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Abstract: Western blotting is one of the most extensively used techniques in the biomedical field.
However, it is criticized by many researchers due to its considerable time consumption, multiple
steps, and low method results. Therefore, we modified the steps of gel preparation, electrophoresis,
electrotransfer, blocking, and gel cutting. First, we simplified the gel preparation step by premixing
various reagents and varying the amounts of catalysts or radical generators, which shortened the
entire process to 10 min. Second, we shortened the electrophoresis process to 35 min by modifying the
formula of the electrophoresis running buffer. Then, we removed the hazard of methanol vapor by
replacing methanol with ethanol in the electrotransfer buffer. Finally, the use of polyvinylpyrrolidone-
40 shortened the blocking procedure to 10 min. Our modifications shortened the time, improved the
experimental productivity, and minimized the experimental cost without hindering compatibility
with most existing equipment. The entire experiment up to primary antibody incubation can be
completed within 80 min.

Keywords: immunoblotting; electrophoresis; electrotransfer; quick blocking; gel cut

1. Introduction

Western blotting (WB) is an essential tool in protein analytical chemistry [1,2]. However,
its shortcomings, such as considerable time consumption, multiple steps, and poor reliability,
are criticized by researchers [3,4]. Even small mistakes in any of its steps may significantly
alter the entire subsequent experiment. Therefore, researchers who invested considerable time
and effort in mastering this approach do not necessarily obtain satisfactory results.

The principle of immunoblotting is not particularly complicated. First, mixed antigen
samples are separated by unidirectional or bidirectional electrophoresis on a gel. Then,
the single antigenic component in the gel is transferred to the blotting membrane and
solidified by natural adsorption, an electric field, or other external forces of the blotting
membrane. Finally, the antigen-immobilized matrix membrane is detected and analyzed
by using immunoisotope probes or immunoenzymatic probes [5]. However, these simple
principles require various steps.

Immunoblotting includes core steps, such as gel preparation, electrophoresis, electro-
transfer, blocking, and antibody incubation. Each step lasts hours or days. Despite the
fact that commercial tricine-based precast gels have been developed [6,7], a high price
is not appropriate for high-output experiments. Therefore, primitive methods, such as
adding reagents one by one and slow solidification, are still used to formulate gels in
most laboratories. In addition, traditional electrophoresis (stacking gel: 80 V; separation
gel: 120 V) takes at least 90 min, and wet electrotransfer also requires 90 min. At least
60 min are required for skim milk blocking before primary antibody incubation [8]. This
five-hour-long experimental process truly needs to be optimized.

Although all-in-one instruments, such as ProteinSimple Wes, are gradually gaining
ground in the market [9–11], their high price is prohibitive for many laboratories. Other semi-
automatic systems, such as SNAP i.d.* 2.0 [12] and Invitrogen™ iBind™, have been developed
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to accelerate the protein detection process at the expense of consuming large quantities of
precious antibodies.

No matter how often these instruments are upgraded, the fundamentals of im-
munoblotting remain the same. In this work, we modified the gel preparation, elec-
trophoresis, membrane transfer, blocking, and gel cutting steps. While being compatible
with most existing instruments, our modifications shorten the time needed, improve the
experimental success rate and productivity, and also decrease the experimental cost. The
entire experiment can be completed within 80 min before the primary antibody incubation,
which dramatically improves the labor and productivity of the experimenter.

2. Results
2.1. Pre-Mixed Reagents Simplify and Accelerate Gel Preparation

Considering the role of each component in gel preparation, the compounding scheme
can be simplified. We used 10% separating gel (1.5 M Tris (pH 8.8), 1.0 mm) and 5% stacking
gel ((1.0 M Tris (pH 6.8), 1.0 mm) as an example. The reagents required for gel preparation
were deionized water, 30% Acr-Bis, Tris, 10% SDS, TEMED, and 10% AP. TEMED catalyzes
the generation of free radicals from AP, which initiates the crosslinks between bisacrylamide
and acrylamide, forming a three-dimensional network. Hence, the isolation of free radicals
enables the stable preservation of the mixed solution. Our results show that the first five
reagents can be mixed into a system and stored at 4 ◦C in the dark for a month or more.
In this way, the entire compounding steps are simplified to only adding the mixed system
and AP. Similarly, dye indicators, which are usually added to form a pre-stained gel for easy
sample loading, can also be added to the mixed system without reaction [13]. In order to make
the gel agglomeration faster, AP or TEMED could be appropriately adjusted to catalyze the
reaction. We compared the traditional step-by-step-added reagent gel, the pre-mixed reagent
gel, and the pre-mixed reagent gel at 4 ◦C overnight. Our results demonstrate no substantial
differences in the signal-to-noise ratio among the three gels (Figure 1A,B).

2.2. Modification of the Formula of the Running Buffer to Accelerate Electrophoresis

We tested the traditional electrophoresis running buffer (Tris 19.2 mM, glycine 19.2 mM,
SDS 3.5 mM, and pH 8.3) at a high voltage. Regrettably, various problems occurred with the
voltage increase. One of the most notable drawbacks is that it lost protein signals and could
not significantly shorten the electrophoresis time (Figure 1C,E). In order to accelerate the elec-
trophoresis, we modified the formula of the running buffer (Tris 38.1 mM, glycine 266.7 mM,
HEPES 21.0 mM, SDS 3.5 mM, and pH 8.3). The modified running buffer could complete
electrophoresis within 35 min under 200 V at room temperature (Figure 1D,F) (Table 1). Sub-
sequently, we tested the modified electrophoresis buffer under different voltages (Table 1).
Surprisingly, when the voltage was set at 300 V, it still worked normally (Figure 1G), but the
ensuing rising heat required an ice-water bath to dissipate it. The 1× electrophoresis buffer
was prone to flocculation after storage at room temperature. Certainly, the 10× electrophoresis
buffer does not deteriorate easily, but it is difficult to dissolve due to the large amount of
electrolytes. Generally, we prepared a 5× electrophoresis buffer for stockpiling.

2.3. Replacement of Methanol with Ethanol in the Electrotransfer Buffer to Reduce Toxicity

We replaced the methanol with ethanol in the semi-dry electrotransfer buffer (Tris
36.9 mM, glycine 39.1 mM, SDS 1.3 mM, and 20% ethanol). This upgraded formula
decreased methanol vapor. Among the tested proteins, the signal-to-noise ratios of GAPDH,
CD81, and CyC were not statistically different between the two groups. However, the
signal-to-noise ratio of PINK was the strongest in the ethanol group (Figure 2A,B). In
addition, we also tested the effect of SDS on electrotransfer efficiency. Our results imply
that the addition of SDS enhanced the signal intensities of GAPDH and CD81 (Figure 2A,B).
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Figure 1. Pre-mixed gels and modified electrophoresis running buffer accelerate the experimental 
procedures. (A) Comparison of signal intensities after the development of traditional gels, quick-
formulated gels, and quick-formulated gels at 4 °C overnight. The experimental procedure was the 
same as the standard experimental procedure except for the gels. (B) Signal intensities after the de-
velopment of different gel preparation schemes were statistically analyzed and compared (n = 6). 
There was no substantial difference in signal-to-noise ratio between the gels prepared using the 

Figure 1. Pre-mixed gels and modified electrophoresis running buffer accelerate the experimental
procedures. (A) Comparison of signal intensities after the development of traditional gels, quick-
formulated gels, and quick-formulated gels at 4 ◦C overnight. The experimental procedure was
the same as the standard experimental procedure except for the gels. (B) Signal intensities after
the development of different gel preparation schemes were statistically analyzed and compared
(n = 6). There was no substantial difference in signal-to-noise ratio between the gels prepared using the
different methods. (C) The traditional electrophoresis running buffer tested at 200 V. The experimental
procedure was the same as the standard experimental procedure except for theelectrophoresis running
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buffer. (D) Modified electrophoresis running buffer tested at 200 V. The experimental procedure was
the same as the standard experimental procedure except for the blocking reagent (Epizyme, Shanghai,
China). (E) Signal intensities of different voltages in the traditional electrophoresis running buffer were
statistically analyzed and compared (n = 6). Traditional electrophoresis running buffer resulted in a loss
of protein signals as the voltage increased. (F) Signal intensities of commercial blocking reagents were
statistically analyzed and compared (n = 4). The standard experimental procedure was compatible with
commercially blocking reagent, and the protein signal intensity showed a linear relationship with the
sample loading mass within a certain scope. (G) Modified electrophoresis running buffer tested under
different voltage conditions. The experimental procedure was the same as the standard experimental
procedure except for the voltage of the modified electrophoresis running buffer.

Table 1. Changes in electrophoresis time and pH of the modified formula at different voltages.

Voltage Time (RT/LT min) RT pH (Internal Buffer/External Buffer) LT pH (Internal Buffer/External Buffer)

150 V 45/55 8.52/8.31 8.47/8.31
200 V 35/40 8.59/8.30 8.48/8.33
250 V 23/29 8.53/8.39 8.59/8.31
300 V 22/27 8.64/8.32 8.57/8.29

Abbreviations: RT, room temperature; LT, low temperature. Note: The electrophoresis time and pH depend on the
room temperature. pH was measured by using Sartorius PB-10 (n = 3).

2.4. Proteins of Different Molecular Weights Have the Most Suitable Electrotransfer Time

For proteins with a sufficiently high abundance, the appropriate extension of the
electrotransfer time cannot have a significant effect on the signal intensity. As shown in
Figure 2C,D, there was no significant statistical difference in the signal intensity of GAPDH
at 15 min, 25 min, and 35 min. However, the signal intensity increased with the extension
of electrotransfer time for PINK (70 kDa). In contrast, the signal intensity of CyC (15 kDa)
decreased with the extension of the electrotransfer time. When the electrotransfer time was
extended to 35 min, the protein marker of CyC could not be visualized (Figure 2C). These
results show that proteins with low abundance have relatively suitable electrotransfer times.
We extensively tested proteins with 15–130 kDa. Based on our experimental experience, we
recommend the setting of the following parameters: 10–25 kDa, 25 V, 15 min; 25–55 kDa,
25 V, 20 min; 55–70 kDa, 25 V, 25 min; and 70–130 kDa, 25 V, 30–35 min.

2.5. The 0.45 µm NC Membrane Intercepts Protein Marker Dyes Better Than the 0.45 µm
PVDF Membrane

We conducted a comparative study on a 0.22 µm PVDF membrane, 0.45 µm PVDF
membrane, and 0.45 µm NC membrane. Our results show that the 0.45 µm PVDF could not
effectively intercept protein marker dye (Figure 3A), and small-molecular-weight proteins
were easily over-transferred when large-molecular-weight proteins were transferred into
membranes. The advantage is that the background signal is relatively low. The 0.45 µm
NC membrane could intercept protein marker dye (Figure 3A), but it had the same over-
transferability issue for small-molecular-weight proteins as the 0.45 µm PVDF membrane.
The 0.22 µm PVDF membrane not only retained the pre-stained protein marker but also
retained proteins of small and medium molecular weights (Figure 3A–C). Through the
quantitative analysis of the signal intensity, our results show that the 0.22 µm PVDF
membrane had a significantly stronger interception ability for small-molecular-weight
proteins (CyC, CD81) than the 0.45 µm PVDF membrane and 0.45 µm NC membrane
(Figure 3B,C).
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Figure 2. Effect of electrotransfer buffer formula and different electrotransfer times on different mo-
lecular weight proteins. (A) Replacing methanol with ethanol in the electrotransfer buffer achieved 
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Figure 2. Effect of electrotransfer buffer formula and different electrotransfer times on different
molecular weight proteins. (A) Replacing methanol with ethanol in the electrotransfer buffer achieved
the same efficiency. The experimental procedure was the same as the standard experimental procedure
except for the electrotransfer buffer. (B) Signal intensities of different electrotransfer buffers were
statistically analyzed and compared (n = 6). (C) The effect of different electrotransfer times on the
signal intensities of proteins with different molecular weights. The experimental procedure was the
same as the standard experimental procedure except for the electrotransfer time. (D) Signal intensities
of different electrotransfer times were statistically analyzed and compared (n = 6).
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Figure 3. Effects of different membrane materials and pores on protein signal intensities. (A) The
0.45 µm PVDF cannot effectively intercept protein marker dye. (B) Different membrane materials and
pores have different retention capacities for different molecular weight proteins. The experimental
procedure was the same as the standard experimental procedure except for the membranes. (C) Signal
intensities of different materials of membranes or pores were statistically analyzed and compared (n = 6).

2.6. Cutting the Gel Also Avoids Band Counterfeiting

The immunoblotting band is the hardest-hit area for paper fraud. Every year, myriads
of papers are questioned on PubPeer because of protein bands. Gradually, some journals
have begun to advocate for uncut gels. Uncut gels undoubtedly increase the workload of
researchers and consume reagents and samples. The purpose of an uncut gel is to confirm
the target proteins at the corresponding molecular weight and verify the specificity of the
primary antibody. With our modified scheme, a cut gel achieved a similar effect. First, we
used an oil-based pen to mark the target protein on the membrane after electrotransfer and
cut the membrane into bands. Then, the bands were spliced into a whole membrane and
an image was acquired. Finally, a brightfield image was preserved during development.
As such, photographs plus individual handwriting confirmed the consistency of the bands.
As shown in Figure 4, in the bands with falsified trends, the reference protein followed
the trend of the target protein. The incompatibility of the reference protein proves that the
bands are falsified.
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Figure 4. Cutting the gels avoids band counterfeiting.

It was confirmed via special handwriting that the three bands originated from the
same membrane. By manipulating the total protein mass, we faked the low, high, and
medium trends of protein bands, but the reference protein also showed the same trend,
proving that there were traces of forgery. Red arrows indicate individual handwriting. The
experimental procedure was the same as the standard experimental procedure.

2.7. Protein-Free Rapid Blocking Buffer Outperforms Skim Milk

Blocking buffer prevents primary antibody non-specific binding and improves the
signal-to-noise ratio. For some high-quality antibodies, blocking may not be performed. We
compared the blocking efficiency of polyvinylpyrrolidone (PVP-40) 1% + Tween 20 0.05%
with 5% skim milk + Tween 20 0.05%. The signal intensities of AKT, Rab27a, and CD81
were significantly higher in PVP-40 blocking for 10 min than skim milk blocking for 1 h,
and the signal intensities of TSG101, KCa3.1, and GAPDH were also not inferior to those of
the latter (Figure 5). In addition, commercial blocking buffer did not show overwhelming
advantages compared with PVP-40 (Figure 1D). However, aqueous buffers of PVP-40 are
prone to spoilage and can only be stored for a week at room temperature. Adding 0.05–1%
non-toxic ProClin (Beyotime, Shanghai, China) can greatly extend the shelf life.
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Figure 5. Comparison of the blocking efficiency of PVP-40 and skim milk.

The efficiency of PVP-40 blocking for 10 min was comparable to that of skim milk for
1 h. The experimental procedure was the same as the standard experimental procedure
except for the blocking reagents (n = 6).

3. Discussion

Despite the importance of immunoblotting in biochemical research, the reproducibility
of results is poor due to tedious operation and too many uncontrollable variables. To this
end, we integrated the existing technologies and solutions to try to produce a guideline
that enables beginners to quickly master this skill. Meanwhile, we tried to reduce the
experimental cost as much as possible by improving the existing equipment and provided
solutions to the current problems.

The concentration, solubility, and abundance of the target protein play a decisive role
in the results of immunoblotting. It is necessary to quantify the protein concentration before
proceeding to the next step. When the sample contains numerous cells, it is easy to make
the sample viscous, which causes the tip of the pipette to be blocked and increases the
sample loading error. The main reason for this stickiness is the release of nuclear DNA.
Studies have shown that sonication can generate cleavage stress to break down the DNA
structure, which dramatically improves the lysis and dissociates the target protein [14,15].
Of course, repeated grinding, pipetting, DNase, or dilution with RIPA and loading buffer
(4:1) can also reduce viscosity.

Throughout, reagents are mixed one by one and poured into the gel-making glass plate.
Mixing is time-consuming, labor-intensive, and easily confused. We optimized the gel
preparation scheme by mixing the reagents into a system, which means that the preparation
of the gel is shortened to 10 min. Increasing AP or TEMED by 50–100% significantly
accelerates the gel solidification. However, excessive AP or TEMED causes gel burning and
distortion of the bands during electrophoresis. The polymerization is fast under alkaline
conditions, but the gel is hard and brittle when the alkalinity is too strong. AP or TEMED
should be reduced when a high pH is needed.

Traditional electrophoresis requires at least 90 min, which is too time-consuming
for high-throughput experiments. Indeed, capillary electrophoresis has revolutionized
this field due to its fast speed and high throughput [16,17]. However, it requires the
purchase of expensive equipment and custom consumables. This will undoubtedly result
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in a reluctance to invest in stretched laboratories. Dumut’s laboratory developed a new
electrophoresis buffer (100 mM Tris, 100 mM Tricine, and 100 mM HEPES) that could
complete electrophoresis in 35 min. Additionally, the resolution of small-molecular-weight
proteins could be improved [18]. However, Tricine is not cheap. Our self-developed
electrophoresis buffer can significantly shorten the electrophoresis time and effectively
separate proteins of different molecular weights. Because of the enhanced ionic strength,
the heat increases significantly with the voltage, so the heat dissipation is particularly
important. In addition, it is vital to maintain the pH of the electrophoresis buffer. Our
results show that the difference in pH between the internal and external buffers after
electrophoresis was about 0.3, showing a good buffering performance. Of course, we
only tested the buffering capacity of the HEPES, and other “good” buffer systems should
theoretically produce excellent results.

Compared with the traditional wet electrotransfer, the efficiency of the semi-dry system
is unparalleled. Villanueva’s laboratory has successfully used isopropanol in Towbin’s
transfer buffer [19]. Ghanshyam et al. tried to reduce the concentration of methanol.
Their results suggested that methanol in electrotransfer buffer had little to no effect on
large protein signals. However, a lower concentration of methanol (10%) was sufficient
to produce a maximal signal for proteins with small or medium molecular weights [20].
Our research confirmed that ethanol is also reasonable for proteins with small or medium
molecular weights. Proteins were efficiently transferred to both NC and PVDF membranes
using an ethanol-based electrotransfer buffer. In addition, adding SDS increased the
electrotransfer efficiency [21].

Garic et al. developed an electrotransfer buffer (48 mM Tris, 20 mM HEPES, 1.3 mM
NaHSO3, 1.0 mM EDTA, and 1.3 mM N, N-dimethylformamide) that could be used to
complete the electrotransfer in 12 min. NaHSO3 compensates for the lack of SDS by acting as
a reducing agent, enhances the solubility of large proteins, and acts as a scavenger for free
radicals produced by HEPES and HEPPS/EPPS. Furthermore, EDTA indirectly stabilizes
piperazine-ring-containing buffers and chelates metal ions. N, N-dimethylformamide acts as
a chaotropic agent [22]. Subsequently, Grogery and colleagues filed a patent (US9989493B2)
for a rapid electrotransfer buffer (336 mM Tris, 260 mM Glycine, 140 mM Tricine, and 2.5 mM
EDTA) that could transfer 10-300 kDa proteins in 5–10 min. This rapid electrotransfer buffer,
which is 10 times the ionic strength of traditional transfer buffer, generates considerable heat.
Therefore, adding 20% ethanol is effective in dissipating heat.

Interestingly, the pre-stained protein marker could not truly reflect whether the protein
was transferred to the 0.45 µm PVDF membrane or not. In the semi-dry system, dye can
be transferred to the 0.45 µm PVDF membrane and the lower filter paper simultaneously
within 5 min, but almost no protein is transferred to 0.45 µm PVDF membrane. In fact,
pre-stained protein markers are mixtures of purified proteins and dyes, which may separate
when exposed to an electric field. Hence, whether proteins are transferred to membranes is
time-dependent.

Hitherto, academia has still been unable to reconcile the transfer problems of pro-
teins with different molecular weights. Small-molecular-weight proteins move faster than
large-molecular-weight proteins, which leads to an asynchronous transfer. The traditional
practice transfers proteins of large and small molecular weight separately. In-depth discus-
sions of the reason for this are still taking place. The 0.45 µm PVDF membrane may have a
weak retention of fast-moving small-molecular-weight proteins, which can easily penetrate
the membrane. Karey et al. reported that using 0.5% glutaraldehyde for the detection of
low-molecular-weight acidic and basic isoelectric point proteins increased sensitivity by
1.5-12-fold in immunoblotting [23]. Jing and colleagues proposed that organic solvents and
heating substantially avoided the loss of protein signals [24]. Taken together, their methods
could lower the detection threshold by enhancing protein binding to membranes. However,
the signal enhancement of this fixation method can only be limited to the detection of
proteins with a certain molecular weight span. Thus, we propose the following solutions:
1. Reduce the voltage and prolong the electrotransfer time. When the electric field force and
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the resistance of the PVDF membrane (mechanical resistance and electrostatic force) reach a
balance, the protein will not move directionally. 2. Use multiple 0.45 µm PVDF membranes
to intercept the transferred protein. When the protein transferred the first 0.45 µm PVDF
membrane, the second membrane intercepted the first transferred small-molecular-weight
protein within a certain period of time. 3. Reducing the pore size of the PVDF membrane
means increasing the resistance. If a 0.22 µm PVDF membrane is used, an extended block-
ing time may solve the problem of a deep background. However, these solutions can only
improve the ability to retain proteins with different molecular weights to a certain extent.
Increasing membrane thickness or the stacking of membranes with different pore sizes may
provide some new ideas.

The problem that the reference protein and the target protein are not visualized on the
same membrane is an inherent defect of immunoblotting. Without the reference protein,
these trends can be manipulated at will. Of course, the most effective way is to incubate
the same membrane after the primary antibody stripping. However, protein- or antibody-
binding properties vary, so stripping conditions need to be explored, which undoubtedly
consumes time and effort. This problem can be partly solved using the photography we
proposed above. In addition, whole-cell proteins that can be used as reference proteins
include GAPDH (37 kDa), Actin (42 kDa), α-Tubulin (50 kDa), β-Tubulin (55 kDa), and
HSP90 (90 kDa) [25,26]. When target proteins of different molecular weight needs are cut
on the same membrane, the reference protein can be cut in other uncut regions to ensure
that each membrane has a reference protein.

Blocking is an effective way to improve the signal-to-noise ratio. Skim milk needs to
be prepared immediately because the solution deteriorates rapidly and disguises some
primary antibodies. Other substances, such as bovine serum albumin, fish gelatin, and
Tween-20, do not make the blocking time shorter [27]. Previous studies found that soymilk
is an inexpensive alternative to the commercially available rapid blocking reagent [28].
However, it also possesses the drawback of not being suitable for long-term preservation.
PVP-40, which has the properties of nontoxicity and biocompatibility, was reported as a
blocking reagent as early as 30 years ago [29]. Cui reported that PVP has the advantage of no
or very-low autofluorescence in any of the detection channels. However, it is less effective at
blocking non-specific bands [30]. Through a series of time-gradient comparisons, we found
that PVP-40 had a good blocking effect even over a short time period. The commercial
blocking reagents may not offer a cost-effective advantage, as is shown in Figure 1D.

4. Conclusions

We substantially modified the key steps of immunoblotting. First, the simplified gel
preparation scheme dramatically increases speed and reduces the chance of failure. Sec-
ond, the modified electrophoresis buffer formula drastically reduces the time taken while
rivalling the traditional formula. Third, replacing methanol with ethanol in the electrotrans-
fer buffer significantly reduces the exposure of laboratory operators to hazardous gases.
Finally, PVP-40 achieves similar results while compensating for the shortcomings of skim
milk. Compared with the traditional protocol, our standard experimental process improved
efficiency by almost four-fold. Our modifications show that even low-quality antibodies
can be visualized normally. If the primary antibody is incubated with the membrane at
room temperature, the experiment can be completed within one day.

5. Materials and Methods
5.1. Reagents

Radio Immunoprecipitation Assay Lysis Buffer (RIPA, Servicebio, Wuhan, China),
cocktail 100× (100 M PMSF (Beyotime, Shanghai, China), 1 mg/mL leupeptin (Beyotime,
Shanghai, China), 1 mg/mL astatin (Beyotime, Shanghai, China)), loading buffer 5× ((1 M
Tris 1.25 mL, sodium dodecyl sulfate (SDS) 0.5 g, bromophenol blue 25 mg, 100% glycerol
2.5 mL, β-mercaptoethanol 250 µL) add deionized water to 10 mL), 30% Acr-Bis (acry-
lamide: bisacrylamide = 29:1), ammonium persulfate (AP, Servicebio, Wuhan, China),
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tetramethylethylenediamine (TEMED, Servicebio, Wuhan, China), glycine (Biosharp, Bei-
jing, China), Tris (Biosharp, Beijing, China), and 2-[4-(2-hydroxyethyl)piperazin-1-yl]
ethanesulfonic acid (HEPES, Biofroxx, Einhausen, Germany). Primary antibodies: Cy-
tochrome C (CyC, 12 KDa, Genetex, Irvine, CA, USA, 1:1000), CD81 (exosome membrane
marker, 26 KDa, Abmart, Shanghai, China, 1:1000), Rab27a (exosome secretion-related
protein, 28 kDa, Servicebio, Wuhan, China, 1:1000), GAPDH (Glyceraldehyde-3-Phosphate
Dehydrogenase, 36 KDa, Servicebio, Wuhan, China, 1:1000), TSG101 (Tumor Suscepti-
bility Gene 101 Protein, 46 kDa, Servicebio, Wuhan, China, 1:1000), KCa3.1 (Potassium
Calcium-Activated Channel Subfamily N Member 4, 48 kDa, Proteintech, Wuhan, China,
1:1000), AKT (AKT Serine/Threonine Kinase 1, 60 kDa, Servicebio, Wuhan, China, 1:1000),
and PINK (PTEN-Induced Putative Kinase Protein, 63 kDa, Genetex, Irvine, CA, USA,
1:1000). Secondary horseradish peroxidase-conjugated antibody (Proteintech, Wuhan,
China, 1:3000), pre-stained protein marker (ThermoFisher, Boston, MA, USA, 26616),
0.22 µm and 0.45 µm polyvinylidene fluoride membrane (PVDF, Millipore, Burlington,
MA, USA), 0.45 µm nitrocellulose membrane (NC, Millipore, Burlington, MA, USA), PBS
(Biosharp, Beijing, China), Tween-20 (Servicebio, Wuhan, China), and ECL Chemilumines-
cence Kit (Servicebio, Wuhan, China).

5.2. Tissue Lysates

This study was approved by the Animal Studies Subcommittee of our Institutional Re-
view Board. We extracted proteins from 30 mg of C57BL/6J mouse myocardial tissue, adding
800 µL RIPA and 100× cocktail. Then, the tissue was ground twice (JingXin, shanghai, China;
10 Hz, 45 s) and lysed on ice for 10 min. The tissue suspension was centrifuged at 12,000 g for
20 min and the sediment was discarded. The protein concentration was determined by a BCA
Protein Assay Kit (Aspen, Wuhan, China), according to the manufacturer’s instructions. The
sample was added to 5× loading buffer and boiled at 100 ◦C for 10 min.

5.3. Standard Experimental Procedure

A total of 30 µg per well of total protein was separated by quick gel (Mini Gel).
Electrophoresis was performed with the modified electrophoresis running buffer at 200 V
for 35 min (Mini-PROTEAN Tetra Cell Systems, Bio-Rad, Los Angeles, CA, USA). Then,
proteins were transferred to a 0.45 µm PVDF membrane with ethanol-based electrotransfer
buffer with SDS for 25 min (Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell, Bio-Rad,
Los Angeles, CA, USA) and blocked with PVP-40 for 10 min. Subsequently, the membrane
was incubated with the primary antibody overnight at 4 ◦C. The membrane was then
rinsed three times in PBST. Membranes were incubated with the corresponding secondary
antibodies at room temperature for 1 h, rinsed three times with PBST, and then developed
(ChemiDoc XRS System, Bio-Rad, Los Angeles, CA, USA).

5.4. Analysis of Signal Intensities

The signal intensity of the protein bands was measured and compared using Image
Lab (Bio-Rad, Hercules, CA, USA) and GraphPad Prism 8.0 (GraphPad Software, Boston,
MA, USA). The density volume within each protein band was measured as intensity/mm2.
All values are means ± S.E.
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