghar, S. Curcumin-Loaded
Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-Inflammatory Cytokines to Expedite
Healing of Full-Thickness Wounds. ACS Omega 2023, 8, 7575–7586. [CrossRef]

108. Alven, S.; Peter, S.; Aderibigbe, B.A. Polymer-Based Hydrogels Enriched with Essential Oils: A Promising Approach for the
Treatment of Infected Wounds. Polymers 2022, 14, 3772. [CrossRef]
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