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Abstract: In order to improve the understanding of hydrodynamic performances of spar-type Floating
Offshore Wind Turbines (FOWTs), in particular the effect of wave-current-structure interaction,
a moored 6MW spar-type FOWT in regular waves and uniform current is considered. The wind
loads are not considered at this stage. We apply the potential-flow theory and perturbation method
to solve the weakly-nonlinear problem up to the second order. Unlike the conventional formulations
in the inertial frame of reference, which involve higher derivatives on the body surface, the present
method based on the perturbation method in the non-inertial body-fixed coordinate system can
potentially avoid theoretical inconsistency at sharp edges and associated numerical difficulties.
A cubic Boundary Element Method (BEM) is employed to solve the resulting boundary-value
problems (BVPs) in the time domain. The convective terms in the free-surface conditions are dealt
with using a newly developed conditionally stable explicit scheme, which is an approximation of
the implicit Crank–Nicolson scheme. The numerical model is firstly verified against three reference
cases, where benchmark results are available, showing excellent agreement. Numerical results
are also compared with a recent model test, with a fairly good agreement though differences are
witnessed. Drag loads based on Morison’s equation and relative velocities are also applied to quantify
the influence of the viscous loads. To account for nonlinear restoring forces from the mooring
system, a catenary line model is implemented and coupled with the time-domain hydrodynamic
solver. For the considered spar-type FOWT in regular-wave and current conditions, the current
has non-negligible effects on the motions at low frequencies, and a strong influence on the mean
wave-drift forces. The second-order sum-frequency responses are found to be negligibly small
compared with their corresponding linear components. The viscous drag loads do not show a strong
influence on the motions responses, while their contribution to the wave-drift forces being notable,
which increases with increasing wave steepness.

Keywords: spar-type floating offshore wind turbine; second-order theory; higher-order boundary
element method; wave-current-body interaction

1. Introduction

As abundant reserves of renewable wind energy resources are available at offshore sites where
water depths are not small, different concepts of Floating Offshore Wind Turbines (FOWTs) have been
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proposed as cost-efficient alternatives to bottom-mounted wind turbines that are being commonly
used in the shallow water regions. Significant progress has been made in the preliminary design
and verification of FOWTs in recent years [1–7]. Inspired by the experiences and practice of offshore
engineering, different floating support platforms have been proposed for the offshore-wind industry,
including: the semisubmersibles, Tension Leg Platforms (TLPs), and spar buoys. Among others,
FOWTs that have been widely studied experimentally or theoretically include OC4-DeepCwind
semisubmersible platform [3,8,9], UMaine TLP [10,11], OC3-Hywind spar buoy, [5,12–15], etc.

FOWT is a complex coupled system involving aerodynamics, hydrodynamics, structural elasticity,
and the control system. For the hydrodynamic loads, experiences from offshore engineering show
that the 2nd-order hydrodynamic effects usually play an important role in analyzing the dynamic
responses of marine structures [16,17]. The 2nd-order wave loads consist of an average component,
i.e., mean-drift force, as well as sum-frequency (SF) and difference-frequency (DF) loads. The latter two
components may excite the resonant responses of the structures since the oscillatory frequencies of these
2nd-order components may be close to certain natural frequencies of the structures, even though the
natural frequencies are intentionally designed to be away from the wave frequencies where significant
wave energy exists. Examples are slow-drift motions of compliant floating structures excited by the
DF wave loads, and springing of TLPs excited by the SF wave loads. The significance of 2nd-order
SF and DF wave loads on the dynamic response of FOWTs has been reported and discussed in the
literature for spar-type FOWTs [5,18,19], semisubmersible FOWTs [20–22], and TLP FOWTs [18,23–25].

Even though the spar-type FOWT concept has its own limitations, for instance, it cannot be used
at small water depths due to its deep draft, it has excellent stability and hydrodynamic properties.
In general, a spar-type FOWT has smaller heave motions in contrast to semi-submersibles owing to
their deep draft and reduced vertical wave excitation forces. Compared with TLPs, it has preferable
stability due to a low gravity center.

The effects of 2nd-order wave excitation loads on the dynamic responses of spar-type FOWTs
have been investigated in previous studies. Close to the natural frequencies of the OC3-Spar FOWT,
Browning et al. [5] noticed that the second harmonics of the dynamic response observed in model
tests are larger than the numerical results of a FAST model [26], which only includes the linear
wave loads through the hydrodynamic coefficients calculated in its HydroDyn module. FAST is
one of the commonly-used time-domain simulation tools for coupled dynamic analysis of wind
turbines, developed by NREL. Roald et al. [18] used WAMIT to calculate the linear and 2nd-order
hydrodynamic coefficients, and FAST to simulate the dynamic responses of OC3-Hywind Spar in the
time domain. Both Newman’s approximation and the full Quadratic Transfer function (QTF) method
have been applied. It was found that resonant motions are excited by the 2nd-order wave loads,
especially for the heave motion even though the 2nd-order excitation loads are significantly small.
From a practical point of view, it is convenient to use such a model in design of FOWTs, where the
2nd-order wave-load effects cannot be neglected [22,27]. The time-domain model in FAST is based on a
Cummins-type of equations used for retardation functions so that the memory effects are also included.
In addition, extra damping (e.g., viscous damping) or restoring forces from, for instance, the mooring
system, can be included through the time-domain motion equations. However, the limitation of
this type of hybrid method, combining a frequency-domain code (e.g., WAMIT or similar) and a
time-domain tool like FAST, is obvious as well. It is not straightforward to include the viscous effects
in a frequency-domain analysis, in particular when the calculated hydrodynamic coefficients will be
used as inputs to the time-domain models to simulate the dynamic responses of FOWTs in irregular
waves. A frequency-domain model without appropriate modeling of viscous effects may produce
non-physically large resonant motions, and thus yields wrong QTFs for the 2nd-order wave loads. If an
equivalent linear damping is introduced in the frequency-domain analysis to represent the nonlinear
damping through e.g., the drag forces, seastate-dependent damping should be considered, using for
instance stochastic linearization [28–30], which, however, also needs careful calibration towards the
models tests.
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Solving the hydrodynamic boundary-value problems (BVPs) directly in the time domain offers
the possibility to simultaneously compute the potential-flow induced wave loads and the viscous loads
through empirical formulae, e.g., drag term in the Morison-type of equations, without having to make
equivalent linearization. Such direct time-domain models have already been developed up to the 2nd
order with success. Examples are Shao [31] using a cubic BEM based on piece-wise shape functions,
Bai and Teng [32] using a spline-based BEM and Duan et al. [33] using a Taylor-expanded BEM.

The majority of direct time-domain 2nd-order models reported in the literature ignore the forward
speed or current effects. However, the current speeds at the offshore sites may not be negligible,
in particular for FOWT applications where the characteristic cross-section dimensions are small. As it
will be shown later, the radius-based Froude number may reach 0.2 for the considered 6MW spar-type
FOWT foundation using a typical current speed of around 1.4 m/s. Therefore, it is of great interest to
look into the wave–current–structure interaction and investigate the current effects.

To the best of the authors’ knowledge in the available literature, there are very few attempts to
consistently take account of the forward speed or current effects in the 2nd-order models. Based on
body-fixed coordinate system, an alternative formulation of the seakeeping problem has been
developed by Shao and Faltinsen [34–36] up to the 2nd order with the consideration of forward speed.
This formulation does not involve any higher derivatives on the body surface. It also mathematically
avoids the inconsistencies that a traditional formulation in an earth-fixed coordinate system has.
To overcome the difficulties of the traditional formulation when the expansion parameter is not small,
Teng et al. [37] proposed a twice-expansion method to study the wave–structure interaction problems,
allowing for large horizontal motions of the structures.

In the present study, the complete 2nd-order time-domain model of Shao and Faltinsen [34–36]
is extended to study moored floating structures in waves and current. To the best of our knowledge,
it is the first time in the literature that a complete and consistent 2nd-order model is used for FOWT
applications. Furthermore, a conditionally stable explicit time-integration scheme, recently proposed by
Shao [38] for advection equations, is employed to stabilize the solution and reduce the computational
costs. The scheme is obtained through an approximation of the unconditionally stable implicit
Crank–Nicolson scheme. To avoid drifting of the structures, a catenary line model is implemented and
coupled with the time-domain hydrodynamic solver.

Theoretically, the present model is more advanced than the existing state-of-the-art open-source
or commercial hydrodynamic solvers based on perturbation schemes, for example, the WASIM solver
from DNVGL SESAM software package or others alike. WASIM is a popularly used commercial
time-domain seakeeping code with forward speed effect. However, it does not solve a 2nd-order
wave–structure interaction problem. In other words, it does not provide complete 2nd-order SF and
DF wave loads. Other hybrid time-domain solvers, e.g., the SIMO solver in SESAM, which takes
frequency-domain linear and 2nd-order transfer functions as inputs, do not however consistently
consider the wave–current–structure interaction. On the contrary, the present model is a complete
2nd-order wave–structure model, consistently taking into account the current or forward speed effect.
Since we use a potential-flow approach, the drag loads can only be approximated empirically through
e.g., the drag term in Morison’s equation, as it will be presented later in Section 3.3. In principle,
a wind-load model based on e.g., blade element method, could also be included, which will be
considered in our future studies.

The hydrodynamic performance of a 6 MW spar-type FOWT in waves and current is studied
after the verification of the numerical model. The rest of the paper is organized as follows: Section 2
presents the theoretical formulation, followed by the description of the numerical model in Section 3.
The numerical model will be verified in Section 4. In Section 5, we present the numerical studies
on the 6 MW spar-type FOWT. Finally, conclusions will be summarized in Section 6 together with
future perspectives.
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2. Theoretical Description

2.1. Definition and Governing Equation

It is assumed that the fluid is inviscid and incompressible, and flow is irrotational so that a
velocity potential exists. Then, the motion of fluid particle can be described by the velocity potential,
which satisfies the governing equation, i.e., the Laplace equation:

∇2φ = 0. (1)

To describe the BVPs in the presence of a steady forward speed or a uniform current in this
section, three right-handed Cartesian coordinate systems are defined, as shown in Figure 1. The three
reference frames consist of two inertial coordinate systems: an Earth-fixed coordinate system OeXeYeZe,
an inertial coordinate OXYZ moving with the body at steady or slowly-varying velocities, and a
non-inertial body-fixed coordinate system oxyz. The oxyz coordinate system moves with not only the
steady velocities but also the unsteady wave-frequency rigid-body motions of the body in six degrees
of freedom (DOFs). OeXeYeZe has its XeYe plane at the still water level and the OeZe axis positive
upwards. The XY plane coincides with the XeYe plane and the OZ axis is parallel to the OeZe axis.
An incident wave angle of 0◦ is defined to be parallel to OeXe indicating the orientation of the OeXe

axis. In addition, all the three coordinate systems coincide with each other when the body is at its
initial static-equilibrium position. It should be noted that OXYZ and oxyz are crucial in formulating
the BVPs in the presence of steady or slowly-varying velocities in the body-fixed reference frame,
while OeXeYeZe is mainly utilized for the description of incident wave characteristics.

Xe

Ze

Oe

Ye

Z

O

Y X

Figure 1. Definition of three coordinate systems: OeXeYeZe, OXYZ and oxyz.

For a floating body undergoing unsteady motions in 6 DOFs, oxyz attached to the body instantly
moves from the equilibrium position of the structure, and the translatory and angular deviation
between OXYZ and oxyz can be expressed by a transformation matrix. Following the rotation in
sequence of Z-, X-, Y-axes, the transformation can be expressed as:

Rb→i =

 C6C5 C6S5S4 − S6C4 C6S5C4 + S6S4

S6C5 S6S5C4 + C6S4 S6S5C4 − C6S4

−S5 C5S4 C5C4

 (2)

where subscripts ‘b’ and ‘i’ represent the body-fixed reference frame oxyz and the inertial reference
frame OXYZ, respectively. C and S denote the sine and cosine functions, respectively, and ‘4’, ‘5’, and
‘6’ indicate the angle of rotation about x- , y-, and z-axes, respectively. Two explanations are given for
Equation (2) according to Ogilvie [16]. One is that it describes the coordinate transformation from the
reference frame oxyz to OXYZ. The other explanation depicts change of one vector into another in the



Fluids 2020, 5, 187 5 of 28

same reference frame. If we consider the inverse coordinate transformation, i.e., i→ b, the coordinate
transformation can be obtained followingRi→b = R−1

b→i.
By assuming that the unsteady wave-frequency motions of the body are asymptotically small

compared to the characteristic dimensions of the structure, the perturbation method can be applied to
body motions. Therefore, the transformation matrix in Equation (2) consists of several components in
different orders as follows:

Rb→i = I +R
(1)
b→i +R

(2)
b→i, (3)

where I is an identity matrix, representing the zero-order quantity. The superscripts ‘(1)’ and ‘(2)’
indicate the 1st- and 2nd-order quantities, respectively. R(1)

b→i andR(2)
b→i are given by

R(1)
b→i =

 0 −α
(1)
6 α

(1)
5

α
(1)
6 0 −α

(1)
4

−α
(1)
5 α

(1)
4 0

 , (4)

and

R(2)
b→i =

 0 −α
(2)
6 α

(2)
5

α
(2)
6 0 −α

(2)
4

−α
(2)
5 α

(2)
4 0



+


− 1

2

[(
α
(1)
5

)2
+
(

α
(1)
6

)2
]

α
(1)
4 α

(1)
5 α

(1)
4 α

(1)
6

0 − 1
2

[(
α
(1)
4

)2
+
(

α
(1)
6

)2
]

α
(1)
5 α

(1)
6

0 0 − 1
2

[(
α
(1)
4

)2
+
(

α
(1)
5

)2
]

.

(5)

In the traditional method formulating BVPs in the OXYZ reference frame, perturbation expansion
and Taylor expansion are introduced to derive the boundary conditions on the mean free surface and
the mean body surface. A defect of the traditional method that should be noted anyhow is that the
introduction of perturbation expansion assumes that the free-surface elevation η and body motions
are asymptotically small relative to the wave steepness ε. However, this assumption does not hold
in some occasions, for example: large resonant slow-drift motions may be significantly larger than
the 1st-order unsteady wave-frequency motions of the body. To resolve this issue, BVPs formulated
and solved in the body-fixed coordinate system were proposed by Shao and Faltinsen [34–36] and
have been successfully applied in the 2nd-order hydrodynamic problems. In terms of computational
efficiency, the formulation in the body-fixed coordinate system shares the same merit as the traditional
perturbation method. It means that the resulting influence matrices need only to be set up and
factorized for once, since the computational boundaries do not change with time, which can greatly
save computational time.

2.2. Formulation in a Body-Fixed Coordinate System

The BVPs formulated in the body-fixed coordinate system are now considered. According to
Faltinsen and Timokha [39], the fully-nonlinear kinematic and dynamic free-surface conditions in the
presence of a forward speed are

ηt = φz − ∇̄φ · ∇̄η −
(
U + V′ + Ω′ × r′

)
·
(
−ηx,−ηy, 1

)
on z = η(x, y, t), (6)

φt = −
1
2
∇φ · ∇φ +

(
U + V′ + Ω′ × r′

)
· ∇φ−Ug on z = η(x, y, t). (7)

where U = (U−Ωy)i+(V +Ωx)j+ 0k, with U, V, Ω as the steady or slowly-varying surge, sway and
yaw velocities in the horizontal plane, respectively. V′ and Ω′ are the translatory and angular velocities
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of dynamic body motions, defined as V′ =
(

ξ̇1
′, ξ̇ ′2, ξ̇ ′3

)
and Ω′ =

(
α̇′4, α̇′5, α̇′6

)
, respectively. r′ is

the position vector of a point on free surface. ∇ and ∇̄ are the gradient operators, defined as ∇ =

(∂/∂x) i + (∂/∂y) j + (∂/∂z) k , and ∇̄ = (∂/∂x) i + (∂/∂y) j, respectively. Ug is the gravitational
potential of a point on the instantaneous free surface described in the body-fixed coordinate system.
Note that all vectors in Equations (6) and (7) are defined in the reference frame oxyz.

In addition, with the application of the body-fixed reference frame, the total free-surface elevation
observed in the body-fixed coordinate system can be decomposed into two components for the
convenience of numerical implementation: η̃ directly solved from time-domain BVPs and η̄ due to the
unsteady wave frequency motions of the body. The sketch of the free-surface elevation is presented in
Figure 2 and the total free-surface elevation can be expressed as

η = η̃ + η̄ + O(ε3). (8)

X

Z

O

X

Z

O

X

Z

O

P Free surface elevation

x

zo

y

Figure 2. Definition of the free-surface elevations observed in OXYZ and oxyz systems.

The fully-nonlinear free-surface conditions (6) and (7) can be approximated to the 2nd order
through perturbation expansion and Taylor expansion with respect to oxy plane in the body-fixed
coordinate system oxyz. Thus, the kinematic and dynamic free-surface conditions become:(

∂

∂t
−
(

W′(0) − ∇̄φ(0)
)
· ∇̄
)

φ(k) = f (k) on z = 0, (9)

and (
∂

∂t
−
(

W′(0) − ∇̄φ(0)
)
· ∇̄
)

η̃(k) = g(k) on z = 0, (10)

where the superscript (k), k = 1, 2 denotes the solution order. The free-surface boundary conditions at
each order now only depend on the forcing terms f (k) and g(k) in Equations (9) and (10):

f (1) = −gη̃(1) +
[(

χ′(1) + W′(1)
)
· ∇φ(0)

]
, (11)

f (2) = −gη̃(2) − η(1)φ
(1)
tz −

1
2
∇φ(1) · ∇φ(1) − η(1)

(
∇φ

(1)
z · ∇φ(0) +∇φ

(0)
z · ∇φ(1)

)
+ η(1)W′(0) · ∇φ

(1)
z +

(
χ′(2) + W′(2)

)
· ∇φ(0) +

(
χ′(1) + W′(1)

)
· ∇φ(1)

+ η(1)
(

χ′(1) + W′(1)
)
· ∇φ

(0)
z ,

(12)

g(1) = φ
(1)
z + η̃(1)φ

(0)
zz +

[
η̄(1)φ

(0)
zz − ∇̄φ(0) · ∇̄η̄(1)

]
, (13)
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g(2) = φ
(2)
z + η(2)φ

(0)
zz + η(1)φ

(1)
zz +

(
W′(0) − ∇̄φ(0)

)
· ∇̄η̄(2) − ∇̄φ(1) · ∇̄η(1)

+ W′(1) · ∇̄η̄(1) −W′(2)3 + χ′(1) · ∇̄η̃(1),
(14)

where W′(0) = U is the steady forward speed or current observed on a horizontal plane and W′(k)(k =

1, 2) is the k-th order component induced by the coordinate transformation of W′(0) according to
W′(k) = Ri→bW′(0). χ′(k) with k = 1, 2 is the velocity representation of any point on the mean free
surface induced by the rigid-body motions in the body-fixed coordinate system, which can be written as

χ′(k) = V′(k) + Ṙ(k)
b→ir

′, k = 1, 2, (15)

where an overdot means the time differentiation. Here, r′ = (x, y, 0) is a point on the Oxy-plane.
The free-surface conditions are time-integrated to update the velocity potential and free-surface
elevation at each time step. Detailed derivation of Equations (9)–(14) can be referred to Shao [40].

The impermeable body-boundary condition requires

∂φ

∂n
=
(
W′ + V′ + Ω′ × r′

)
· n on SB,i, (16)

where SB,i is the instantaneous body surface. n is the normal vector on SB,i, defined as positive pointing
out of the fluid domain. All vectors are defined in oxyz.

Different from a formulation in the Earth-fixed coordinate system, no Taylor expansion is needed
when satisfying the body boundary conditions in a body-fixed coordinate system, and thus the 1st-
and 2nd-order body boundary conditions do not contain any higher derivatives. They are expressed as

∂φ(0)

∂n
= n ·W′(0), on SB, (17)

and
∂φ(k)

∂n
= n ·

(
V′(k) + Ω′(k) × r′ + W′(k)

)
, k = 1, 2, on SB. (18)

where SB denotes the mean wetted body surface.
In this study, the 0-th order solution is obtained by considering a so-called double body flow

module, thus a rigid-wall free surface condition is assumed for 0-th order solution.
Higher derivatives of velocity potential and free-surface elevation are still needed for calculation

in Equations (11)–(14), which is a non-trivial task if high accuracy is pursued. Thus, a 12-node cubic
BEM will be employed in the calculation of these higher-order derivatives. A higher-order method is
normally preferred in this regard, as it requires less unknowns to achieve the same accuracy compared
with a low-order method.

3. Numerical Model

3.1. Cubic Elements and Calculation of Spatial Derivatives

In the present study, a 12-node cubic boundary element method is adopted for the spatial
discretization of the boundaries of the fluid domain. An example of 12-node cubic patch is exhibited
in Figure 3, illustrating its representation in both the physical plane and parametric plane. With the
adoption of 12-node patches, the geometry of the boundaries and physical parameters, for instance,
the velocity potential, its normal derivatives, etc., can be obtained via the interpolation of values on
the 12 nodes on the patch

[x, y, z] =
12

∑
j=1

Nj (ξ, η) [xj, yj, zj], (19)
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φ =
12

∑
j=1

Nj (ξ, η) φj, (20)

where Nj(ξ, η) with j = 1, 2, ..., 12 are the cubic shape functions. The first and second derivatives can
be approximated with the assistance of the cubic shape functions as φx

φy

φz

 =

 xξ yξ zξ

xη yη zη

n1 n2 n3


−1  φξ

φη

φn

 (21)



φxx

φxy

φxz

φyy

φyz

φzz


= [S]−1



φxξ

φxη

φyξ

φyη

φzξ

φzη


=
{
STS

}−1
ST



φxξ

φxη

φyξ

φyη

φzξ

φzη


(22)

Here, a single subscript means the first derivative, while double subscripts indicate second
derivatives. The matrix S is given as

S =



xξ yξ zξ 0 0
xη yη zη 0 0
0 xξ 0 yξ zξ

0 xη 0 yη zη

−zξ 0 xξ −zξ yξ

−zη 0 xη −zη yη


(23)

1
2 3

4

5

6

789

10

11

12

ξ

η

1 2 3 4

5

6

78910

11

12

(a) Physical plane

1
2 3

4

5

6

789

10

11

12

ξ

η

1 2 3 4

5

6

78910

11

12

(b) Parametric plane

Figure 3. Representation of 12-node cubic patch in physical plane and parametric plane.

3.2. Catenary Mooring Line Model

A mooring system is normally required to provide sufficient restoring loads to avoid
large-amplitude horizontal motions so that the floating structures can remain in an acceptable position
when encountering ocean waves and current. Generally, larger motions are observed for the spar
platforms in surge and sway, compared with other modes, which means the design of the mooring
system is mainly about the station-keeping of the spar-type FOWTs in the horizontal plane. To account
for the restoring of the mooring system, we will use a highly simplified quasi-static approach, namely
the catenary mooring line model. Therefore, among others, the following assumptions as summarized
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in Feng et al. [41] are implied: (1) The mooring line moves very slowly such that the drag forces and
inertial forces are negligible; (2) The environmental loads on the mooring line are insignificant and can
be excluded in the model; (3) The anchor point does not move in any directions. (4) The mooring line
is lying on a horizontal seabed so that the sloping seabed effects are neglected.

For a floating structure moored by catenary lines, the catenary equations can be expressed as

X = l − h
(

1 +
2a
h

) 1
2
+ a cosh−1

(
1 +

h
a

)
, (24)

and
T = TH + wh. (25)

Here, TH is the horizontal tension on the catenary mooring line. w is the catenary weight per unit
length in water. a is catenary parameter given by a = TH/w. X and h denote the horizontal and
vertical distances between the anchor and the fairlead, where X can be expressed as X = l − ls + x.
l and ls are the length of the mooring line from the fairlead to the anchor point and from the fairlead
to the touchdown point, respectively. x is the horizontal distance between the fairlead and the
touchdown point.

With extensional stiffness considered, TH can be explicitly expressed as

TH =

T2
z −

(
wh− 1

2
w2

EA
l2
s

)2

2
(

wh− 1
2

w2

EA
l2
s

) , (26)

with EA and Tz representing the extensional stiffness and vertical tension of the mooring
line, respectively.

A sketch of a catenary mooring line model in two dimensions is presented in Figure 4 for better
illustration. Detailed discussion on the catenary model can be found in Faltinsen [42]. The restoring
forces and moments through TH will be applied on the right-hand side of the motion equations, as a
component of the forces acting on the structure.

Fairlead

Anchor point

h

Touchdown point

Wave & Current

ls
l

x

Floating 

body

Figure 4. Sketch of catenary mooring line model in the 2D plane.

3.3. Viscous Drag Loads

To investigate the importance of the viscous effects on the spar-type FOWT, we will also include
the drag loads through Morison’s equation. The inertia term in the Morison’s equation is not used,
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as its effect has been modeled more accurately through the hydrodynamic solver. Assuming a small
variation of the wetted body surface due to body motions and waves, the viscous drag forces and
moments acting on the spar platform based on Morison’s equation can be approximated as

Fdrag,i(t) =
1
2

ρ
∫ 0

−d
CDD(z) [va,i − vb,i] ‖va − vb‖dz,

+
1
2

ρCDD(z = 0)ηr [va,i − vb,i]z=0 ‖va − vb‖z=0 + O(ε4), i = 1, 2,
(27)

Mdrag,i(t) =
1
2

ρ
∫ 0

−d
CDD(z)(z− zg) [va,i − vb,i] ‖va − vb‖dz,

− 1
2

ρCDD(z = 0)zg [va,i − vb,i]z=0 ‖va − vb‖z=0 + O(ε4), i = 4, 5,
(28)

where i, with i = 1, 2, 4, 5, denotes the mode of the unsteady motion. z and zg are the vertical position
on the spar buoy and center of gravity, respectively. ρ is the water density. D(z) is the cross-sectional
diameter of the spar platform at different vertical position. CD the viscous-drag coefficient, which in
principal depends on multiple factors, including the Reynolds number, KC number, and surface
roughness. As a rough approximation, CD = 1.2 will be applied in this work. va(z) and vb(z) are
the ambient-flow velocity and rigid-body velocity. va,i(z), i = 1, 2, is the horizontal component of the
ambient flow velocity. vb,i(z), i = 1, 2, is the horizontal component of the rigid-body velocity. ηr is the
relative wave elevation at the waterline, contributed by the incident wave and rigid-body motion.

The first terms in Equations (27) and (28) are 2nd order in wave steepness. The second terms are
3rd order, obtained as a consequence of a Taylor expansion from mean waterline to instantaneous
incident-wave free surface. Since the scatter wave elevation is ignored in Equations (27) and (28),
they are more applicable for longer waves where the spar-type FOWT has weak wave scattering effects.
It should be noted that we will only apply the quadratic terms in Equations (27) and (28) when solving
the body motions, as they are leading-order terms in the drag loads. However, the 3rd-order terms
should also be used in the evaluation of the drag-included mean-drift forces.

3.4. Potential-Flow Induced Forces/Moments

A near-field method based on direct pressure integration over the wetted body surface is
employed for the calculation of potential-flow induced wave loads. To formulate Bernoulli’s equation
in a body-fixed coordinate system, the Eulerian time derivative should be replaced using the
following relationship:

∂

∂t

∣∣∣∣
OXYZ

=
∂

∂t

∣∣∣∣
oxyz
− vb · ∇, (29)

where vb is the rigid-body velocity at a point on the body surface. The pressure on the body surface in
body-fixed coordinate system is written as

p = −ρ

{(
∂

∂t

∣∣∣∣
oxyz
−W′ · ∇ − χ′ · ∇

)
φ +

1
2
∇φ · ∇φ + gx3 + gz

}
, (30)

where x3 is the vertical displacement due to rigid-body motions.
By introducing series expansion in Equation (30) and collecting terms at same order, we can obtain

the pressure p(0), p(1) and p(2) as follows:

p(0) = −ρ

{
gz−W′(0) · ∇φ(0) +

1
2
∇φ(0) · ∇φ(0)

}
, (31)
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p(1) =− ρ
{

φ
(1)
t −W′(0) · ∇φ(1) −

(
χ′(1) + W′(1) −∇φ(1)

)
· ∇φ(0)

+g
(

ξ
(1)
3 + yα

(1)
4 − xα

(1)
5

)}
,

(32)

p(2) =− ρ
{

φ
(2)
t −W′(0) · ∇φ(2) −

(
χ′(1) + W′(1)

)
· ∇φ(1)

−
(

χ′(2) + W′(2) −∇φ(2)
)
· ∇φ(0)

+
1
2
∇φ(1) · ∇φ(1) + gx(2)3

}
.

(33)

Since no aerodynamics loads on the wind turbine are considered in the present study, only the
following four load components are included: the potential-flow hydrodynamic loads and hydrostatic
restoring loads, the restoring forces supplied by the catenary mooring lines and the viscous-drag forces:

Fg = Fwave + Frestore + Fmoor + Fdrag, (34)

Mg = Mwave + Mrestore + Mmoor + Mdrag, (35)

where the subscripts denote different components of the total force acting on the structure.
Detailed expressions of the potential-flow hydrodynamic loads are included in Appendix A. For the
linear and 2nd-order motions, separate motions of equations based on Newton’s 2nd law will be solved.

3.5. Time Integration of Free-Surface Boundary Conditions

In the presence of forward speed or current, the free-surface conditions will involve advection
terms, for instance, −(W′(0) − ∇̄φ(0)) · ∇̄φ(k) and −(W′(0) − ∇̄φ(0)) · ∇̄η̃(k) in Equations (9) and (10),
respectively. For an advection equation, it is well known that an explicit Euler scheme is
unconditionally unstable if a central difference scheme is applied. On the other hand, an implicit
scheme, which is unconditionally stable, requires the solution of extra matrix equations involving the
unknowns on the free surface. If the amplitude or the direction of the advection velocity varies with
time, e.g., in case of slow-drift motion of a floater or maneuvering of ships, an implicit scheme is very
costly as it requires solving such extra matrix equations at each time step.

To address such difficulty, Shao [38] has proposed a new set of conditionally stable explicit
schemes, which are approximated from implicit schemes, e.g., 1st-order implicit Euler and 2nd-order
Crank–Nicolson schemes. In this paper, we will apply the new explicit scheme approximated from the
Crank–Nicolson scheme, in order to achieve a balance between accuracy and stability. Let’s take the
one-dimensional (1D) advection equation to briefly explain the scheme

φt + uφx = 0, (36)

where φ is a physical quantity, e.g., velocity potential or wave elevation, which is advected by a velocity
u. The details of the derivation of the approximated implicit Euler scheme can be found in Shao [38]
and also in Appendix B of this paper. The derivation for the approximated Crank–Nicolson scheme is
similar, with the final scheme taking the following form:

~φn+1 − ~φn

∆t
=

[Np−1

∑
k=0

(−1)k+1 1
2k ∆tkDk+1

]
~φn + O(∆t), (37)

where ∆t is the time increment. D is the sparse-matrix operator for the spatial derivative, such that

~φx = D~φ. (38)

Here, ~φ is a vector containing the φ values on all the discrete mesh points. ~φn is the Œ vector at
the n-th time step. Np is the number of truncated terms. When Np = 1, the scheme becomes the same
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as the explicit Euler scheme. When Np → ∞, the scheme is exactly the same as the Crank–Nicolson
scheme. In practice, it is found that Np = 3 to 5 is sufficient to provide stable solutions. This has been
demonstrated in [38] by stability analyses.

The explicit scheme in Equation (37) only needs to apply the operator D for Np times, which is
expected to be much more efficient than the corresponding implicit Crank–Nicolson scheme. Note that
Equation (37) is also valid for two and three dimensions, even though we have used the 1D advection
equation for illustration purpose. Taking the dynamic free-surface condition in Equation (9) as an
example, D is a spatial-derivative operator such that

DŒ(k) = −
(

W′(0) − ∇̄φ(0)
)
· ∇̄φ(k). (39)

3.6. Low-Pass Filter Close to the Waterline

In either regular-wave or irregular-wave simulations where short-wave components exist,
one may anticipate weak saw-tooth instability on the water surface in particular near the waterline.
This weak instability is different from a strong instability when an inappropriate time-integration
scheme has been applied. It is a common issue that a similar time-domain model has to deal
with, which fortunately is not very difficult. It is noteworthy that a fine-enough mesh can
theoretically overcome the saw-tooth instability, but the computational cost will be significantly
high. The very fine mesh also means sufficiently small time increment, as we normally need to keep
the Courant–Friedrichs–Lewy (CFL) number smaller than 1.0 when using an explicit time-integration
scheme. If a fixed mesh resolution is to be applied in different analyses, which is the case in the present
and many other practical applications, the use of a weak low-pass filter on the free-surface elements
will be helpful [31,43].

A good low-pass filter is able to suppress the growth of saw-tooth waves, which have wavelengths
twice that of the local grid size. On the other hand, it should have negligible influences on the wave
components that are of practical interest. In general, the low-pass filter on the free surface can be
defined in the following convolution form:

f0 = (1− s) f0 + s
N

∑
j=1

wj f j, (40)

where s ∈ [0, 1] is the strength of the low-pass filter. f0 and f0 represent the original and the filtered
data, respectively. The filter can be applied on both the velocity potential and wave elevation. f j
(j = 1, ..., N) is the value on the j-th neighboring points of the point of interest. wj (j = 1, ..., N) is
the weight coefficient, which in this study is obtained through a least-square fitting of data on the
N + 1 points (N neighboring points plus the point where filter will be applied ) into a weighted sum
of polynomials of different orders. The number of polynomials should be smaller than N + 1 in order
to get an over-determined system, thus be able to act as a low-pass filter. In this paper, three layers of
neighboring points and polynomials up to 5th order will be used. This procedure may be considered
as an extension of the 1D filters of Savitzky and Golay [44], also known as Savitzky–Golay filters
in the literature. The 5th order polynomials used in the construction of the filters are expected to
have negligible effects on waves that a given mesh can resolve, as they have much higher spatial
accuracy than the 3rd polynomials in the cubic boundary elements. In practice, when a current speed
is considered, this mild low-pass filter will be applied no matter if the mesh is too coarse or not to
resolve the short wave components.

4. Verification Cases

Three cases are considered to verify the present numerical model, including free decay of a
truncated vertical cylinder, freely-floating deep-draught spar in regular waves and freely-surging
vertical cylinder with a small forward speed.
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4.1. Free Decay of a Truncated Vertical Cylinder

In this case, two tests including an initial displacement or velocity in the vertical direction specified
for a freely floating truncated vertical cylinder are investigated. The draught is D = 0.5R, with R
the radius of the cylinder. The water depth is H = 3.0R. The amplitude A for the specified initial
displacement and velocity are both 0.1R.

Only a linear radiation problem is solved. In the present time domain simulation, the equations of
motion are solved simultaneously after the boundary conditions updated and BVPs solved each time
step. Hydrodynamic responses including time histories of 1st-order vertical motion and force acting
on the cylinder are depicted in Figures 5 and 6, respectively. Note that the solutions of body motion
and hydrodynamic force are normalized by the initial motion amplitude A and ρgAR2, respectively.
Here, g is the gravity acceleration.

Figure 5 shows good agreements of vertical displacement in comparison with the analytical
solution given by Newman [45] and numerical results by Bai and Teng [32]. It can be observed that
the vertical motion of the cylinder gradually damps out with time. This can be attributed to the
conversion of energy from body motion to the radiation waves propagating outwards from the body.
This phenomenon can also be seen in the time process of the vertical hydrodynamic force on the cylinder
in Figure 6. Furthermore, a phase lag π of hydrodynamic force relative to the corresponding vertical
motion can be found in each studied case, comparing results in Figures 5a and 6a, Figures 5b and 6b,
respectively, which can be explained by the harmonic characteristics of the body motions.

(a) Initial displacement

(b) Initial velocity

Figure 5. Time history of vertical displacement of a freely floating truncated vertical cylinder specifying
initial motion.
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(a) Initial displacement

(b) Initial velocity

Figure 6. Time history of hydrodynamic force on a freely floating truncated vertical cylinder specifying
initial motion.

4.2. Deep Draught Spar in Regular Waves

Since the substructure of the 6MW spar-type floating platform we are going to study has a deep
draught and relatively strong coupling in surge and pitch motion, another resembling spar exposed to
linear regular waves and free to surge and pitch is investigated herein to verify the calculation of the
motion responses and mean-drift forces.

This spar has a uniform radius R of 12.5 m and draught d of 200 m, located in water depth
d = 1000 m. The centers of gravity and buoyancy are 95 m and 100 m above the base, respectively.
In addition, the radius of gyration about its center of gravity is about 88.74 m, with internal flood water
and ballast, etc. all considered. Detailed information can be referred to Drake [46].

In this case, the linear problem is solved for the spar without using the soft mooring system,
and horizontal mean-drift force induced by the 1st-order solutions are also obtained.

Figure 7 shows the normalized lateral displacement at still waterline and the base, with fairly
good agreement with the analytical solution and a frequency-domain numerical result, both digitalized
from Drake [46]. The horizontal mean-drift force on the spar platform is presented in Figure 8 for
different kR, where k denotes the wavenumber. The present numerical results agree reasonably well
with the analytical solution by Drake [46].
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Figure 7. Lateral displacement of spar at still waterline and the base: upper line and symbols for still
waterline; lower line and symbols for the base.

Figure 8. Horizontal wave-drift forces acting on the cylinder.

4.3. Freely Floating Vertical Cylinder with a Small Forward Speed

The problem of a vertical cylinder subjected to incident wave and moving with a constant forward
speed is studied to verify the accuracy and robustness of the present model with small forward speed
or current. The 1st-order problem is solved in the time domain following the numerical procedure
presented in the previous sections. The cylinder has a radius R. The draft and water depth are both
equal to R. The cylinder is free to move only in the surge direction. Two typical Froude numbers
for Fr = 0.05 and Fr = −0.05 are considered, where the Froude number is defined as Fr = U/

√
gR,

with U the forward speed of the structure.
Figure 9 shows the 1st-order surge motion of the cylinder with a small forward speed at different

normalized wavenumbers kR. It can be seen that good agreement has been achieved between the
present results and semi-analytical results presented by Malenica et al. [47]. It can be found that the
1st-order surge motion of the cylinder excited by the horizontal wave loads slightly decreases by a
small negative forward speed compared to the surge motion of the cylinder advancing at zero or a
positive forward speed.
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Figure 9. The 1st-order surge motion amplitude of the vertical cylinder at a forward speed.

5. Numerical Studies on a 6 MW Spar-Type FOWT

A 6MW spar-type FOWT, free to surge, heave and pitch in regular waves is considered.
This section is arranged as follows: Firstly, the parameters of the spar-type FOWT and mooring
system will be introduced. Under regular wave excitation, the motion responses of the FOWT will be
studied and compared with existing model-test results. To this end, the effect of uniform current on
hydrodynamic loads will be investigated.

5.1. Model Description of the 6 MW Spar-Type FOWT

The 6 MW spar-type FOWT considered is a three-bladed, variable-speed, variable-blade turbine
and is designed for intermediate water depth. Detailed design parameters for the wind turbine,
tower etc., can be found in [19]. Since the focus of the present study is placed on the hydrodynamics
characteristics of the FOWT, the wind forces acting on the FOWT is not considered. However,
the inertial effects of the tower, wind turbine, along with the substructure are included in the overall
mass matrix. The dimensions of the spar platform and the principle design parameters are presented
in Figure 10 and Table 1, respectively. Note the center of gravity in Table 1 is defined in the Earth-fixed
coordinate system when the spar is placed at its equilibrium position. In addition, it should be noted
for Equations (6) and (7) that the interaction between the wave and current are not modeled, thus the
problem of a body undergoing a positive forward speed in waves is considered as equivalent to the
problem of a body in waves and a negative current. The designed mooring system includes three
mooring lines whose fairleads attached 21 m below the still waterline and at a radius of 8 m from the
centerline of the spar. The main parameters are given in Table 2. A sketch of the present mooring
system is also illustrated in Figure 11.
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Figure 10. Spar platform of the 6MW spar-type FOWT.

(a) Side view

Xe

Ye

Oe

Wave & Current

Fairlead Anchor

Mooring line #1

Mooring line #2

Mooring line #3

120○

120○

(b) Top view

Figure 11. Sketch of catenary mooring system of the 6 MW spar-type FOWT.



Fluids 2020, 5, 187 18 of 28

Table 1. Main parameters of the spar platform of a 6MW spar-type FOWT in full scale.

Water depth [m] 100

Draft [m] 76

Mass [t] 11,137

Displacement [m3] 11,420

Center of gravity [m] −49

Moment of inertia(roll, pitch) [kg m2] 4.20 × 1010

Table 2. Main properties of the mooring lines.

Number of mooring lines 3

Angle between mooring lines [deg] 120

Unstretched mooring line length [m] 400

Radius of fairleads to centerline [m] 8

Radius of anchors to centerline [m] 393.5

Depth of fairleads [m] 21

Depth of anchors [m] 100

Extensional stiffness(EA) [N/m] 8.0 × 108

Mass per unit length [kg m−1] 370

5.2. Experiment Setup

A regular wave test for the 6MW spar-type FOWT was performed in the State Key Laboratory of
Ocean Engineering (SKLOE) at Shanghai Jiao Tong University. The wave tank is of length 50 m and
width 4 m, respectively. In addition, a 1: 65.3 scale model of the 6 MW spar-type FOWT was built and
tested without considering current or forward speed effects. The general layout for the experiment set
up is shown in Figure 12. The wave parameters at full scale and model scale are presented in Table 3.

Figure 12. General layout for the experiment test.
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Table 3. Regular wave parameters for model-scale and full-scale models.

Water Depth [m] Wave Height [m] Wave Period [s] Wave Length [m]

Full scale 100 10 15 338

Model scale (1:65.3) 1.53 0.153 1.856 5.171

5.3. Validation against Model Test in a Regular Wave

Numerical analysis has been carried out up to the 2nd order using the same spar geometry,
loading condition, and the wave conditions described previously in Sections 5.1 and 5.2. The numerical
results will be compared with that of the model test in Yao et al. [48]. The hydrodynamic mesh model of
the full-scale 6 MW spar-type FOWT generated from GMSH [49] is shown in Figure 13. A free-surface
mesh with a radius of 1200 m is used, where a damping zone starting from 400 meters is applied
to absorb the diffracted and radiated waves. It means that we are using a ring-type damping zone
layer with a width of 800 m, which has been shown to be sufficient to absorb most of the energy of
the outgoing scatter waves. There are 21 patches along the vertical direction of the body surface. In
addition, 32 and 41 patches are used along the circumferential and radial directions respectively to
assure enough resolution for both free surface and body surface. In addition, finer meshes are adopted
near the waterline both on the free surface and body surface. Furthermore, at least 30 patches along
the radial direction per wave length in the near field are modeled. To this end, the final mesh model
contains 1932 cubic patches and 9703 nodes.

For simplicity in numerical modeling while keeping the spar-type FOWT in an acceptable position,
the catenary mooring line theory described in Section 3.2 is applied. Therefore, mooring dynamics are
not modeled, whose effects will be investigated in future studies. When it is relevant, drag loads based
on Morison’s equation and relative velocities are also included as part of the hydrodynamic loads.
See the description in Section 3.3.

Ri=400mDamping zone: 800m

X
Y

Z

(a) Free surface (b) Body surface

Figure 13. Example of mesh models on the free surface and the substructure of the 6 MW
spar-type FOWT.

In order to examine the importance of the mooring and drag loads, three cases summarized in
Table 4 will be studied. The first case does not apply any mooring or viscous drag loads. A long ramp
period has been used to gradually start the simulation, in order to minimize the horizontal drifting
of the FOWT. The second case includes a catenary mooring model, but without any viscous drag
loads. In the third case, catenary mooring and viscous drag loads (on the spar-type FOWT but not the
mooring lines) are both included. The quadratic terms in Equations (27) and (28) have been included
in the calculation of hydrodynamic responses of the FOWT.
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Table 4. Load cases and setup.

Cases Case Setup

Method 1 Ramp periods = 8T

Method 2 Catenary mooring

Method 3 Catenary mooring + Viscous drag

The surge, heave, and pitch motion results are presented in Figure 14. The figures on the left
are the 1st-order or total results in comparison with experimental measurements. The corresponding
2nd-order components of the numerical results are presented in the figures in the right column.
In the figures, the results for the three cases are denoted by ‘Method 1’, ‘Method 2’, and ‘Method 3’,
respectively. To make better comparisons, we have shifted the linear numerical results for Method 2
and Method 3 by a phase angle of π/8 relative to that of Method 1. For the same reason, the 2nd-order
results have also been shifted by π/16 for those two cases.

As seen from Figure 14, results for Method 2 and Method 3 show very little differences, indicating
that the viscous drag loads are less important. However, one should note that the viscous drag may be
important for the accurate approximation of the hydrodynamic response of the FOWTs if much larger
waves are considered.

It can also be seen from the heave motion in Figure 14 that the calculations by these three
methods all agree well with the experiment results. Some non-negligible influences of the mooring
system for surge motion are seen. In fact, when no mooring restoring is included, our numerical
results agree fairly well with the experimental results, while the results with mooring unexpectedly
deviate more from the experiment. The numerical results by the time-domain coupled simulation
tool FAST presented in [48] also showed the same tendency. It was mentioned by Yao et al. [48] that
the cable bundle that powered the turbine in the experiment may have had non-negligible effects.
Furthermore, the amplitude of the 2nd-order sum-frequency responses seem to be small compared to
the corresponding linear components.

In Figure 15, the linear Response Amplitude Operators (RAOs) for waves from shorter to longer
waves lengths are presented. They are obtained as the 1st harmonics from the time series. For Method
3, the drag loads have been calculated by assuming a wave steepness kA = 0.2. In general, the viscous
drag loads have very little influence for the considered FOWTs and wave conditions. For long waves,
the mooring system is seen to have some non-negligible effect on surge motions.

The non-dimensional mean-drift force are compared in Figure 16, where results for Method 2
and Method 3 with kA = 0.05 and 0.20 are included. The 3rd-order terms in Equations (27) and (28)
are included in the calculation of the mean-drift forces. Since the mean-drift force is normalized by
ρgA2R, the non-dimensional total mean-drift forces are dependent on kA. For small wave steepness
kA = 0.05, the results are very close to that of Method 2 (no viscous drag at all), while clear increases
of mean-drift force are seen for kA = 0.20 due to the viscous-drag contribution.
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(a) Surge motion (top) (b) 2nd-order surge motion (top)

(c) Heave motion (middle) (d) 2nd-order heave motion (middle)

(e) Pitch motion (bottom) (f) 2nd-order pitch motion (bottom)

Figure 14. The 1st- and 2nd-order time series of the responses of the 6MW spar-type FOWT. The (left)
column exhibits the comparison between the present results and experiments from [48]. Here,
legends of figures only represent different methods. In addition, the solid lines ( ) are drawn
for 1st-order results while the dotted lines (· · · · · · ) are for results with the 2nd-order components
included. The (right) column only displays the 2nd-order results determined by different methods.

(a) Surge motion (b) Heave motion (c) Pitch motion

Figure 15. The 1st-order surge, heave and pitch motion RAOs of the 6MW spar-type FOWT by
different methods.
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Figure 16. Horizontal mean-drift force of the 6MW spar-type FOWT.

5.4. Current Effect

Based on the understanding from the three models in Section 5.3, we will use Method 2 to
carry out further numerical analyses to investigate the current effect on the 6 MW spar-type FOWT
foundation. The same mesh model and numerical method (see Section 3.3) are employed for the
present study. Uniform current with Fr = U/

√
gR = ±0.20 is considered, where R = 4.75 m is the

radius of the circular water-plane. It corresponds to current speed of U = ±1.36 m/s, which is not
considered as excessively large on typical offshore sites. Here, as a definition, a positive Fr number
means that the current is in the opposite direction as the wave propagation direction. A non-uniform
current cannot be modeled in the present potential-flow model, as a circulation must have been created
due to a non-uniform current, leading to a rotational flow. In fact, ocean currents are ubiquitous in real
sea and usually generated by winds, tides, or thermal gradients.

The solutions of 1st-order motions and horizontal mean-drift force of the spar platform in
the time domain can be transformed into RAOs and quadratic transform functions (QTFs) in the
frequency domain, respectively. The motion RAOs and the inline mean-drift force QTF are presented
in Figures 17 and 18, respectively.

The RAOs shown in Figure 17 demonstrate the decrease of motions in surge, heave, and pitch
modes with the increase of kR for the spar platform for cases with zero forward speed or under current
speeds. An increase of the response was captured in long waves for the three motion modes when the
current speed is in the opposite direction of the wave propagation, i.e., Fr = U/

√
gR = 0.20. In this

case, the encounter frequency is smaller than the wave frequency, and thus are closer to the resonant
frequencies. According to the experimental results in Yao et al. [48], the surge, heave and pitch natural
periods of the considered spar-type FOWT are 75.7 s, 26.3 s and 43.3 s, respectively.

The inline horizontal mean-drift forces of the 6MW spar-type FOWT are presented in Figure 18.
In general, the inline mean-drift force is larger when the wave propagates in the same direction as the
current. The current effect is in general significant. Since the mean-drift force is a special case of the
difference-frequency force, the results indicate that it may be important to include the current effects in
the evaluation of the slowly-varying wave loads and the slow-drift motions.
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(a) Surge motion (b) Heave motion (c) Pitch motion

Figure 17. The 1st-order motion RAOs of the 6MW spar-type FOWT at different Froude numbers.
Note that the problem of a body undergoing a positive forward speed in waves is equivalent to the
problem of a body in waves and negative current by neglecting the interaction between the wave
and current.

Figure 18. Horizontal mean-drift force of the 6MW spar-type FOWT for Fr = −0.2, 0.0 and 0.2.

6. Conclusions and Future Work

A complete 2nd-order wave–current–structure interaction model has been presented.
The numerical model is firstly verified against reference cases with benchmark results available
in the literature. Then, the model is applied to study the hydrodynamic characteristics of a 6 WM
spar-type FOWT. The wind loads are not included in the present stage. Quasi-static mooring loads are
modeled via the catenary line theory, and drag loads are empirically accounted for by the Morison’s
equation. For the considered 6 MW spar-type FOWT, the model is validated against model tests under
a regular wave excitation with a wave period of 15 s and wave height of 10 m. The complete 2nd-order
problems were solved and satisfactory agreement has been achieved between numerical results and
experiments. The 2nd-order sum-frequency effects were found to be inconsequential for the FOWT
motion responses under the considered wave conditions, and the viscous-drag loads as well. However,
the 3rd order viscous drag clearly increases the mean-drift forces with an increasing wave steepness.
Furthermore, the hydrodynamics responses of this FOWT in the presence of either a small positive
or a reverse uniform current are numerically investigated. The influence of the current on 1st-order
RAOs is mainly embodied at low frequencies, whereas the mean-drift forces are strongly affected by
the magnitude and direction of the uniform current.

In future studies, a more accurate mooring dynamics model will be adopted to replace the
catenary line model. The present complete 2nd-order time-domain model will also be extended to
simulate the dynamic responses of the FOWTs in irregular waves. The wind loads should also be
included in order to render the numerical simulations more realistic.



Fluids 2020, 5, 187 24 of 28

Author Contributions: Conceptualization, Y.S.; methodology, Y.S. and Z.Z.; software, Y.S., Z.Z., and J.C. validation,
Y.S. and Z.Z.; formal analysis, H.L. and Y.Z.; investigation, Y.S., Z.Z., and Y.Z.; writing-original draft preparation,
Z.Z.; writing-review and editing, Y.S., H.L., and J.C.; supervision, Y.S. and J.C.; project administration, J.C. All
authors have approved the contents of the submitted manuscript.

Funding: J.C. acknowledges the financial support from the National Science Foundation of China (Grant No.
51709064).

Conflicts of Interest: The authors declare no conflict of interests.

Appendix A

The hydrodynamic forces and moments acting on the body surface at specific-order can be
approximated based on the method of direct pressure integration:

F(0) =
∫∫

SB

p(0)n(0)ds (A1)

F(1) =
∫∫

SB

[
p(1)n(0) + p(0)n(1)

]
ds +

∫
CW0

p(0)η(1)n(0) 1√
1− n2

3

dl (A2)

F(2) =
∫∫

SB

[
p(2)n(0) + p(1)n(1) + p(0)n(2)

]
ds

+
∫

CW0

[
1
2

ρg
(

η(1)
)2

n(0) + p(0)η(1)n(1)
]

1√
1− n2

3

dl
(A3)

M(0) =
∫∫

SB

p(0)
(

r′ × n(0)
)

ds (A4)

M(1) =
∫∫

SB

[
p(1)

(
r′ × n(0)

)
+ p(0)

(
r′ × n(1)

)]
ds

+
∫

CW0

p(0)η(1)
(

r′ × n(0)
) 1√

1− n2
3

dl
(A5)

M(2) =
∫∫

SB

[
p(2)

(
r′ × n(0)

)
+ p(1)

(
r′ × n(1)

)
+ p(0)

(
r′ × n(2)

)]
ds

+
∫

CW0

[
1
2

ρg
(

η(1)
)2 (

r′ × n(0)
)
+ p(0)η(1)

(
r′ × n(1)

)] 1√
1− n2

3

dl
(A6)

where F(k) and M(k), k = 0, 1, 2, are the forces and moments of k-th order by applying Taylor expansion
method. r′ is the position vector of a point on the body surface. η(k) with k = 1, 2 is the free-surface
elevation at the specific order. CW0 denotes the still waterline and the integral on the still waterline is
due to the small variation of the instantaneous body surface and mean body surface induced by the
body motions and free-surface elevation. n(0) is the normal vector of a point on the body surface and
is given as n(0) = (n1, n2, n3). n(1)and n(2) are the normal vectors due to coordinate transformation
and are in magnitude of O(ε) and O(ε2), respectively.

Appendix B

Applying the standard implicit Euler method, one can discretize Equation (36) as

~φn+1 − ~φn

∆t
+ uD~φn+1 = 0, i = 1, ..., N, (A7)

where the advection term is discretized using the solution at the current time step, i.e., ~φn+1. N is the
total number of grid points. D is the operator for the spatial differentiation ∂

∂x , based on standard finite
difference schemes or any other velocity reconstruction methods using stencil points around the grid
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points of interest. D is dependent on the size of meshes, thus we introduce a characteristic mesh size
∆sc and rewrite Equation (A7) as

~φn+1 + rD̃~φn+1 = ~φn, i = 1, ..., N, (A8)

where
r =

u∆t
∆sc

, (A9)

and
D̃ = ∆scD. (A10)

Here, r is propositional to the CFL number. The scaled operator D̃ has less dependence on grid
size than the un-scaled operator D.

After considering proper boundary conditions at two ends of the domain, we can formally set up
a matrix equation for the solution at (n + 1)-th time step

(I + rD̃)~φn+1 = ~φn. (A11)

Here, I is identity matrix. A = I + rD̃ is a sparse matrix whose bandwidth is equal to the
size of local stencil points. The standard way of solving Equation (A11) is to solve the sparse-matrix
equation iteratively, which may be computationally costly as the matrix on the left-hand side is not
diagonal-dominant. Considering r as a small parameter, e.g., r � 1, we can approximate the inverse of
A = I + rD̃ by series expansion in r

A−1 = I +
∞

∑
k=1

(
rkCk

)
(A12)

Here, the matrix Ck with k = 1, ..., ∞ are independent on r. To determine Ck, we take the product
of A and A−1:

AA−1 =
[
I + rD̃

] (
I +

∞

∑
k=1

rkCk

)
≡ I . (A13)

Equation (A13) can be further re-arranged by collecting the terms with the same order in r as

r1 (D̃ + C1
)
+ r2 (D̃C1 + C2

)
+ · · ·+ rk (D̃Ck−1 + Ck

)
+ · · · = 0 (A14)

Requiring each term in Equation (A14) to vanish leads to a simple solution for Ck. Therefore,
an explicit approximation for A−1 can be obtained as

A−1 = I +
Np

∑
k=1

(−r)kD̃k + O(rNp+1), (A15)

where we have truncated the infinite series summation to Np terms. To this end, we can approximate
the implicit Euler scheme as

~φn+1 − ~φn

∆t
=

[Np−1

∑
k=0

(−1)k+1(∆t)k (uD)k+1

]
~φn + O(∆t), (A16)

which is an explicit scheme and conditionally stable as it is shown in Shao [38] in the stability analysis.
A similar procedure can be followed to approximate other implicit schemes. The results for the

2nd-order Crank–Nicolson scheme is shown in Equation (37), which is used throughout this study.
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