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Abstract: Spin-up from rest of a liquid metal having deformable free surface in the presence of
a uniform axial magnetic field is numerically studied. Both liquid and gas phases in a vertically
mounted cylinder are assumed to be an incompressible, immiscible, Newtonian fluid. Since the
viscous dissipation and the Joule heating are neglected, thermal convection due to buoyancy and
thermocapillary effects is not taken into account. The effects of Ekman number and Hartmann
number were computed with fixing the Froude number of 1.5, the density ratio of 800, and the
viscosity ratio of 50. The evolutions of the free surface, three-component velocity field, and electric
current density are portrayed using the level-set method and HSMAC method. When a uniform
axial magnetic field is imposed, the azimuthal momentum is transferred from the rotating bottom
wall to the core region directly through the Hartmann layer. This is the most striking difference from
spin-up of the nonmagnetic case.

Keywords: spin-up; magnetic field; liquid metal; Lorentz force; Ekman number

1. Introduction

Rotating fluid flows are encountered in a wide variety of industrial occasions, partic-
ularly in pumps, water turbines, compressors, wind turbines, and so on. So far, various
aspects related to the rotating fluid dynamics have been studied not only for such technical
contexts but also for geophysics. Spin-up flow, which is a transient adjustment process of
fluid when the rotational speed of the vessel suddenly changes, has been considered as a
fundamental topic, and it is still an important problem in rotating fluid dynamics.

The classic and basic case is that an incompressible viscous fluid is completely filled
into a cylindrical container, from which the container suddenly begins to rotate around a
central axis. In the study by Greenspan and Howard [1] or Wedemeyer [2], a theoretical
method was implemented because the complete numerical calculation of the Navier–Stokes
equation was difficult at that time due to the underdeveloped computer. Since then, various
studies have been carried out to confirm the theory, and numerical elucidation has been
attempted since the 1980s [3–5]. The important parameter in spin-up is the Ekman number,
whose time scale is E−0.5Ω−1 (where E is the Ekman number and Ω is the angular velocity),
while the time diffusion scale is E−1Ω−1. This is due to the effect of the meridian flow due
to the nonlinear term of the Navier–Stokes equation.

Possible effects on spin-up include fluid compressibility [6], non-axisymmetric case [7],
container shape [8], temperature stratification [9,10], and two-phase fluid [11–14]. Due to
these effects, spin-up is affected by the Coriolis force, pressure gradient, and viscous actions,
as well as buoyancy and surface tension. Especially in recent years, research on spin-up
of liquid metals has emerged in the field of material electromagnetic processing [15–17].
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In these cases, instead of the rotation of the container itself, a rotating magnetic field is
suddenly applied. Although liquid metal is contained in a container, the upper surface
is often exposed to contact with gas. In connection with this, Lee et al. [18] studied an
MHD flow for the so-called classical spin-up problem in which a cylindrical container
abruptly starts to rotate from rest. Their research dealt with the case where the upper part
of the cylindrical container had a free surface, assuming application to the Czochralski
method [19,20], but did not deal with the deformation of the free surface. However, it was
shown that the spin-up time decreases in proportion to the Hartmann number [21] with the
increase in magnetic field strength. The timescale is proportional to Ha−1E−1Ω−1 (where
Ha is the Hartmann number).

Numerical models are needed to simulate such a free-surface flow in the presence
of a magnetic field. Several methods have been reported for numerical studies of free-
surface flows based on interface-capturing techniques using fixed mesh systems. For
example, the VOF (volume of fluid) and level-set methods are well known to be useful
and practical. The difficulty in these methods lies in mass balance during computation, as
well as in the accurate estimation of the local mean curvature, especially when the density
ratio between the two phases is large. The VOF method [22] is capable of keeping the
mass balance, while the level-set method [23] has advantages in accurately estimating the
local mean curvature. The CLSVOF (coupled level-set and volume-of-fluid) method [24]
combines the advantages of the level-set and VOF methods. Sussman et al. carried out
computations of incompressible two-phase flows for the motion of air bubble in water
and falling water drops in air using a level-set method [23]. Inamuro et al. succeeded in
numerical computation of incompressible two-phase flows with large density differences,
such as capillary wave, droplet collision, and bubble flow, using a lattice Boltzmann
method [25]. Morley et al. [26] proposed a model of liquid metal free-surface MHD flows
for the application of a nuclear fusion reactor. Takatani [27] developed a mathematical
model of incompressible MHD flows with free surface and computed several free-surface
flows. Tagawa and his group [28–32] carried out the various computations of free-surface
flows in the presence of a uniform magnetic field. Lee et al. [18] numerically investigated
spin-up from rest of liquid metal in a cylinder under the influence of vertical magnetic
field. They successfully computed spin-up even for small Ekman numbers on the order of
10−5 and large Hartmann numbers on the order of 102 with the use of a nonuniform mesh
system and Hartmann boundary layer theory. However, they did not take the free-surface
deformation into consideration. Therefore, in the present study, the spin-up from rest
with free-surface deformation under the influence of a uniform axial magnetic field is
numerically investigated using a level-set method.

Section 2 describes mathematical formulations for computing the liquid metal free-
surface flow in a rotating cylinder under a uniform magnetic field. In Section 3, we first
verify the numerical results by examining a grid dependency test, and then various effects
such as surface tension, Ekman number, and Hartmann number on the numerical results
are investigated. Section 4 discusses future studies related to the MHD spin-up problem.
Section 5 gives the conclusions of this paper.

2. Mathematical Formulations
2.1. Schematic Model for Spin-Up

As shown in Figure 1, a liquid metal is partially filled in a vertically mounted cylindri-
cal enclosure with the half depth of the enclosure height, and then the cylinder suddenly
starts to rotate around the axis at a constant angular velocity Ω from a stationary condition.
The initial height of liquid phase h is the same as the radius of the cylinder a, and the
enclosure height is twice the initial liquid height. The fluids themselves also start to rotate
due to the shearing force received from the top and bottom plane walls, as well as the side-
wall. At the beginning of rotation, the velocity component is limited to only the azimuthal
one, but the radial component of velocity is shortly induced by the centrifugal force acting
in the vicinity of the plane walls. This secondary flow always occurs irrespective of the
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single-phase or two-phase case. In the case of two-phase flow, as presented herein, since
the lower part of liquid metal is heavier than the upper part of air, the liquid metal tends to
accumulate near the sidewall. As sufficient time evolves, the shape of the free surface be-
comes parabolic since the angular velocity of fluids becomes the same as that of the rotating
cylindrical enclosure. However, the transient process of this phenomenon to the final stage
has not been well understood because of several factors such as density difference, viscosity
difference, and the rotation speed of the cylinder. Moreover, if the uniform magnetic field is
applied, the liquid-metal flow is substantially affected by the electromagnetic force, which
could be different from the previous understanding of ordinary spin-up from rest with or
without the free surface.
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Figure 1. Flow geometry and coordinates in the meridional plane. The initial condition for the
gas–liquid interface is shown with the broken line, while the interface after sudden rotation at a time
instant is shown with the solid line. A uniform axial magnetic field is applied.

2.2. Governing Equations

We assume that the fluid is an incompressible Newtonian fluid for both the liquid
and gas phases, and that they are immiscible with each other. In this study, heat source
effects such as viscous dissipation and Joule heating are ignored; therefore, an isothermal
field within the enclosure is assumed. The induced magnetic field is so small that it can
be neglected compared to the intensity of imposed magnetic field due to the smallness of
the magnetic Prandtl number. Hence, the governing equations of the continuity of mass,
advection equation for density, momentum equations, conservation of electric charge, and
Ohm’s law, are respectively expressed below.

∇ · u = 0. (1)

Dρ

Dt
= 0. (2)

ρ
Du
Dt

= −∇p +∇ · (µ∇u) + ρg + j× b + fst. (3)

∇ · j = 0. (4)

j = σ(−∇Ψe + u× b). (5)
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It is noted that the density ρ, the viscosity µ and the electric conductivity σ are
not constants but depend on whether the local fluid belongs to the liquid or gas phase.
We assume that the two-phase fluid flow inside a cylindrical enclosure is axisymmetric.
Each term in the momentum equations is considered in the axisymmetric cylindrical
coordinate system.

As shown in Figure 1, the direction of gravity is parallel to the axis of the cylindrical
enclosure. Hence, the gravity force is simply written as follows:

ρg = −ρgeZ. (6)

The viscous force for incompressible fluids can be obtained by taking the divergence
of the viscosity stress tensor in the cylindrical coordinate system. The final form for the
axisymmetric case becomes

∇ · (µ∇u) =
{

∂
∂r

(
µ ∂u

∂r

)
+ µ

r

(
∂u
∂r −

u
r

)
+ ∂

∂z

(
µ ∂u

∂z

)}
eR

+
{

∂
∂r

(
µ ∂v

∂r

)
+ µ

r

(
∂v
∂r −

v
r

)
+ ∂

∂z

(
µ ∂v

∂z

)}
eθ +

{
∂
∂r

(
µ ∂w

∂r

)
+ µ

r
∂w
∂r + ∂

∂z

(
µ ∂w

∂z

)}
eZ

. (7)

Since the direction of the applied uniform magnetic field is parallel to the axis of
cylindrical enclosure and the induced magnetic field is neglected, the electromagnetic force
is written as follows:

j× b = j× (b0eZ) = b0 jθeR − b0 jReq. (8)

The continuum surface force (CSF) model [33] is known to be useful for modeling
the surface tension acting at the interface. In this study, the gradient of a smoothed step
function was employed instead of using the smoothed delta function according to Francois
et al. [34]. The surface normal force can be written using the level-set function, which
indicates the distance from the liquid–gas interface, as follows:

fst = γκδε(Φ)∇Φ = −γ∇ ·
(
∇Φ

|∇Φ|

)
∇Hε(Φ) = −γ

(
∇2Φ

)
∇Hε(Φ). (9)

2.3. Dimensionless Equations

The dimensionless governing equations in the axisymmetric cylindrical coordinate
system for analyzing incompressible, immiscible, free-surface flow in the presence of a
surface tension and magnetic field are summarized as follows:

∂U
∂R

+
U
R

+
∂W
∂Z

= 0. (10)

∂Φ

∂τ
+ U

∂Φ

∂R
+ W

∂Φ

∂Z
= 0. (11)

∂U
∂τ + U ∂U

∂R + W ∂U
∂Z −

V2

R = − 1
ρΦ

∂P
∂R −

1
ρΦ

_
ρ

We

(
∂2Φ
∂R2 + 1

R
∂Φ
∂R + ∂2Φ

∂Z2

)
∂

∂R Hε(Φ)

+ E
ρΦ

_
ρ
_
µ

{
∂

∂R

(
µΦ

∂U
∂R

)
+ µΦ

R

(
∂U
∂R −

U
R

)
+ ∂

∂Z

(
µΦ

∂U
∂Z

)}
+

_
ρ

ρΦ
Ha2EJθ

. (12)

∂V
∂τ + U ∂V

∂R + W ∂V
∂Z + UV

R

= E
ρΦ

_
ρ
_
µ

{
∂

∂R

(
µΦ

∂V
∂R

)
+ µΦ

R

(
∂V
∂R −

V
R

)
+ ∂

∂Z

(
µΦ

∂V
∂Z

)}
−

_
ρ

ρΦ
Ha2EJR

. (13)

∂W
∂τ + U ∂W

∂R + W ∂W
∂Z = − 1

ρΦ

∂P
∂Z −

1
ρΦ

_
ρ

We

(
∂2Φ
∂R2 + 1

R
∂Φ
∂R + ∂2Φ

∂Z2

)
∂

∂Z Hε(Φ)

+ E
ρΦ

_
ρ
_
µ

{
∂

∂R

(
µΦ

∂W
∂R

)
+ µΦ

R
∂W
∂R + ∂

∂Z

(
µΦ

∂W
∂Z

)}
− 1

Fr2

. (14)
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∂JR
∂R

+
JR
R

+
∂JZ
∂Z

= 0. (15)

JR = σΦ

(
−∂Ψe

∂R
+ V

)
, Jθ = σΦ(−U), JZ = σΦ

(
−∂Ψe

∂Z

)
. (16)

The dimensionless variables and nondimensional numbers such as the Ekman, Weber,
and Hartmann numbers are defined using the liquid phase properties as follows:

τ = t
1/Ω , (R, Z) = (r,z)

h , (U, V, W) = (u,v,w)
hΩ , Φ = Φ

h , P = p
ρGh2Ω2 ,

(JR, Jθ , JZ) =
(jR ,jθ ,jZ)
σLhΩb0

, Ψe =
Ψe

h2Ωb0
,
_
ρ = ρL

ρG
,
_
µ = µL

µG
,
^
σ = σG

σL
,

E = µL
Ωh2ρL

, Fr = Ω
√

h
g , We = ρLΩ2h3

γ , Ha =
√

σL
µL

b0h, Ar = a
h .

(17)

The physical properties such as density, viscosity, and conductivity within the transi-
tion region are defined as follows:

ρΦ =
ρ

ρG
=

1
2

(
_
ρ + 1

)
−
(
_
ρ − 1

)
Hε(Φ). (18)

µΦ =
µ

µG
=

1
2

(
_
µ + 1

)
−
(
_
µ − 1

)
Hε(Φ). (19)

σΦ =
σ

σL
=

1
2

(
1 +

^
σ
)
−
(

1−^
σ
)

Hε(Φ). (20)

Here, Hε(Φ) indicates the smoothed Heaviside step function, and its definition is
shown below. In this study, ε was set to 1.5∆X, which is 1.5 times the width of the
grid interval.

Hε(Φ) =


−1/2, Φ ≤ −ε
1
2

[
Φ
ε + 1

π sin
(

πΦ
ε

)]
, −ε ≤ Φ ≤ ε

1/2, ε ≤ Φ

. (21)

In this study, the cylinder aspect ratio was limited to Ar = 1. The initial and boundary
conditions were respectively set as follows:

τ ≤ 0 : U = V = W = P = JR = Jθ = JZ = Ψe = 0, Φ = Z− 1. (22)
Z = 0, 2 : U = W = 0, V = R, ∂Φ/∂Z = 0, JZ = 0

R = 1 : U = W = 0, V = 1, ∂Φ/∂R = 0, JR = 0

R = 0 : U = V = ∂W/∂R = 0, ∂Φ/∂R = 0, JR = 0

. (23)

The boundary condition for the level-set function Φ indicates that the contact angle of
the liquid was 90◦.

2.4. Numerical Methodology

The computational domain was considered within an R–Z cross-section for both the
liquid and the gas regions, which were divided into uniform square meshes as shown in
Figure 2a. The HSMAC (Highly Simplified Marker and Cell) method [35] was employed to
iteratively obtain the pressure and velocity fields. By taking the fluid density into account,
i.e., whether each phase is liquid or gas, the simultaneous corrections for the pressure and
velocity components were derived as follows:
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Pm+1
i,k = Pm

i,k + (δP)m
i,k

= Pm
i,k +

−
(

Um
i,k−Um

i−1,k
∆R +

Um
i,k+Um

i−1,k
2Ri

+
Wm

i,k−Wm
i,k−1

∆Z

)
∆τ

(∆R)2

(
1

ρ
Φi+ ,k

+ 1
ρ

Φi− ,k

)
+ ∆τ

2Ri∆R

(
1

ρ
Φi+ ,k

− 1
ρ

Φi− ,k

)
+ ∆τ

(∆Z)2

(
1

ρ
Φi,k+

+ 1
ρ

Φi,k−

) . (24)

Um+1
i,k = Um

i,k +
∆τ

ρΦi+ ,k(∆R)
(δP)m

i,k, Um+1
i−1,k = Um

i−1,k −
∆τ

ρΦi− ,k(∆R)
(δP)m

i,k. (25)

Wm+1
i,k = Wm

i,k +
∆τ

ρΦi,k+(∆Z)
(δP)m

i,k, Wm+1
i,k−1 = Wm

i,k−1 −
∆τ

ρΦi,k−(∆Z)
(δP)m

i,k. (26)

ρΦi+ ,k =
ρΦi,k + ρΦi+1,k

2
, ρΦi− ,k =

ρΦi,k + ρΦi−1,k

2
, ρΦi,k+ =

ρΦi,k + ρΦi,k+1

2
, ρΦi,k− =

ρΦi,k + ρΦi,k−1

2
. (27)
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(JR, JZ) are depicted in (b). The physical properties such as density, viscosity, and electric conductivity are defined at the
mesh center. Those values at the mesh interface are interpolated. (a) Fluid flow field; (b) Electromagnetic field.

Here, the subscript i,k indicates the location of computational domain, and the su-
perscript m indicates the step of iteration. The inertial term in the momentum equation is
approximated using a third-order upwind scheme called UTOPIA (Uniformly Third-Order
Polynomial Algorithm) scheme [36], and the other terms such as viscosity, pressure, and
external forces are approximated using the second-order central difference scheme. In
the present study, the iterative procedure for the corrections was continued unless the
certain threshold for the divergence of velocity (Equation (10)) was satisfied. A similar
procedure was employed for the electromagnetic field. The present numerical results,
which are shown in the next section, were obtained using in-house codes developed by
our laboratory group. Using these codes, which were verified for various fluid flows, we
published several studies related to MHD free-surface flows [28–32].

For visualization of the computational results, the Stokes stream function was em-
ployed for the meridional velocity and electric current density.

U =
1
R

∂ΨS
∂Z

, W = − 1
R

∂ΨS
∂R

, JR =
1
R

∂ΨJ

∂Z
, JZ = − 1

R
∂ΨJ

∂R
. (28)
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3. Results
3.1. Grid Dependency

Depending on the species of liquid metal, the physical properties such as density,
viscosity, and electric conductivity differ extensively. In this study, as a typical case, the
density ratio and viscosity ratio were set to 800 and 50, respectively. These two ratios are
almost equivalent to a system of water and air. As for the Froude number, Fr = 1.5 was
selected because this Froude number allows us to observe a clear free-surface deformation
even at an early stage of spin-up, and the liquid phase does not reach the ceiling (top flat
wall) even at a well-developed stage.

First of all, the influence of number of meshes for a representative case was examined.
Figure 3 shows the free-surface shape for several time instants at the Ekman number with
gaseous properties of 0.01 and a Froude number of 1.5 for the three kinds of different mesh
system, as indicated in Figure 3. The numbers shown in the vicinity of the sidewall indicate
the dimensionless time instants.
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Figure 3. Dependency of grid size on free-surface shape near the sidewall at the three time instants
of τ = 10, 60, and 200 for Ar = 1, E = 6.25 × 10−4, Fr = 1.5, and Ha = 0. The blue color indicates the
case of the coarse grid (100 × 200), the green color is that of the baseline grid (150 × 300), and the red
color is the fine grid (200 × 400).

At the beginning of rotation, the rate of deformation is rapid near the sidewall, but it
becomes less rapid as time evolves. At the time instant 200 (τ = 200), the surface shape is
quasi-parabolic, which means that both liquid and gas phases rotate at the same angular
velocity, i.e., the state of rigid body rotation is attained. The effect of mesh size seemed
not so significant for this case. The deviations among three different meshes are shown at
the three time instants of 10, 60 and 200. The grid dependency was quite small between
the middle mesh (150 × 300) and the finer mesh (200 × 400). Hereafter, the middle
size of mesh system (150 × 300) was employed irrespective of the Ekman number and
Hartmann number.

3.2. Effect of Surface Tension

The influence of surface tension on spin-up is examined in this subsection for a case
in the absence of a magnetic field. The effect of surface tension is usually dominant in
small-scale two-phase flows. Figure 4 shows the numerical results without and with the
effect of surface tension for comparison. The two figures look almost the same except near
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the sidewall. The shape of the free surface is influenced by the surface tension only near
the sidewall. This was due to the set of boundary conditions where the contact angle of
the level-set function was 90◦. In the case of no surface tension, the large value of local
curvature at the sidewall was allowed. On the other hand, in the presence of surface
tension, the local large value of curvature was not allowed and, therefore, the appearance
of surface shape near the sidewall changed as shown in Figure 4b. Hereafter, the surface
tension effect was not taken into account for the subsequent results.
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Figure 4. Effect of surface tension on free-surface shape for Ar = 1, E = 6.25 × 10−4, Fr = 1.5, and Ha = 0 at τ = 60. The left
half shows the contour of the azimuthal velocity (V) and the right half shows the Stokes stream function (ΨS). (a) Without
surface tension (We→ ∞); (b) with surface tension (We = 800).

3.3. Effect of the Ekman Number

Figure 5 shows the contour lines of azimuthal component of velocity for the four
different cases of Ekman number with different time instants. Both liquid and gas phases
are visualized, and the range of contour maps is 0 to 1. The red parts were rotating quickly,
and the blue parts were at rest. The Froude number was set to 1.5, the density ratio was
800, and the viscosity ratio was 50. With a decrease in the Ekman number, the gradient
of azimuthal velocity became large near the liquid–gas interface. This tendency was also
observed in the vicinity of the top plain and bottom plain walls, i.e., the boundary layers
became thinner with a decrease in the Ekman number. However, the boundary layer
thickness was significantly different between the gas boundary layer formed at the top and
the liquid boundary layer formed at the bottom since the kinematic viscosity of liquid is
16 times smaller than that of gas. Nevertheless, for small Ekman number cases, the liquid
boundary layer became very thin, limiting the numerical accuracy for such cases.

3.4. Spin-Up in the Axial Uniform Magnetic Field

In order to understand the effect of the magnetic field on spin-up, Ha = 50 was chosen
in this study. It is understood that the effect of the magnetic field changes depending
on the values of other dimensionless parameters. For the current value of the Ekman
number, a sufficient magnetic field effect can be expected with Ha = 50. Figure 6 shows a
view of electric current density vectors near the free surface at τ = 20. The contour lines
with color flood indicate the values of the level-set function (Φ = −0.01. 0.00 and 0.01).
The interface width of this analysis was 0.02, since the number of meshes employed in
the radial direction was 150. As indicated in Equation (21), in the transitional region of
interface, the electric conductivity changes rapidly across the interface; therefore the electric
current density in such region should be visualized to verify the computational accuracy
for MHD free-surface flows. It is recognized that the electric current density vectors tend to
be aligned parallel to the free-surface shape, and those outside of the free surface are zero.
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Figure 5. Effect of the Ekman number on the azimuthal component of velocity without surface
tension for Ar = 1, Fr = 1.5, and Ha = 0. (a) E = 6.25 × 10−4, τ = 25; (b) E = 1.875 × 10−4, τ = 50;
(c) E = 6.25 × 10−5, τ = 100; (d) E = 1.875 × 10−5, τ = 200.
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Figure 6. Meridional electric current density vectors with contour lines of level-set function in the
vicinity of the sidewall for Ar = 1, E = 6.25 × 10−4, Fr = 1.5 and Ha = 50 at τ = 20. The blue part is
liquid (conducting fluid) while the white part is gas (nonconducting fluid). The diffused interface is
indicated by the green and pink colors.
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In this paper, the radial and axial components of electric current density were defined
at the interface of neighboring staggered meshes, while the azimuthal component was
defined at the center of mesh. In the procedure of calculation of the radial and axial
components of electric current density, it is necessary to interpolate the electric conductivity
at the mesh interfaces since the electric conductivity was defined at the mesh center in this
analysis. The interpolated value of electric conductivity at the interfaces was employed in
Equation (16) as follows:

JR|i,k =
2σΦi,k · σΦi+1,k

σΦi,k + σΦi+1,k

(
−∂Ψe

∂R
+ V

)
, Jθ |i,k = σΦi,k(−U), JZ|i,k =

2σΦi,k · σΦi,k+1

σΦi,k + σΦi,k+1

(
−∂Ψe

∂Z

)
. (29)

This equation denotes a serial connection of resistors, which helps to prevent the
electric current density from flowing outside of the gas region.

Figure 7 shows the visualized results at two time instants of τ = 10 and 50 for the
velocity field in (a), the electric potential and pressure in (b), and the electric current density
field in (c). Only the liquid region is visualized. The upper plots show the time instant of
τ = 10 and the lower ones show that of τ = 50. In (a), the left half shows the contour lines
of azimuthal velocity, and the right half shows those of meridional circulation (secondary
flow) using the Stokes stream function. At the early time stage of τ = 10, the azimuthal
velocity is not well propagated into the core region; therefore, the surface shape in the core
seems rather flat. At the nearly final stage of the spin-up process (τ = 50), the free-surface
shape seems to be parabolic and the strength of the secondary flow is much weaker than
that of the early stage of τ = 10, as indicated in the range of the contour legend. As shown
in (b), the electric potential profile depended mostly on the radius. It took its maximum
at the sidewall and its minimum at the center axis. The pressure profile indicates that its
contour lines were parallel near the free surface, and the maximum pressure point was
located at the bottom corner. In (c), the meridional electric current density is shown in
the right half and the azimuthal current density is shown in the left half. The meridional
current circulated in the contour-clockwise direction, and then the radially outward current
near the bottom walls reduced the azimuthal flow. On the other hand, the azimuthal
current density was mostly confined within the boundary layer formed in the vicinity of
the bottom wall. As shown in Equation (16), this azimuthal current density was the same
as the radial component of fluid velocity. Due to the Lorentz force acting at the boundary
layer, its thickness decreased as the Hartmann number increased.

Figure 8 shows a comparison of the velocity field without and with the axial magnetic
field. The left-hand figures are the cases without the magnetic field, while the right-hand
ones are those with the magnetic field. As a represented case, Ha = 50 was examined. It
should be noted that the range of contour maps is not common since the secondary flow
attenuates as time evolves. On the other hand, the contour of azimuthal velocity always
ranged from 0 to 1 for all the time instants. When no magnetic field was applied, the
spin-up of gas was much faster than that of liquid because of the difference in the kinematic
viscosity. Hence, the liquid experienced azimuthal momentum from not only the rotating
bottom wall but also the faster gas flow, as recognized in (Figure 8e). Nevertheless, there
was still a stagnant region in the core region. When a uniform axial magnetic field was
applied, the boundary layer formed in the vicinity of the rotating bottom wall was thinner
than that of the nonmagnetic case. The most striking difference from the nonmagnetic
case was that the azimuthal velocity took place in the core region even at the early stage
because the azimuthal momentum was transferred from the rotating bottom wall to the
core region directly through the Hartmann layer. As a result, it can be recognized that the
free surface far from the sidewall began to deform immediately after the start of the rotation.
This tendency would become more pronounced as the Hartmann number is increased.
However, since it is known that several grids are required within the Hartmann layer to
keep its numerical accuracy, the computation of such a high Hartmann number would
be more difficult. To overcome this difficulty without having several grids in the layer,



Fluids 2021, 6, 438 11 of 15

a special treatment of the Hartmann layer [18] could be useful even in this deformable
free-surface problem.
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Figure 7. Spin-up in the presence of magnetic field with free surface for Ar = 1, E = 6.25 × 10−4, Fr = 1.5 and Ha = 50 at
τ = 10 (upper plots) and 50 (lower plots). (a) The left half is the contour map of azimuthal velocity, and the right half is the
Stokes stream function; (b) the left half is the contour map of electric potential, and the right half is the pressure; (c) the
left half is the contour map of azimuthal current density, and the right half is the meridional current density. It should be
noted that the range of contour maps is not common since the secondary flow attenuates as time evolves. (a) Azimuthal
velocity (V) and Stokes stream function (ΨS); (b) Electric potential (Ψe) and Pressure (P); (c) Azimuthal current density (Jθ)
and Meridional current density (ΨJ).
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Figure 8. Contour maps of azimuthal velocity shown on the left and meridional flow (Stokes stream function) shown on
the right with free-surface evolution for Ar = 1, E = 6.25 × 10−4, and Fr = 1.5 at τ = 5 in (a,b), 10 in (c,d), and 20 in (e,f).
The left-hand plots show the case of Ha = 0, and the right-hand plots show the case of Ha = 50. (a) τ = 5, Ha = 0; (b) τ = 5,
Ha = 50; (c) τ = 10, Ha = 0; (d) τ = 10, Ha = 50; (e) τ = 20, Ha = 0; (f) τ = 20, Ha = 50.

4. Discussion

In this study, a numerical model for solving the free-surface spin-up flow of a liquid
metal placed in a cylindrical container was shown under the imposition of a uniform axial
magnetic field. As a result of neglecting viscous dissipation and Joule heat generation,
the assumption of axial symmetry with respect to the isothermal flow field was made.
As shown by the computational results, a smaller Ekman number required a finer grid
resolution and a longer calculation time. Therefore, we did not mention the results of
several Ekman numbers (especially with small Ekman numbers) in this paper. In addition,
since there is a meridional flow in the flow field, it is quite natural that the axisymmetric
flow field becomes three-dimensional due to centrifugal force instability when the Ekman
number becomes smaller. By conducting a three-dimensional simulation, it is possible to
pay attention to such a transition of the flow field, which is one of the future issues to be
examined in the MHD spin-up problem.

5. Conclusions

Numerical computations of spin-up from rest of a liquid metal with a deformable
free surface were carried out under the influence of a uniform axial magnetic field. The
evolutions of three components of velocity and electric current density were successfully
obtained using the level-set method and HSMAC method. The flow phenomenon with
a free surface under the magnetic field depends on various dimensionless numbers and
the geometry of the container. Since it is not possible to investigate all the effects of
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dimensionless parameters in detail, the effects of Weber number, Ekman number, and
Hartmann number were computed with a density ratio of 800, viscosity ratio of 50, Ar = 1,
and Fr = 1.5.

During spin-up in the absence of a magnetic field, it was found that the development
rate of the azimuthal velocity of the gas phase was much faster than that of the liquid
phase due to the difference in the physical properties of the liquid and the gas. This was
because the Ekman number based on the liquid property was 6.25× 10−4, while the Ekman
number of the gas was 0.01, i.e., 16 times larger when the rotation speed of the container was
fixed. Due to this difference in the azimuthal velocity between the gas and the liquid, the
liquid received azimuthal momentum from that of air flow. Although such a characteristic
phenomenon as a two-phase flow was observed, there was no significant difference from
the single-phase spin-up in the development process of the meridional flow.

On the other hand, during spin-up when the magnetic field was applied, the transfer
mechanism of the azimuthal momentum was fundamentally different from that without a
magnetic field due to the influence of the Lorentz force acting only on the liquid phase. It
was found that the azimuthal momentum was directly transferred in the axial direction
from the rotating bottom wall to the core through the Hartmann layer. Since the azimuthal
velocity began to develop from the initial stage of spin-up, the deformation of the free
surface also began accordingly. This was the most notable difference from the nonmagnetic
spin-up case.
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Nomenclature

a radius of cylindrical enclosure (m)
Ar aspect ratio = a/h (-)
b0 absolute value of magnetic flux density (T)
b magnetic flux density (T)
E Ekman number (-)
eR unit vector in radial direction (-)
eZ unit vector in axial direction (-)
eθ unit vector in azimuthal direction (-)
fst surface normal force (N/m3)
Fr Froude number (-)
g gravitational acceleration (m/s2)
g absolute value of gravitational acceleration (m/s2)
h initial height of liquid (m)
Ha Hartmann number (-)
Hε(ϕ) smoothed Heaviside step function (-)
j electric current density = (jr, jθ , jz) (A/m2)
jr radial component of electric current density (A/m2)
jz axial component of electric current density (A/m2)
jθ azimuthal component of electric current density (A/m2)
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J dimensionless electric current density (-)
JR dimensionless radial component of electric current density (-)
JZ dimensionless axial component of electric current density (-)
Jθ dimensionless azimuthal component of electric current density (-)
p pressure (Pa)
P dimensionless pressure (-)
r radial coordinate (m)
R dimensionless r coordinate (-)
t time (s)
u velocity = (u, v, w) (m/s)
u radial velocity component (m/s)
U dimensionless radial velocity component (-)
v azimuthal velocity component (m/s)
V dimensionless azimuthal velocity component (-)
w axial velocity component (m/s)
W dimensionless axial velocity component (-)
We Weber number (-)
z axial coordinate (m)
Z dimensionless z-coordinate (-)

Greek symbols
γ surface tension (N/m)
δε(ϕ) smoothed Dirac delta function (1/m)
κ curvature of interface (1/m)
µ viscosity (Pa·s)
ν kinematic viscosity = µ/ρ (m2/s)
ρ density (kg/m3)
σ electric conductivity (1/(Ω·m))
τ dimensionless time (-)
ϕ level-set function (m)
Φ dimensionless level-set function (-)
Ψe electric potential (V)
Ψe dimensionless electric potential (-)
ΨJ Stokes stream function for electric current density (-)
ΨS Stokes stream function for velocity (-)
Ω angular velocity (rad/s)

Subscripts or superscripts
G gas
i,k grid point
L liquid
n time step
m iteration number
Φ dependence of level-set function
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