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Abstract: Particle tracking is a competitive technique widely used in two-phase flows and best
suited to simulate the dispersion of heavy particles in the atmosphere. Most Lagrangian models
in the statistical approach to turbulence are based either on the eddy interaction model (EIM) and
the Monte-Carlo method or on random walk models (RWMs) making use of Markov chains and a
Langevin equation. In the present work, both discontinuous and continuous random walk techniques
are used to model the dispersion of heavy spherical particles in homogeneous isotropic stationary
turbulence (HIST). Their efficiency to predict particle long time dispersion, mean-square velocity
and Lagrangian integral time scales are discussed. Computation results with zero and no-zero mean
drift velocity are reported; they are intended to quantify the inertia, gravity, crossing-trajectory and
continuity effects controlling the dispersion. The calculations concern dense monodisperse spheres
in air, the particle Stokes number ranging from 0.007 to 4. Due to the weaknesses of such models, a
more sophisticated matrix method will also be explored, able to simulate the true fluid turbulence
experienced by the particle for long time dispersion studies. Computer evolution and performance
since allowed to develop, instead of Reynold-Averaged Navier-Stokes (RANS)-based studies, large
eddy simulation (LES) and direct numerical simulation (DNS) of turbulence coupled to Generalized
Langevin Models. A short review on the progress of the Lagrangian simulations based on large
eddy simulation (LES) will therefore be provided too, highlighting preferential concentration. The
theoretical framework for the fluid time correlation functions along the heavy particle path is that
suggested by Wang and Stock.

Keywords: turbulent dispersion; Lagrangian modeling; eddy interaction model; random walk model;
Langevin–Markov chain model; heavy particle; theory of Wang and Stock

1. Introduction

In order to simulate multiphase flows, both Eulerian and Lagrangian models have
been developed and rendered more efficient over the last four decades [1–4]. Lagrangian
particle tracking methods are particularly developed for turbulent dispersion problems, at
first for dilute multiphase flows [5,6] and more dense gas–solid flows [5,6] in the industrial
and engineering field or to simulate atmospheric pollution of tracers or heavy particles [7].
However, the dynamic response of a heavy particle to a turbulent flow is different from
that of a tracer behaving like a fluid element because of inertia and gravity effects. Insofar
as the Lagrangian approach pioneered by Taylor [8] for turbulent diffusion is no longer
valid, it must be reformulated. A plethora of models have been proposed to simulate the
turbulent dispersion of heavy particles. Most are based on a Monte-Carlo “process.” In
the present paper, Monte-Carlo process is used as an abbreviation for the well-known
Monte-Carlo computational method, using repeated random sampling to numerically
analyze the turbulent dispersion process. The average ensemble over many trajectories
of discrete particles is representative of their dispersion in a turbulent carrier flow. The
trajectories are obtained by solving numerically the equation of motion, taking into account
the fluid velocity along the trajectories of the discrete particles. How the fluid velocity
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“seen” or “experienced” along the trajectory can be simulated is the crucial question in
all Lagrangian models. Although experiments can provide Eulerian—at a fixed point—
information, dispersion needs information in a Lagrangian frame, and the relationships
between Eulerian and Lagrangian statistics or an accurate value of the Kolmogorov constant
are not yet available [9,10].

The Lagrangian models, well-adapted to the study of dilute gas–solid flows, are in-
teresting for modeling the dispersion of the particles emitted from a point source even
in complex geometry configurations. These models are the most appropriate ones for
studying particle dispersion in turbulent flows insofar as they allow to take into account
relatively easily phenomena such as interactions between particles, wall-particles collisions
or the physical laws of each particle (combustion, evaporation, rotation, etc.). Lagrangian
stochastic (LS) models used for predicting the turbulent dispersion of the particles can be
divided into two important classes: the eddy interaction model (EIM, [11]) and the random
flight or walk model (RWM, [7,12–14]). The main difference between these two kinds
of Lagrangian models is the method they use to statistically generate the turbulent fluid
velocity in the particle surrounding, since this fluid velocity along the particle path is nec-
essary to solve the equation of motion and calculate the trajectory. Other classifications are
indeed possible. However, they are all influenced by the way the fluid velocity is simulated;
models will have different abbreviations or terminology, whether or not they have been
developed early for turbulent diffusion, homogeneous or shear turbulence or heavy parti-
cles, for EIM, RWM, NLWs (normalized Langevin models), GLW (generalized Langevin
equations), SDEs (stochastic differential equations), DRW (discrete/discontinuous random
walk) or CRW (continuous random walk) models.

A Monte-Carlo (MC) process will be associated to the EIM–DRW class; the fluid
Lagrangian velocity is generated in this case through independent random numbers, and
the fluid velocity is kept constant for a given time of the order of the eddy lifetime. The
CRW models are related to Markov chains as well as a Langevin equation, and make use
of random numbers with a one-step memory to simulate the fluid velocity “continuously”.
Multistep Markov chains have also been developed over the last 30 years and can be
classified as matrix methods. They are more efficient but need more computer resources.

Numerous studies in turbulent diffusion and dispersion use models based on Monte-
Carlo methods or Markov chain methods, and the validation of these models is generally
performed on a few available experimental test flow cases in grid turbulence [15,16] or
the center region of a pipe flow [17]. These flows are well adapted to simulate an ideal
turbulent field, homogeneous isotropic stationary turbulence (HIST). The main objectives
of the present work are to present an overview of their efficiency to simulate the dispersion
of heavy particles in HIST, since Lagrangian modeling is a tool also developed in more
complex flow configurations. The reference will be the theoretical contribution of Wang
and Stock [18–20]. It will be shown that most models are far from satisfactory, even in such
an ideal theoretical turbulent field as in the case of dilute gas–solid particle-laden flows.

The article is organized as follows. Section 2 gives a summary of the theory on
turbulent diffusion, a recall of the turbulent scales, equation of motion and parameters
governing turbulent dispersion of heavy particles. Section 3 is dedicated to eddy interaction
and classical random walk models. Numerical results of modeling turbulent dispersion
in HIST with these models are developed and discussed in Section 4. Finally, Section 5
is dedicated to a short overview of the progress on random walk models based on the
generalized Langevin equation and LES modeling and introduce preferential concentration.

2. Theoretical Background

Turbulent diffusion, also called passive dispersion, refers to the spreading in turbulent
flows of scalar quantities such as heat, light seeding particles, chemical species, vectors, e.g.,
momentum, or tensors, e.g., second-order velocity correlation functions. On the other side,
turbulent dispersion, or particle dispersion, consists of the spreading, due to turbulence,
of discrete solid particles or droplets exhibiting inertia and a mean relative fluid–particle



Fluids 2021, 6, 145 3 of 48

velocity due to gravity. In a turbulent flow, the particle motion is influenced by two
mechanisms that make the particle dispersion more complex than the fluid diffusion, one
relevant to the turbulent carrier flow, another related to the particle properties. Sometimes,
turbulent dispersion includes diffusion of particles having such small dimensions that
inertia vanishes. In any case, effects of molecular diffusion are masked by the turbulent
effects, a realistic assumption, except in the near-wall regions, where molecular mixing
becomes important.

2.1. Taylor’s Turbulent Diffusion Theory and Batchelor’s Generalization

The seminal theory of turbulent diffusion was first formulated by Taylor [8], in analogy
to Brownian motion transposed to continuous movements of fluid particles or passive
markers. Taylor presented a first attempt at a theory describing the turbulent diffusivity. In
a turbulent field homogeneous in space and stationary in time, he studied the Lagrangian
turbulent diffusion of fluid particles from a purely kinematic point of view, and proposed
limiting cases for small and large diffusion times. He considered the continuous random
motion of a tagged fluid packet (eddy). The fundamental result was a relation between
the mean lateral square fluid point displacement y2

2(t), the mean-square fluctuating eddy
velocity u2

2 in the direction transverse to the mean flow and the Lagrangian velocity

correlation of the fluid R f
L22(τ):

y2
2(t) = 2u2

2

∫ t

0

∫ t′

0
R f

L22(τ)dτ dt′, (1)

R f
L22(τ) =

u2(t′)u2(t′ + τ)

u2
2

, (2)

the overbar holds for time statistics, e.g., the time average equal to ensemble average under
the ergodic assumption in stationary turbulence. For small times, the correlation R f

L22(τ) is
close to 1, from which it follows that y2

2(t) = u2
2t2. For long times, the velocity fluctuations

become uncorrelated and a Lagrangian fluid integral time scale T f
L22 can be defined as

T f
L22 =

∫ ∞

0
R f

L22(τ) dτ, (3)

and mathematically one can show that

y2
2(t) = 2u2

2

∫ t

0
(t− τ) R f

L22(τ) dτ ≈ 2u2
2T f

L22 t. (4)

By analogy to Einstein’s formulation of diffusion by Brownian motion, turbulent
diffusivity for the fluid particles is then given by

D f
22(t) =

1
2

d
dt

y2
2(t). (5)

For long time dispersion, a turbulent diffusivity can then be introduced by

D f
22 = D f =

1
2

d
dt

(
y2

2(t)
)
= u2

2

∫ t

0
R f

L22(τ)dτ = u2
2 T f

L22 =

√
u2

2 ΛL22 (6)

as well as a Lagrangian integral lengthscale ΛL22 =
√

u2
2TL22, a space length on which a

marker substantially follows a single direction (direction 2 here).
Well-known papers by Kampe de Feriet [21,22] and Frenkiel [23,24] put the fundamen-

tal work of Taylor on turbulent diffusion and statistical theory of turbulence in highlight.
Batchelor [25,26] extended Taylor’s results in a more rigorous study on three-dimensional

stationary homogeneous non-isotropic turbulence, the diffusion of fluid particles being
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statistically described by tensors. The stationary Lagrangian velocity autocorrelation of a
single fluid particle is given by

R f
Lij(τ) =

ui(t′)uj(t′ + τ)

uiuj
=

ui(t′)uj(t′ + τ)

uiRMSujRMS
(7)

where uk and ukRMS =
√

u2
k are the fluid velocity fluctuation and the root mean square

(rms) of the velocity fluctuations in direction k. The mean squared dispersion can be written
as a tensor by

yi(t)yj(t) = yiyj(t) = 2
√

u2
i

√
u2

j

∫ t

0
dt′
∫ t′

0
R f

Lij(τ)dτ = 2uiRMSujRMS

∫ t

0
dt′
∫ t′

0
R f

Lij(τ)dτ, (8)

and the Lagrangian time integral scales are

T f
Lij =

∫ ∞

0
R f

Lij(τ)dτ =
∫ ∞

0

ui(t′)uj(t′ + τ)

uiRMSujRMS
dτ. (9)

Fluid turbulent diffusivity can now be defined in terms of a generalized diffusion
tensor:

D f
Lij(t) =

1
2

d
dt

(
yi(t)yj(t)

)
=

√
u2

i

√
u2

j

∫ t

0
R f

Lij(τ)dτ. (10)

Again for short times, dispersion coefficients increase linearly with time. For long
times, the integral of the Lagrangian correlation coefficients are constant and equal to an
Lagrangian integral time scale T f

Lij. Therefore, for long times, the particle diffusivity tensor
can be written as

D f
Lij(t→ ∞) =

√
u2

i

√
u2

j T f
Lij. (11)

In terms of turbulent energy spectra,

E f
Lij(ω) =

2
π

∫ ∞

0
R f

Lij(τ) cos(ωτ) dτ, (12)

the expression of the mean-square displacement is given by

yiyj(t) =
∫ ∞

0
E f

Lij(ω)
2(1− cos ωt)

ω2 dω = t2
∫ ∞

0
E f

Lij(ω)
(sin ωt/2)2

(ωt/2)2 dω, (13)

which shows that turbulent diffusion increasingly depends on the lower frequency compo-
nents of the velocity power spectral density distribution as the time of diffusion increases.

2.2. Toward Turbulent Dispersion

Taylor’s and Batchelor’s formalism can be extended to turbulent dispersion of discrete
solid particles in two-phase flows. There is no contradiction with their theory, provided
that the quantities are interpreted as particulate characteristics, i.e., the displacement and
velocity of fluid particles are replaced by those of the discrete solid particle. Turbulent
dispersion is controlled by both the properties of the particles and those of the fluid
flow—mean and turbulent flow—carrying the dispersed phase.

Particles can be characterized by their density ρp and their size or diameter dp. For
the carrier fluid phase, apart from its density ρ f and dynamic viscosity µ f , one has to
consider both the convection by the mean velocity U and the time and length scales of the
turbulent flow. Furthermore, both Eulerian and Lagrangian scales can govern dispersion.
While diffusion and dispersion of very small particles are controlled by Lagrangian scales,
Eulerian quantities rather dominate the dispersion of larger particles.
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2.2.1. Scales of Turbulent Motion

The Eulerian and Lagrangian scales characterizing fluid turbulence are identified in
several textbooks [27–30] or fundamental papers [31]. Fluid turbulence can be described in
terms of Lagrangian fluid particle properties, rms fluid velocities u′, sometimes noted as u0

in the paper, time correlation functions R f
Lij(τ), integral (or macroscales) times scales T f

Lij
or lengths scales ΛL = u0TL, and a microscale τL, also called Taylor scale. Eulerian scales
can be more easily obtained by experiments, the measuring probes are fixed in space, and
time or space correlations can be calculated. In a fixed frame, the Eulerian integral time
scale, TE, as well as the microscale τE are obtained from the Eulerian correlation coefficient
at a fixed point in the fluid with a time lag τ:

RE(τ) =
u(t′)u(t′ + τ)

u2
, TE =

∫ ∞

0
RE(τ) dτ,

and TE is a good measure of the longest correlation time for the turbulent velocity at a fixed
point. To obtain the time microscale, one can expand the Eulerian correlation coefficient
around zero:

RE(τ) = 1 +
τ2

2!

(
d2RE

dτ2

)
τ=0

+ . . . ≈ 1− τ2

τ2
E

.

This parabola intersects the x-axis at τ = τE. The microscale τE is a measure of the
rapid time changes in u(t). The Eulerian integral scales characterize the energy-containing
eddy length scales, they are obtained in terms of normalized two-point velocity (space)
correlations.

f (r) = RE(r) =
u1(
→
r 0)u1(

→
r 0 + r

→
x )

u2
, LE11 =

∫ ∞

0
f (r) dr, (14)

REij(
→
r 0, r) =

ui(
→
r 0)uj(

→
r 0 + r

→
e i)

u2
, LEij =

∫ ∞

0
REij(r) dr. (15)

LEij is a good measure of the longest space correlation for two fluctuating velocity

components at two points a distance r
→
e i apart. Of interest are two space correlations in

homogeneous turbulence,

f (r) = RE11(r) =
u1(
→
r 0)u1(

→
r 0 + r

→
e 1)

u2
, LE11 =

∫ ∞

0
f (r) dr. (16)

g(r) = RE22(r) =
u2(
→
r 0)u2(

→
r 0 + r

→
e 1)

u2
, LE22 =

∫ ∞

0
g(r) dr. (17)

In isotropic stationary turbulence, g(r) = f (r) + r
2

d f
dr and if f (r) = exp(−r/LE11), one

easily shows that LE22 = LE11/2 and that g(r) has negative loops.
Eulerian length microscales λ f , λg can be defined, too, as for the microscale τE. Partic-

ularly in low level turbulent flows, (u’ << U), the frozen pattern hypothesis of Taylor can
be applied: f (r = Uτ) ≈ RTE(τ) and LE11 = UTE,λ f = UτE.

Eulerian correlations can also be measured in a coordinate frame moving at the
average velocity of the flow. In that case,

RmE(τ) =
u(t′)u(t′ + τ)

u2
, TmE =

∫ ∞

0
RE(τ) dτ, (18)

and the integral Eulerian space scale will be represented by LE11 = (u2)
1/2

TmE = u0TmE =
UTE in most cases. Further, turbulence can be described in terms of eddy size and eddy
lifetime [30]. The mean flow can be scaled by U, a characteristic of the local mean veloc-
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ity, the turbulence by turbulent velocity u’ and a turbulent kinetic energy k ∝ 3u2
0/2 in

homogeneous isotropic turbulence. The size of the largest eddies is related to the physical
boundaries of the flow and to an integral length scale L f , and it is generally assumed that
L f = LE = u0TmE = UTE. The size of the largest eddies, L f can be defined by the kinetic en-
ergy of the flow, k ∝ 3u2

0/2, and the energy dissipation rate ε, L f = k3/2/ε, and an integral
time scale T0 is commonly referred to as the large eddy turnover time—T0 = L f /k1/2 ∝ k/ε.
The large energy-containing eddies lose their kinetic energy within the turnover time and
the energy transfer rate is ε ∝ k/T0 ∝ k3/2/L f . The smallest eddies can be characterized by
the smallest dissipation scales, according to Kolmogorov, and depend on the dissipation
rate and viscosity:

• the Kolmogorov micro-length scale η = (ν3/ε)
1/4 ∝ (ν3L/U3)

1/4,
• the Kolmogorov time scale τη = (ν/ε)1/2,

where ν is the kinematic viscosity of the fluid, and ε is the turbulent kinetic energy
dissipation rate. The Eulerian microscale (or Taylor scale) λ marks the transition from
the inertial subrange to the dissipation range [27,31], the length scale for which viscous
dissipation begins to affect the eddies:

λ = u0
√

15ν/ε ≈
√

10kν/ε.

Note: More generally, space–time correlations certainly play a role in dispersion, too.
Literature data on relationships between Eulerian and Lagrangian scales of turbulence have
been developed in some review papers [9,10], but are still contradictory, generally ΛL ≈
LE = L f , TL ≈ TmE, but turbulence structure parameters can be introduced, for instance,
m = u0TmE/L f , the ratio of the moving scale TmE to the eddy turnover time T0 = L f /u0,
or other non-dimensional parameters such as d = ΛL/L f , βC = TL/TE, βT = TL/TmE, in
such case d = mβT = mβCu0/U. Although it is often accepted that for simple turbulent
flows (grid turbulence, channel flows) ΛL ≈ LE = L f and TL ≈ TmE,m ≈ 1, significant
differences can be observed. Taylor’s Lagrangian macroscale can be related to the turbulent

energy dissipation rate by the “Universal Kolmogorov constant” C, TL =
2·u2

0
Cε , however, the

constant C can vary between 3 and 10 depending on the Reynolds number of the flow [10].
Since the dispersion of discrete particles depends on the properties of the fluid and

particles, one can of course classify heavy particles according to their diameter (characteris-
tic size) compared to the different turbulent scales, the Kolmogorov scale or the smallest
eddy size and the integral scale L. In solid–gas flows or particle-laden flows, it is often
assumed that the particle size is smaller than the Kolmogorov scale η.

Nevertheless, other fluid and particle properties, such as fluid and particle densities,
control inertia and gravity effects in turbulent dispersion. The following section will focus
on the equation of motion of a single heavy particle in a fluid.

2.2.2. Equation of Motion

The trajectory of a discrete particle in a flow is governed by its equation of motion.
A sphere moving in a fluid is subjected to gravity, viscous and pressure forces, and other
non-stationary forces. Several textbooks and articles on multiphase flows or reviews have
provided a summary of the different equations of motion of an isolated sphere [32–36].

One of the most recent forms for the equation of motion for an inertial sphere was
given by Maxey [35] or Maxey-Riley [36]. If a particle has a diameter dp and a mass mp, its
motion is given to a good approximation by Newton’s equations:

mp
d
→
v (t)
dt = (mp −m f )

→
g + m f

D
Dt
→
u p(

→
r (t), t)− 1

2 m f
d
dt

(
→
v (t)−→u

p
(t)− d2

p
40∇2→u (

→
r (t), t)

)
−3dpπµ f

→
H(t)− 3

2 πd2
pµ f
∫ t

0
d
→
H(τ)
dτ

dτ√
πν f (t−τ)

(19)
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where
→
H(t) =

→
v (t)−→u

p
(
→
r (t), t)−

d2
p

24
∇2→u (

→
r (t), t).

Here
→
r (t) and

→
v (t) = d

→
r /dt are the position and velocity of the particle, respectively,

and
→
u

p
(
→
r (t), t) is the undisturbed fluid velocity at the location of the particle. m f denotes

the mass of the fluid displaced by the particle and µF the dynamic viscosity. The derivative
D
Dt denotes the time derivative following a fluid element, D

→
u

Dt = ∂
→
u

∂t + (
→
u•
→
∇)→u , whereas

d
dt is the time derivative following the moving sphere, d

→
u

dt = ∂
→
u

∂t + (
→
v •
→
∇)→u .

For turbulent dispersion in gas–solid flows, it is reasonable to consider uniquely
the drag and gravity forces, eventually buoyancy, and for heavy particles buoyancy can
be neglected as well as non-stationary forces, Basset history forces, Faxen term, added
mass. The equation of motion of a spherical particle can then be simplified to an equation
generally used in gas–solid flows still including buoyancy:

d
→
v (t)
dt

=
vch f

τs(1 + 1/2ρ)

→
g − f

τs(1 + 1/2ρ)

(→
v (t)−→u

p
(t)
)

, (20)

or with gravity in direction 3:

dvi(t)
dt

= − vch f
τs(1 + 1/2ρ)

δi3 −
f

τs(1 + 1/2ρ)

(
vi(t)− up

i (t)
)

(21)

where
→
v (t) is the instantaneous particle velocity,

→
u

p
(t) is the instantaneous fluid velocity

at the position of the discrete heavy particle, ρ = ρp/ρF is the ratio of particle to fluid
specific mass, τs = ρpd2

p/(18ρFνF) = ρpd2
p/(18µF) is the Stokesian particle relaxation

time, or the particle aerodynamic response time (assuming Stokes drag applies) and the
factor f is a correction to small particle Reynolds numbers and is given, for instance,
by the drag correlation of Schiller and Naumann [37] and generally used in gas–solid
flows [32–34,38,39].

f (Rep) =
CD
CDS

= CD(Rep)Rep/24,

the ratio of the effective drag to the Stokesian drag (non-Stokesian correction factor),

f = 1 + 0.15Re0.687
p for 1 < Rep < 800,

Cd = 0.44, f = 0.44Rep/24 for Rep > 800.

Rep is the particle Reynolds number,

ReP =
dp‖
→
v −→u

p
‖

ν f
=

dpvch

v f
.

vch = (ρ− 1) · τsg/(ρ · f ) is the mean drift or fall velocity due to gravity g in direction
3 (vch > 0).

For dilute gas–solid flows, Equation (21) can be honestly reduced to the simplified
equation of motion without buoyancy, with

dvi(t)
dt

= −gδi3 −
f

τs

(
vi − up

i

)
= −vch f

τs
δi3 −

f
τs

(
vi − up

i

)
. (22)

The instantaneous slip velocity
(

vi(t)− up
i (t)

)
is of importance because it fixes the

particle Reynolds number Rep, the nonlinear factor f and depends on the fluid velocity

up
i (t) = ui(

→
Xp(t), t) at the particle position

→
Xp(t).
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The equations can be nondimensionalized using u0 for the velocity, TL or TmE for time,
and LmE = u0TmE for length. Here, for convenience, the moving Eulerian integral time
scale, TmE, is chosen. Multiplying Equation (22) by TmE

u0
yields

dvi ∗ (t∗)
dt∗ = − gTmE

u0
δi3 +

f TmE
u0τs

(
vi − up

i

)
= −vch f TmE

u0τs
δi3 +

f
St

(
vi ∗ −up

i ∗
)
= − γ

St
δi3 +

f
St

(
vi ∗ −up

i ∗
)

(23)

dyi ∗ (t∗)
dt∗ = vi ∗ (t∗).

These dimensionless equations of motion contain three parameters:

• the Stokes number St = StmE, based on the Eulerian moving scale TmE is a measure of
the relative importance of the particle inertia; it characterizes the particle’s response to
the turbulent fluid velocity fluctuations;

• the drift parameter γ, which is a dimensionless drift velocity related to the turbulence
level, given by

γ =
vch
u0

=
gτs

u0
with vch = (ρ− 1) · τsg/(ρ · f ) ≈ τsg;

• the drag correction factor f , a function that increases with Reynolds number (fluid–
particle drift velocity or particle size).

The three parameters are not independent since the relative drift parameter γ and
the Stokes number St depend on the particle relaxation time for a given turbulence; in
case of no gravity, the particle motion is controlled by inertia (IE e.g., Inertia effect). With
gravity, both inertia and drift will control what is called “crossing-trajectory effects”—CTE.
Further nonlinear drag can modify the behavior since the parameter f is correlated to the
drift velocity.

A fourth parameter has to be considered, for the dependence of γ on the relaxation
time: it can be defined as an eddy Froude number [40], the ratio of eddy convective forces
to gravitational forces

Fr =
u2

0
gLE

∝
St
γ

.

Note on Stokes Numbers

Stokes numbers are the ratio of the response time of the particle, τs or τp = τs/ f
to a time scale of the fluid. τp is a corrected response time due to non-Stokesian drag.
Diffusion of tracers or dispersion of small particles is controlled by Lagrangian scales,
but for larger and heavy particles dispersion is governed by Eulerian scales. That is why
several definitions of the Stokes numbers exist, mainly because particles are carried by the
mean flow (even with mean drift) but are dispersed by turbulence, but care has to be made
with all publications mentioning a Stokes number:

• Stη = τp/τη based on the Kolmogorov microscale,
• StmE = τp/TmE based on the Eulerian moving macroscale,
• StE = τp/TE based on the classical Eulerian macroscale,
• StL = τp/TL based on the Lagrangian time scale,
• StMF = τp/TMF based on a time scale of the mean flow TMF = L/U indicating if the

particles follow the mean fluid flow.

The particle response to turbulence is generally based on the Stokes number StmE.

2.2.3. Qualitative Analysis of Turbulent Dispersion

The motion of a single spherical particle in a homogeneous isotropic turbulent field
differs from that of a fluid point due to both the characteristic properties of the particle
(size, density, inertia and free-fall velocity) and the turbulent flow field (time and length
scales). Considering heavy particles, in general, the Stokes number St and the drift term
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γ = vch
u0

= gτs
u0

control the trajectory and three effects control the dispersion. Inertia, the first
mechanism, inhibits the particle response to high-frequency turbulent fluctuations of the
carrier flow. Gravity can generate a relative mean drift velocity vch and particles will not
be kept trapped by the successive eddies but will cross them; this was first pointed out by
Yudine [41] as the effect of crossing trajectories (CTE) or overshooting. Even in HIST, the
Lagrangian fluid velocity correlation tensor is not spherical; dispersion in gravity direction
(3 in the present text) is different from that in the lateral directions and this constitutes the
continuity effect (CE) as introduced by Csanady [42]. Spatial correlation in gravity direction
is larger than in the lateral directions, in particular, if the drift parameter increases.

Although not unique, a classification is proposed in Table 1 considering the particle
size, the Kolmogorov length and the Stokes number St = τp/τL where τp is the particle
relaxation time and τL is the Lagrangian time microscale. This classification is based on
physics and is, in the spirit of Reynolds-averaged Navier–Stokes (RANS) computations,
certainly appropriate. Cases 1 and 2 refer to the assumption that dp > ηK . In these cases,
on a computational level, depending on the grid meshing, the filter scale D in case of LES
and the particle size, another aspect will directly concern the equation of motion. The
point-approximation for the particle and fluid velocities in the equation of motion can be
no more valid, if dp > D in LES, and is anyway not valid in direct numerical simulation
(DNS).

Table 1. Classification of dispersion regimes.

Case τp > τL dp > ηK Dispersion Regime

1 yes yes Large structure dispersion with high-frequency cut-off and
turbulence modification, inertia and CTE-CE if drift

2 no yes Large structure dispersion without high-frequency cut-off,
turbulence modification, CTE-CE

3 yes no
Small and large structure influence with damped particle
response to high-frequency fluctuationsInertia effect (IE) and
CTE-CE if drift

4 no no Turbulent diffusion

Cases 1 and 2 concern large particles, bubbles or droplets. In these cases, the turbu-
lence of the carrier flow will be modified, a complex problem in multiphase flows. When
the particle is larger than the smallest turbulence Kolmogorov scales, the fluid–particle
interactions are extremely complex. The influence of the higher wave number components
decreases but at the same time the small-scale structures may be altered by the presence
of the particles. Only a part of the spectrum—larger-scale structures—will contribute to
the dispersion, and the particles will further be perturbed by turbulence of the surround-
ing flow, exerting non-uniform and unsteady perturbations on the particles. If the drift
parameter is non-negligible, inertia (IE), CE and CTE effects will all influence dispersion.
Large and heavy particles (case 1) will only respond easily to the largest energy-containing
structures, IE, CE and CTE interact strongly. Large but less inertial particles (case 2) will be
carried by all structures larger than their size dp .

The cases 3 and 4 hold for particles whose size is smaller than the dissipation scale,
typical of classical gas–solid flows, particularly in atmospheric turbulence. In dilute two-
phase flows, the carrier flow properties are not modified by the particulate phase.

Turbulent diffusion (case 4) concerns tracer particles or small droplets. The entire
spectrum of turbulent energy of the carrier fluid then participates in the turbulent diffusion
of the particles, which easily recognize all the turbulent fluid fluctuations. Furthermore, the
particle will travel in a uniform velocity field during its residence time (the eddy lifetime)
within each specific eddy, without inertia. Then the particles will respond to the entire
energy spectrum of the fluid, and it is reasonable to expect that the root mean-square
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turbulent velocity of the particle coincides with that of the fluid, as the Lagrangian time
scales and the diffusion coefficients, too:

v2 = u2, Tp
L = T f

L , Dp
L = D f

L.

Case 3 is typical of heavy particles in gas–solid flows and can concern liquid–solid
flows too. If τp > τL and dp < ηK the response to rapid velocity fluctuations is damped
or cut-off, although the particles move in and through all possible-sized eddies. In the
absence of gravity, with an increase of the inertia, e.g., for small dense particles, the rms
particle velocity will decrease v2 < u2, whereas it is expected that the particle Lagrangian
integral time scale Tp

L will eventually increase, depending on the relationships between the
fluid Eulerian and Lagrangian scales. However, the effect of inertia on particle dispersion
is not obvious since according to the statistical theory of turbulent dispersion, the particle
diffusivity is the product of the mean-square fluctuating particle velocity v2 and the
Lagrangian time scale Tp

L , although a decrease of the dispersion coefficient is intuitively
expected with inertia effects. In the presence of gravity, CTE and CE effects must be taken
into account, but how they simultaneously modify the dispersion process is quite unclear.
Nevertheless, the CTE influence is opposite to that of inertia; the particle integral time
scale is reduced since the particle will, by overshooting, lose correlation. In that case, it is
expected that v2 < u2, Tp

L < T f
L , Dp

L < D f
L.

Gravity can give rise to appreciable relative mean velocity between the particle and the
carrier fluid. The particles will not remain within an eddy but migrate from one to another.
An overshooting or free-fall time scale can be defined that represents the rate of change
of the eddy structures by the particle. This characteristic time for the crossing-trajectories
effect could be:

TCTE =
le

vch
≈ le

gτs

where vch is the relative fluid–particle velocity V-U or the free-fall velocity and le an
appropriate turbulent eddy length scale.

Nevertheless, there are still two crucial questions. First, a particle moving in a turbu-
lent field is influenced by the instantaneous fluid velocity at its position X(t), which means
that the particle will interact with a fluid spectrum along its trajectory; this spectrum is not
necessarily the fluid Lagrangian or Eulerian spectrum. Secondly, the last effect controlling
turbulent dispersion is less clear. If in homogeneous isotropic stationary turbulence (HIST),
it is evident that the dispersion tensor should be spherical without gravity; intuitively,
in such a turbulent flow, how gravity perhaps modifies this dispersion tensor due to a
continuity effect induced by gravity has to be well understood. The following section
summarizes analytical studies including inertia and gravity effect before the advent of
numerical methods. It will focus on the most important contributions to better understand
the influence of inertia and gravity, CTE-CE, which control the turbulent dispersion of
heavy particles in HIST.

2.2.4. Short Review of Analytical Approaches

A one-dimensional theory of discrete particle dispersion was proposed by Tchen [43].
In Tchen’s theory, it is supposed that no overshooting takes place: if the particle has a
small size, it will remain captured by the same fluid elements along its trajectory. This
assumption is hardly satisfied, since external forces, gravity, injection conditions can cause
relative mean velocity between a discrete particle and the fluid particle. This is particularly
true for heavier particles and when the ratio between the material densities of the particle
and fluid is large. Tchen proposed an equation of motion that, once simplified, reduces to
linear drag:

dv
dt = u−v

τs
where τs is the Stokesian relaxation time.
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By introducing the fluid and particle Lagrangian energy-spectrum density functions,
a Fourier transform solution of the one-dimensional equation of motion without grav-
ity [44,45] can be obtained. The main results are

v2 = u2 1
1+τS/T f

L

(known as the Tchen-Hinze model [46]) and the Schmidt number

Sc = Dp

D f =
(

1 + τs
TL

)−1
= TL

TL+τs
, valid for small relaxation times and no overshooting.

The particle mean-square velocity and diffusion coefficient should decrease with inertia.
Insofar as drag is a damping force, the dynamics of heavy particles is reduced to the small
wave numbers of the spectrum, i.e., the larger structures.

Early studies [47,48] on turbulent diffusion in the atmosphere demonstrated that
heavy particles do not move surrounded by the same fluid particle. When they fall, they
cross many turbulent structures and therefore move from eddy to eddy. The concept of
slip fluid–particle velocity or overshooting was thereby introduced in order to describe
the deterministic gravitational drift drawing particles out of the strongly correlated fluid
environment and thereby reducing the particle diffusivity, as will be shown.

The effect, which might be called an “effect of crossing trajectories,” is described as
such: when falling, a heavy particle crosses trajectories of air particles so that it interacts
consecutively with different air particles. As a result, the succession of velocities of a heavy
particle does not coincide with individual changes of the velocity of an air particle [41]
(p. 186). Yudine stated that the vertical dispersion process depends upon the terminal
velocity in three ways:

– the terminal velocity determines the vertical displacement of the center of dispersion
of the particle; this effect is easily accounted for by introducing a convective term into
the diffusion equation [49,50];

– since the terminal velocity is a measure of the inertia, the particle does not completely
follow the high-frequency fluctuations of the turbulent fluid velocity; thus, Yudine
did not separate inertia and gravity effects;

– if it has an appreciable settling velocity, a particle will fall from one eddy to another,
whereas a fluid point will remain in the same eddy throughout the lifetime of the
eddy; this is one of the first papers mentioning “overshooting”.

Yudine formulated upper and lower limits for the change in the dispersion coefficient
due to the free-fall velocity. In fact, the development of that study was upon space–time
correlations including the free-fall velocity. Particularly, for large terminal velocity vch,
the dispersion coefficient should take an asymptotic form inversely proportional to the
terminal velocity vch, DP ∝ (vch)

−1.
Csanady [42] accounted for the crossing-trajectory effect caused by gravity and es-

timated the reduction of dispersion rate of the heavy solid particles attributed to their
trajectory across the turbulent eddies. Csanady included parameters controlling the disper-
sion of heavy particles.

The first one is the ratio vch/w′, the vertical drift parameter γ, which can be considered
as a measure of the crossing-trajectories effects, where vch is the free-fall velocity and w’

is the vertical fluid turbulent intensity
(

w2
)1/2

. The second one, β, is a ratio between the
Lagrangian and Eulerian integral time scales (Section 2.2.1). A functional form for the
vertical velocity correlation w(0)w(τ) consistent with similar shapes for Eulerian space–
time and Lagrangian fluid point correlations was proposed:

w(0)w(τ) = w2 · exp

−τ(v2
ch + w′2/β2)

1/2

LE


with β =

w′T f
L

LE
, w′ =

(
w2
)1/2

and LE = LEz = LE33 is the vertical integral Eulerian length
scale.
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The asymptotic diffusivity in the vertical direction (subscript z or 3) is easily calculated
by Batchelor’s relations:

Dzz = D33 =
w2LE

(v2
ch + w2/β2)

1/2 . (24)

At large free-falling speeds, both the dispersion coefficient and the variance become
proportional to (vch)

−1, as already stated by Yudine [41].
Csanady [42] introduced the concept of “Continuity effects,” which were found to

reduce the lateral dispersion. Continuity effects refer to the relations existing between the
space correlation functions via the turbulent part of the continuity equation of the fluid.
Therefore, lateral correlations must exhibit negative loops as a consequence of backflow [51]
(p. 18). In terms of diffusion coefficients, Csanady’s study leads to corrected relations for
long diffusion times that could be applied to atmospheric dispersion of heavy particles; the
asymptotic long time Schmidt number is given by:

Scz =
Dp

z
D f

=
Dz

w′2T f
L

=
1

(1 + β2v2
ch/w′2)1/2 =

(
1 +

T f
L

2v2
ch

L2
E

)−1/2

(25)

where D f is the asymptotic fluid diffusivity. β is probably different in the three directions,
due to continuity effects. If we consider exponential space correlations in isotropic turbu-
lence, as stated in Section 2.2.1: LE11 = LE22 = LE33/2, the transverse correlation lengths
being one-half of the longitudinal one.

As a consequence, in lateral directions x and y (or 1 and 2):

Scx ==
Dx

D f
=

1

(1 + 4β2v2
ch/w′2)1/2 =

(
1 + 4

T f
L

2v2
ch

L2
E33

)−1/2

=

(
1 +

T f
L

2v2
ch

L2
E22

)−1/2

. (26)

Later, Lumley [52] (p. 305) reconsidered Csanady’s results and proposed a few changes.
Lumley showed that Csanady’s model gives

Scx =
Dx

D f
==

1

(1 + β2
xv2

ch/w′2)1/2 , with βx = 4/3,

Scz =
Dz

D f
==

1

(1 + β2
zv2

ch/w′2)1/2 , with βz = 2/3 = βx/2,

the subscripts x and z corresponding to horizontal and vertical dispersion of the particles
in the directions that are perpendicular and parallel to the gravity field. In the limit of a
large drift parameter ( γ = vch/w′ → ∞ ), the lateral dispersion coefficient is one-half of
that in the vertical direction, a characteristic of the continuity effect and loss of correlation.
If one assumes that the particle and fluid velocity variance are equal in terms of Lagrangian
time scales, as derived from Csanady’s analysis, two-particle Lagrangian integral scales
can be then obtained:

Tp
Lz = TL

(
1 +

(
β vch

w′
)2
)−1/2

for the gravity direction, and TP
Lx = TL

(
1 +

(
2β vch

w′
)2
)−1/2

for the lateral case, with β = w′ TL/LE = TL/TE indicating a loss of correlation because of
gravity. Nevertheless, Lumley stated that the value βx = 4/3 is much less well determined
than βz = 2/3 and should be determined via a comparison with adequate experimental
data.

Theoretical contributions [53–55] by spectral analysis of Tchen’s equation followed in
terms of transfer functions, confirming that for heavy particles only drag and gravity will
control dispersion. Of interest are two results by Meek and Jones [54]:

• for long time diffusion SC(t→ ∞) = 1
F =

(
1 +

(
vch
v′p

)2
)−1/2

.
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The inertial effects can be significant, particularly when vch < u0. The inertial effects
increase the particle Lagrangian time scale compared to that of the fluid if there is no
crossing-trajectories effect.

• the ratio of the fluctuating velocity variances is

(
v′
u0

)2
=

T f
L11

T f
L11 + τs

=
1

1 + τs/T f
L11

=
1

1 + St11
.

As expected, free-fall effects reduce dispersion and as drift velocity increases its
correlation decreases (CTE effects).

The ratio of the Lagrangian particle and fluid macroscales is written as Tp
L

T f
L

= 1+St11
F ,

which indicates that if inertia effects are dominant, they tend to increase the particle integral
scale in particular if the drift parameter is small. Inertial effects tend to modify the drift
effects, acting to give enhanced correlation and, thus, enhanced dispersion. For large
settling velocity, the Lagrangian particle macroscale Tp

L varies again as 1/vch. Thus inertia
and CTE can have opposite contributions to turbulent dispersion, which is determinant in
understanding the mechanisms of dispersion of heavy particles.

Reeks [40] brought a significant contribution to the understanding of inertia effects.
Reeks discussed the particle dispersion in a stationary homogeneous isotropic turbulence
in both the presence and absence of gravity, using the method initially developed by
Phythian [56] for fluid dispersion. His results indicate that without settling velocity
(without gravity), the asymptotic particle dispersion can be higher than the fluid diffusion
if the structure parameter m = 1, a notable contribution that was experimentally verified
earlier in several cases by Snyder and Lumley [15]. With increasing Stokes number, the
turbulence experienced by a heavy particle is much more correlated to a Eulerian frame,
considering that Eulerian scales can be greater than Lagrangian scales.

At the same time Pismen and Nir [57], according to Kraichnan’s theory [58], explicitly
demonstrated that the particle long time diffusion coefficient can become larger than the
fluid Eulerian diffusivity (Figure 3 in Ref [57]) if the particle relaxation time is significant in
the absence of crossing-trajectory effects. The case of additional free-fall velocity was then
introduced in a subsequent paper by Nir and Pismen [59]. Free drift velocity is a source
of anisotropy and often present in experimental studies where particles are submitted to
gravity and attain a steady terminal sedimentation velocity. A second parameter β∗ = γ,
is discussed under gravity effects. They showed that for small values of β∗, the particle
transverse correlation functions exhibit negative loops as a consequence of the continuity
effects.

3. Numerical Methods
3.1. Eddy Interaction Models (EIM–DRW)
3.1.1. General Description

The first stochastic models used to simulate the turbulent dispersion of particles
were the so-called eddy lifetime or discrete turbulent eddy concept models and were
based on the Monte-Carlo process. The impulse was given by the combustion community;
even developing Eulerian/Eulerian models, a Lagrangian approach treating the behavior
of non-fluid particles seemed essential because it concerns droplets with inertial effects.
The impulse was always the result of the growth of computer performance able to solve
such problems within short times. The computational methods to solve an equation of
motion being available as well as random numbers generation methods, the harder work
was to simulate the turbulence field and its interaction with discrete particles along their
trajectories.

The emerging concept in eddy interaction models is that the interactions between a
particle and a succession of fluid eddies can be characterized by three parameters: an eddy
instantaneous velocity, an eddy lifetime and an eddy size, all relevant to the structure of
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turbulence, the Reynolds stress tensor and the energy spectrum, among others, combined
with Lagrangian and Eulerian time and length scales. The velocity and, in the most general
case, the lifetime and the length of the eddy are all independent random variables. The
turbulent velocity is sampled randomly from a Gaussian probability distribution function
with standard deviation u0 = u′ = (2k/3)1/2.

Even if the principle of the eddy interaction models is to allocate to the randomly
sampled eddy physical properties such as a length or lifetime, the main difficulty is to
statistically simulate the turbulent fluid velocity along the particle trajectories, sometimes
referred to as the turbulence “seen” or “experienced” by the particle. All the models
proposed in the literature try with more or less success to optimize an eddy interaction
time, the transit time a particle needs to cross an eddy, or a correlation length (the eddy
size), but without modeling space–time correlation functions.

Both the inertial particle (P) and the fluid eddy (F) are tracked simultaneously (Figure
1). At the initial instant (t), the particle and the fluid element are at the same location; then,
on account of their different natures, they will separate. Their respective velocities vp(t +
∆t), u f (t + ∆t) and the fluid velocity at the particle position up

f (t + ∆t) will nevertheless
be correlated during a process time TEIM depending on two situations:

• the particle (P) leaves the fluid eddy (F) for entering into a new one when the eddy (F)
lifetime τ∗ is elapsed (condition 1),

• or when the distance between the particle and the eddy center does exceed the eddy
length λ∗ a radial dimension (condition 2).
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The time step TEIM of the Monte-Carlo process will be, if condition 1 is verified, the
eddy lifetime τ∗ or, if condition 2 is respected, the transit time τR taken by the inertial
particle to cover a distance larger than the eddy length λ∗, that is, ‖Xp(t)− X f (t)‖ > λ∗.
The Monte-Carlo time is given by TEIM = min(τ∗, τR). Thus the eddy–particle interaction
time is limited by the eddy lifetime or the transit time needed for the particle to cross
the eddy. The eddy lifetime τ∗ is related to a Lagrangian integral time scale TL or to a
spectrum of the fluid turbulent flow, the eddy length λ∗ to an Eulerian length scale LE of
the turbulence. This kind of model should at least simulate part of the crossing-trajectory
effects (CTEs), and, if possible, the inertia effects by solving the equation of motion with
a time step ∆t << TEIM. In the literature, the EIMs differ in the way the different time
scales TL, τ∗, ∆t or length scales LE, λ∗ are chosen. In these stochastic trajectory models, the
random fluid elements interacting with a particle have a length and time scales , λ∗, τ∗, and
the fluid velocities can be generated with constant ∆t or random time steps δti. The velocity
correlation functions are dependent on the choice of the type of time step probability
density function f (δ ti) as discussed by Wang and Stock [60]. In some cases, the Monte-
Carlo process uses exponential distributions for the random eddy lifetime and size, with
mean values equal to the Lagrangian integral time scale TL and to the Eulerian transverse
length scale LE.
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3.1.2. Historical Background

The basic ideas of a stochastic process for turbulent dispersion of particles were
probably first proposed by Hutchinson et al. [61], and later by Brown and Hutchinson [62].
Eddies would be characterized by both a mean decay time and a “contact” time between an
eddy and a particle, which could not exceed this decay time; a stochastic model simulated
the random displacement of the particle colliding with eddies. Hotchkiss and Hirt [63]
proposed a particle tracking scheme to simulate material transport with reference to a
diffusion equation.

Later, Yuu et al. [64] assumed the particles would be trapped in successive energy-
containing eddies without overshooting as in Tchen’s theory [43], each eddy having a
constant lifetime and a random velocity fluctuation. Dukowicz [65] coupled a trajectory
model to the SOLA code developed at Los Alamos by Hirt et al. [66] for liquid fuel sprays.
The Monte-Carlo model was extended by Gosman and Ioannides [67,68]. The characteristic
size of an eddy was set to the dissipation length scale λ∗ = λe = C3/4

µ k3/2/ε and the eddy
life time was τ∗ = τe = λe/u′ where Cµ is an empirical constant of the k− ε turbulence
model TEACH-T developed at Imperial College. The eddy interaction time is then given by
τint = min(τe, τR) where τR is the transit time. The eddy transit time can be easily obtained
by a linearized equation of motion:

dv
dt

=
u− v

τp
, τR = −τp ln

(
1− λe

vRτp

)
(27)

where vR is the slip velocity and the particle–eddy interaction time is therefore obtained
classically by

τint =

{
τe i f vR ≤ λe/τp

min(τe, τR) otherwise
. (28)

It appears that the eddy interaction time for inertial particles cannot exceed the eddy
lifetime, which is the fluid–particle interaction time or the eddy lifetime with an upper limit
TL, the Lagrangian fluid integral scale. As a consequence, the heavy particle dispersion can
never exceed the fluid–particle diffusion, a deficiency of most of the EIMs.

This method was then extensively used by Shuen et al. [69–73] for confined monodis-
perse particle-laden jets and non-evaporating and evaporating sprays, by choosing τ∗ =

τe = λe/(2k/3)1/2 rather than τ∗ = τe = λe/u′, and they tuned their model to the diffusion
theory in HIST and Snyder and Lumley’s experiment [15].

Chen and Crowe [74] simulated the experiment in a pipe flow of Arnason [75,76]
and for the near isotropic homogeneous grid turbulence in Snyder and Lumley’s experi-
ments [15]; however they calibrated the model by changing the constant Cµ to fit the last ex-
periment. Durst et al. [77] developed a simple EIM based on the previous work of Gosman
and Ioannides [67,68], and the equation of motion was solved analytically for short time
steps. Milojevic [78] optimized the model for various test flow configurations [15,16,75,76].
It was modified for particulate two-phase systems with a size distribution by Sommerfeld
and coworkers [79,80]. Mostafa et al. [81–84] coupled a k− ε model to the EIM to simulate
experimental studies in turbulent evaporating sprays by optimizing the initial constants of
the k− ε to functions. They used the relationship TL = 0.35k/ε. Govan et al. [85] developed
a simplified EIM to simulate their experiments in gas–solid pipe flows.

Ormancey and Martinon [86,87] proposed a 2-D model and introduced a procedure
in order to calculate the fluid velocity at the particle position, taking into account a space
correlation based on Frenkiel’s functions [88]. A relevant constant time step ∆t has to
be used to numerically solve the equation of motion by a classical time discretization of
the ODE’s. To account for the Lagrangian time correlations, eddy lifetimes are sampled
according to a Poisson process. A variable y is sampled with a uniform probability density
on [0, 1] and for each time step, two cases are possible. If y > ∆t/T f

L , the random fluid

velocity is kept constant. If y < ∆t/T f
L , a new fluid velocity u f (t) is generated, according

to a Gaussian probability-density function. Then a Frenkiel space correlation is used and a
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Eulerian step is added to make a space correction to u f (t) to obtain the fluid velocity uP
f (t)

at the particle position, where r is the distance between the particle (P) and the eddy (F) at
time t. This fluid velocity is sampled according to a Gaussian probability-density function
with

RE(r) =
up

f u f

u2
f

= exp
(
− r
(m2 + 1)LE

)
cos
(

mr
(m2 + 1)LE

)
. (29)

In the case where ∆t << T f
L , it can be demonstrated that the process obeys an

exponential fluid correlation function: R f
L(τ) = exp(−τ/T f

L ).
The procedure can be divided into three steps,

• a first estimate of the fluid velocity with the criteria y < ∆t/T f
L ,

• a spatial step that calculates the fluid–particle velocity up
f (Xp(t), t) at time t at Xp(t)

with a correlation function:

RE(r) =
up

f u f

u f (t)u f (t)
,

• the integration of the equation of motion with up
f (Xp(t), t) and v (t) to obtain the new

discrete particle velocity.

Part of this method was used later by Hajji et al. [89] and compared to a spectral direct
simulation model for heavy particles in HIST; nonlinear drag was also investigated for
large Stokes numbers with drift velocity.

In some cases, the Monte-Carlo process used exponential distributions of the random
eddy lifetime and size, with their mean values equal to the Lagrangian integral time scale
TL and to the Eulerian transverse length scale Lg. Kallio and Reeks [90] modeled particle
deposition in an inhomogeneous boundary layer with random time scales drawn from an
exponential probability density function (PDF). Burnage et al. [91–94] proposed an EIM
based on Poisson and exponential distributions for the random eddy lifetime and size.

Most complete papers on the eddy interaction models and characteristics of the
associated Monte-Carlo process are those written by Wang and Stock [18–20] and Gra-
ham [11,95–97] with mathematical arguments to clear the problem of self-consistency as
pointed out by Kallio and Reeks [90], but also to make a real distinction between the
standard eddy lifetime τ∗ or τe also defined as the fluid–particle interaction time Tf pit
by Graham, and a maximum interaction time TMax, which can be randomly sampled,
too [97]. TMax is independent of Tf pit and its choice determines a relationship between the
turbulence structure parameter β = u′TL/LE and the ratio of the Lagrangian and Eulerian
integral time scale TL/TE. It enables finite-inertia particles to disperse faster than fluid
particles. Clearly, the particle–eddy interaction time is given by

τint =

{
Tf = 2τe i f vR ≤ 2λe/τp
min(Tmax, τR) otherwise

with τR = −τp ln
(

1− λe

vRτp

)
(30)

where the factor 2 holds for self-consistency.
Wang and Stock [60] analyzed the relationships between different time step probability

density functions f (te), their mean value T and the Lagrangian integral fluid correlation
time TL. Graham [95–97] investigated the performance of the EIM in several of his papers
and proposed enhancements in order to take into account the three effects, CTE, inertia
and continuity, in inhomogeneous flows. He completed the study of Wang and Stock [5]
and provided relations between the EIM, Lagrangian autocorrelations and Eulerian (fixed-
point) correlations. These improved EIMs predicted that inertia effects without gravity can
in some cases increase the long time dispersion of heavy particles, as was already obtained
theoretically by Reeks [40] and Pismen-Nir [57], by the experiment of Wells and Stock [16]
or by DNS [98] or LES [99]. The best agreement was obtained with the analytical results of
Reeks in HIST.
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Deutsch and Simonin [99] proposed the following formulas for the vertical and trans-
verse components,

Tp
Lz =

T f
L√

1+β2γ2
for the gravity direction, and

Tp
Lz =

T f
L√

1+4β2γ2
for the lateral case,

with β =

(
T f

L u0
L

)
=
√

0.45, including CTE and CE but no inertia effect, since T f
L is not

the fluid Lagrangian time along the discrete particle path without gravity.
Furthermore, Graham [97] extended his work to random length and time scales,

with valuable results for non-homogeneous flows. Chen and Pereira [100] tested the
Graham model; Chen [101] used the Graham/Gosman–Ioannides EIM for inhomogeneous
anisotropic turbulence obtained by a Reynolds stress model and studied the inertia effects.

The advantage of the EIMs is that no time or space correlation has to be introduced
in order to obtain the fluid velocity at the particle position. However, it is necessary
to provide a time and length scale to characterize the interacting eddies. However, the
method used for the time step or the eddy lifetime of the EIM, the time step probability
density functions f (te), is related to the form of the Lagrangian fluid autocorrelation R f

L(τ)

and T f
L . Thus, with a PDF function f (τ) = (1/T f

L ) exp(−τ/T f
L ) an exponential function

RL(τ) = exp
(
−τ/T f

L

)
is obtained.

All the proposed models generally link the eddy characteristics (lifetime, size) to the
turbulent kinetic energy and the dissipation rate and the Lagrangian and Eulerian scales
with help of constants.

τe = λe/(2k/3)1/2 = Ak/ε, λe = C3/4
µ k3/2/ε = Bk3/2/ε, T f

L = CT
2k
3ε

.

The constants A and B are adjusted to let the models simulate the classical test
cases [102]. However, the method fixing the time step of the EIM, the time step probability
density functions f (te), is related to the form of the Lagrangian fluid autocorrelation R f

L(τ)

and to the integral time scale T f
L . For instance, the way the constants A, B, CT are calibrated

to fit a specific experiment is questionable, since they will in fact fix a virtual constant C∗T .
The corresponding time scale, TL = C∗T

2k
3ε , will not be the Lagrangian fluid integral scale of

a fluid particle T f
L but the effective Lagrangian fluid integral scale of a discrete particle Tp

L
along its trajectory. In that case the model will be optimized anyway to fit the simulation of
the experimental test case.

Another advantage is that the EIM can easily be implemented in Eulerian codes of
turbulence, and they can give a first qualitative and even quantitative idea of the dispersion.
An open question in the EIM still exists in case of time and length distributions: since
physically it is expected to have a relation between eddy size and lifetime, a small lifetime
is expected for small dissipative eddies. A relationship between eddy size and lifetime
should exist; the eddy turnover time tl of a size l eddy can be related to the time it takes for
that size eddy to be reduced to the Kolmogorov scale, with an integral length scale L. Such
relation should be

tl ≈
(

l
L

)2/3
T f

L .

3.2. Random Walk Models (RWM-CWM)

Random walk models (or random flight models) are Lagrangian formulations based
on Langevin’s equation. They have frequently been proposed to simulate the dispersion
of pollutants in the atmosphere [103–109]. Several relevant reviews [7,12,109,110] make
a critical analysis of these models, and several papers are more devoted to heavy parti-
cles [111–116]. Nevertheless, dispersion in the atmospheric boundary layer is not within
the scope of this paper.
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3.2.1. Classical Approach

The stochastic differential equation (SDE) modeling the behavior of fluid velocities
in Gaussian turbulence, verifying Kolmogorov’s similarity theory for locally isotropic
turbulence is

du = u(t + dt)− u(t) = − u
TL

dt + u0

√
2

TL
dW. (31)

Langevin’s equation contains both a damping or drift term, which accounts for the
friction exerted by the surrounding fluid on the heavy particle, and a random diffusion
term, which models the fluid impulses, dW, being a Wiener white noise process, a stochastic
process of zero mean and variance equal to the time interval dt. Equation (31) is the original
Langevin equation for homogeneous stationary one-dimensional turbulent diffusion with
no mean flow, and a Lagrangian correlation function RL(t) = exp(−t/TL). The discrete
form of the Langevin’s equation (or Markov chain equation) correlates the fluid velocity
fluctuation u f (t + ∆t) to its value u f (t) at the previous step:

u f (t + ∆t) = u f (t)RL(∆t) + u0ξ
√

1− R2
L(∆t)

where u0 is the rms value of the fluid velocity, RL(∆t) is the Lagrangian autocorrelation
and ξ is a statistically independent, Gaussian, normalized and centered random number.

A classical Lagrangian autocorrelation function of the fluid velocity is simply given
by this process:

RL(∆t) = exp(−∆t/TL).

∆t is the time step and TL the Lagrangian integral time scale of the turbulence.
Note: For the simulation of the diffusion in a non-homogeneous turbulence, Equation (31)

is not valid and Langevin’s equation including drift correction terms, as suggested by Legg
and Raupach [108] must be used. This will be discussed in Section 5.

3.2.2. Two-Step Space–Time Approach

The extension of the Markov method to discrete particles has been proposed in many
papers [117–131]. It was initiated by Zhuang et al. [117] following the EIM time–space
method of Ormancey and Martinon [86,87].

The trajectory of fluid-discrete particle pairs is the elementary approach to model the
fluid velocity seen by a discrete particle and is divided in two steps (Figure 2). Initially

the fluid (F) and discrete (P) particles are at the same location
→
X f p(t) at time t. and their

respective velocities u f (t) = up
f (t) and v(t) are known. After a short time step they are

located at X f (t + ∆t) and Xp(t + ∆t). The first step uses the discrete Langevin equation
for the fluid element to estimate the eddy fluid velocity at X f (t + ∆t) and is a Lagrangian
process in time:

u f (t + ∆t) = u f (t)RL(∆t) + u0ξ
√

1− R2
L(∆t).

The idea of the second step is based on the distance ∆s =
∣∣∣∣→Xp(t + ∆t)−

→
X f (t + ∆t)

∣∣∣∣
that separates the pair at time t + ∆t and uses a Eulerian space correlation coupled to

the Langevin equation to obtain the fluid velocity at
→
Xp(t + ∆t) associated to a new fluid

element (F’).

up
f (t + ∆t) = u f (t + ∆t)RE(∆s) + u0ξE

√
1− R2

E(∆s).
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This value is used to solve the equation of motion and to calculate the velocity
→
v (t + 2∆t) and the new position of the fluid element (F’) and of the discrete particle
→
Xp(t + 2∆t). A new fluid element is associated to the discrete particle at that new location.
At each step a Cartesian frame is defined, with the origin at the fluid element position, and
the first axis joins the inertial particle position to take into account the specificities of the
directional correlation functions.

Then, a new fluid element (F’) is centered on the inertial particle (P), and the procedure
begins again.

A combined two-step relation was first proposed for simplicity [117,118]. This version
directly coupled the time and space correlations as

RP
F,ii(∆t, ∆s) = exp

(
− ∆t

TL,ii

)
exp

(
− ∆s

LE,ii

)
,

u′pi (t + ∆t) = RP
F,ii(∆t, ∆s)u′pi (t) + u0ξti

√
1− [RP

F,ii(∆t, ∆s)]2.

In case of a heavy particle with a mean fall velocity of vch, ∆s ≈ vch∆t and a large drift
parameter γ = vch

u0
= gτs

u0
<< 1:

RP
F,ii(∆t, ∆s) = exp

(
− ∆t

TL,ii

)
exp

(
− ∆s

LE,ii

)
≈ exp

(
− ∆t

TL,ii

[
1 + βC

vch
u0

])
,

with βC = TL/TE = u0TL/LE, a Eulerian–Lagrangrian relationship [12,13]. This was
suggested by Walklate [13] and can be compared to Csanady’s formulation:

RP
F,ii(∆t, ∆s) = exp

(
− ∆t

TL,ii

)
exp

(
− ∆s

LE,ii

)
≈ exp

− ∆t
TL,ii

[
1 + β

(
vch
u0

)2
]1/2

.

Hunt and Nalpanis [119] suggested a different correlation function optimizing Sny-
der’s measurements [15]:

RP
F,ii(∆t, ∆s) = exp

(
− ∆t

TL,ii

)
exp

(
− ∆s

LE,ii

)
≈ exp

(
− ∆t

TL,ii

[
1 + A

(
vch
u0

)2/3
])

.

Simulations in HIST [120] with the above equation were performed for heavy particles
and compared to other simulations obtained with a Frenkiel zero correlation (m = 0) and
the theoretical results of Wang and Stock.

Furthermore, much effort was dedicated to anisotropic turbulence. Berlemont et al. [121–
123] proposed a sophisticated formulation; it will be briefly discussed in Section 3.3 since
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it is a multistep random method. Zhou and Leschziner [124] introduced a temporal
correlation approach taking into account anisotropic Lagrangian time scales, including
directional and temporal correlation coefficients between ui(t + ∆t) and uj(t) and the
covariance matrix of uj(t). Burry and Bergeles [125] and Lu et al. [126–130] generalized
the method to anisotropic flows, with temporal and spatial correlations, according to the
anisotropy of the Reynolds stresses. Lu used a Eulerian velocity autocorrelation instead of
a Lagrangian one, Mashayek [131] compared results obtained with Lu’s Eulerian stochastic
model with the direct numerical simulation (DNS) data of Mei et al. [132].

The proposed models are related to complex generalized Langevin equations use

relationships TLi = CT
u2

0
ε , LE = Λ f = CL

(u0)
3/2

ε , relationships often similar to those of the
EIMs,

τe = λe/(2k/3)1/2 = Ak/ε, λe = C3/4
µ k3/2/ε = Bk3/2/ε, T f

L = CT
2k
3ε

,

RLij(∆t) = exp

(
− ∆t

TLij

)
, REij(∆s) = ( f (∆s)− g(∆s))

∆si∆sj

∆s2 + g(∆s)δij,

with f (∆s) = exp
(
−∆s

LE

)
, g(∆s) = exp

(
−∆s

LE

)(
1− ∆s

2LE

)
or more complex correlation functions in case of tensors. As for the EIMs, the different
constants are tuned to best simulate turbulent diffusion and other experiments and test
cases, and are compared to DNS results.

Other papers have compared the performance of different Lagrangian stochastic
models, too. For the Snyder and Lumley experiment [15], an extensive comparison of
different EIM and RWM results obtained by Berlemont [122], Gosman and Ioannides [67,68],
Ormancey and Martinon [86,87], Shuen et al. [69], Lu et al. [127], Nir and Pismen [57], and
Meek and Jones [54] was proposed by Huilier et al. [133]. Apart the choice of the constants
A, B or CT, some other factors can influence the simulations and justify discrepancies, the
number of computed trajectories, the choice of the random number generator or the time
step ∆t. Lain and Grillo [134] simulated the Wells and Stock experiment [16] and a jet
flow [135].

Within the last two decades, research has been focused on enhancements of RWM
and on the formulation of Lagrangian stochastic models and PDF models [131,136–158] for
the transport of particles in more complex turbulent fields, and substantial work was also
addressed on the spurious mean particle drift in inhomogeneous turbulence as introduced
by McInnes and Bracco [102] or Legg and Raupach [108]. Zhou and Leschziner [136]
presented more sophisticated models able to integrate directional/cross correlations (full
correlation tensors Rij(∆ t) or the directional correlations, and the anisotropy of turbulence
scales). These models should be able to simulate the dispersion of particles in anisotropic
turbulence, shear flows or boundary layers. It is not the intention of the present paper
to detail these approaches, but some of these methods are summarized and discussed by
Pozorski and Minier [139], Bocksell and Loth [142,149], Minier et al. [157] or Tanière and
Arcen [158]. The models were also modified according to the true fluid velocity along a
particle path and the classical fluid integral time scales TLij where replaced by integral
scales integrating inertia and gravity in relation with Csanady’s formulas (Section 2.2.4).
Most models often used also the theoretical results by Wang and Stock developed in
Appendix A.

3.3. CRW–Matrix Methods

Several models used multistep Markov chains, which is the fluid velocity along
the trajectory of the discrete particle at time t is evaluated with more than one previous
calculated velocity, that is

un = f (un−1, un−2, . . . , un−j) + dn.
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Berlemont et al. [121–123] were the first to propose a matrix method able to simulate
the fluid velocity along a part of the trajectory for any time correlation function. The aim
was to generate a sequence u(∆t), u(2∆t), . . . u(i∆t), . . . , u(j∆t) . . . verifying Lagrangian
Frenkiel family correlation functions and the stress tensor. At the same time for a given
time step, a Eulerian correction was applied; once the distance between the two particles
exceeded the lateral Eulerian scale, a new fluid particle was generated. However, the fluid–
particle velocity field was that of a tracer, because related to the classical fluid–particle
correlation, the Eulerian process should simulate the CTE and inertial effects. This kind
of method can be classified as a hybrid RWM–matrix method since they use a multistep
Markov chain simulation of the fluid–particle velocity.

R f
Lij(∆t) =

u f ii(t + ∆t)u f j(t)

u f i(t)u f j(t)
= exp

(
− ∆t
(m2 + 1)TLij

)
cos

(
m∆t

(m2 + 1)TLij

)
,

REij(∆s) =
up

f iu f j

u f i(t)u f j(t)
= exp

(
− ∆s
(m2 + 1)LEij

)
cos

(
m∆s

(m2 + 1)LEij

)
.

In Berlemont’s formalism, the fluid–particle fluctuating velocities are given by

Un = [u(∆t), u(2∆t), . . . , u(i∆t), . . . , u(j∆t) . . . , u(n∆t)] = [B] Y

where the vector Y has uncorrelated variables with a Gaussian distribution and the matrix
B is related to the Lagrangian time correlation tensor and a matrix A by

A = BBT . with aij = u(i∆t)u(j∆t).

The set of equations can be rewritten as a generalized Langevin equation under matrix
form

Un = [M] Un−1 + dn

where the matrix M includes the effects of previous time steps, vector dn is sampled from
Gaussian PDF, and the fluid velocity at the new particle position is then obtained with
Frenkiel space correlation functions.

A matrix method, different from that earlier proposed by Berlemont et al., has been
developed by the research group at Strasbourg University [159–161]. The idea is to generate
a random sequence of fluid velocities for the whole trajectory. The time series algorithm
is able to reproduce stochastically any fluctuating velocity field in HIST, at least if the
autocorrelation tensor RP

F,ii(τ) is known.
Starting with the following system, where at each time step, the fluid fluctuating

velocity is a linear combination of random numbers, statistically independent, centered
and normalized ξk with a Gaussian probability density function:

u′p(0) = a11ξ1
u′p(dt) = a21ξ1 + a22ξ2
u′p(2dt) = a31ξ1 + a32ξ2 + a33ξ3
. . .
u′p((k− 1)dt) = ak1ξ1 + ak2ξ2 + . . . + akkξk
. . .
u′p((n− 1)dt) = an1ξ1 + an2ξ2 + . . . + aniξi + . . . + annξn

.
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and by multiplying successively all the equations of the system with the first equation, and
averaging the obtained products, we obtain:

u′p(0)u′p(0) = a11a11 = Rp(0) = 1
u′p(dt)u′p(0) = a21a11 = Rp(dt)
. . .
u′p((k− 1)dt)u′p(0) = ak1a11 = Rp((k− 1)dt)
. . .
u′p((n− 1)dt)u′p(0) = an1a11 = Rp((n− 1)dt)

.

This yields the first column of the low triangular matrix A. Then the initial set is
multiplied by the second equation and so on, and the whole matrix A can be built. Matrix
A is unique for each chosen Lagrangian autocorrelation. A given set of random numbers
ξk will represent a fluid velocity along a particle trajectory (indeed, a linear system has to
be solved for each trajectory) and will be used to solve n times the momentum equation of
motion. It is clear that for long time diffusion T, this method requires computer resources
since the dimension of the matrix will be n = T/dt. Nevertheless, correlation is typically
lost after a time Tmax = 5TL and the triangular matrix A can be replaced by a band matrix
B (Figure 3), the terms of that matrix can be used to calculate the fluid velocity and the
number of floating point operations will be reduced.
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Figure 3. Matrices A & B used to calculate the turbulent fluid velocity seen by the particle along its path.

Pétrissans et al. [162] later proposed a more effective model, less computer time-
consuming, based on different time series, an autoregressive–moving-average ARMA (2,1)
process, using a second-order time series and a first moving average. The model was able
to generate the Wang and Stock’s Lagrangian correlation functions and predicted the effect
of negative loops.

3.4. Numerical Context

Most of the Lagrangian models, among which are either EIM or RWM, use experimen-
tal data or test flows to verify their ability and performance to simulate turbulent dispersion.
First of all, they must be able to simulate turbulent diffusion in homogeneous isotropic
turbulence as predicted by the analysis of Taylor; furthermore, they are generally tested
and optimized to predict the dispersion of particles or droplets in various configurations,
grid turbulent flows [15,16], horizontal or vertical pipe flows [17,75,76,163–166], round
jets [84,167–172] or in mixing shear layers [173]. Last, they are often used to simulate the
dispersion in HIST, and their performance is tested on theoretical or numerical results
obtained by other techniques. One of the aims of the present paper is to verify if these
methods can take into account the inertia and gravity effects.

Concerning the flow and particle properties in HIST, we focus on the impact of
inertia and drift effects governing the dispersion of spherical particles, with a density
of ρp = 1000 kg/m3 and a diameter d in the range of 10 to 500 microns. The spheres are
released from a point source and disperse in a homogeneous isotropic stationary turbulence
(HIST), the fluid flow being air under standard conditions (density ρF = 1.275 kg/m3 and
kinematic viscosity νF = 1.36 × 10−5 m/s2) without gravity and a gravity field. The
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scale of the turbulent fluid is u0 = 0.131 m/s and the Lagrangian integral time scale is
set to TL = 0.091 s. The experimental data by Sato and Yamamoto [174] suggested that
for a grid turbulence TL = 0.3− 0.6 TmE where TmE is the moving Eulerian integral time
scale. Burnage and Huilier [175] performed a diffusion experiment with small droplets
released isokinetically from a tube in a grid decaying turbulence, using LDA and a light
diffusion technique to measure the turbulence and concentration field and found TL =
0.5 − 0.95 TmE [13]. In the present study, we suppose that TL/TmE = 0.356 (Appendix A).
As a consequence, in the present simulations, the Stokes number, St = τs/TmE, will range
from 0.007 to 4.4, τs being the Stokesian particle relaxation time (details are summarized in
Table 2). All the statistics that will characterize the particulate dispersion, namely, turbulent
energies (variances) v2

ii, Lagrangian particle integral time scales Tp,ii and long time particle
dispersion coefficients DP,ii(∞) = v2

ii · Tp,ii, are calculated for 50,000 trajectories for each
particle size (Stokes number), a number of trajectories sufficient to ensure statistical stability
and convergence.

Table 2. Particle properties and dimensionless control parameters.

dp(µm) vch(m/s) τp(ms) τs = fτp (ms) Sts = τs/TmE Stp = τp/TmE
= τs/(fTmE)

vch/u
′ Rep

10 0.003 0.31 0.31 0.0017 0.0017 0.023 0.002

20 0.012 1.23 1.24 0.0068 0.0068 0.093 0.017

50 0.07 7.35 7.75 0.042 0.0404 0.55 0.25

70 0.135 13.7 15.2 0.084 0.0753 1.3 0.65

100 0.25 25 31 0.170 0.137 1.95 1.7

120 0.34 34 44.64 0.245 0.187 2.57 2.8

150 0.47 48 69.75 0.38 0.26 3.62 4.9

200 0.710 72 124 0.68 0.39 5.42 9.8

250 0.944 96 194 1.06 0.52 7.21 16.3

400 1.61 164 496 2.72 0.90 12.3 47

500 2.02 205 775 4.26 1.13 15.4 74

The equations of motion as simplified for heavier particles (section equation X) are solved
numerically by a fourth order Runge–Kutta algorithm, and the time step is set from 10−4 s to
10−3 s with particle relaxation times from 1.2 × 10−3 s (d = 20 µm) to 0.8 s (d = 500 µm).

The drift parameter γ = νch/u0 due to gravity g = 9.8 m/s2 varies from 0.02 for
the smallest particles to 15 for the largest. The long time dispersion characteristics are
calculated for 4 s trajectories, a time that largely exceeds by a factor of 5 to 10 the particle
relaxation time of the heavier particles and the Lagrangian scales. Besides other tests on
nonstationary forces (added mass, Basset term), lift forces confirmed that statistically there
is no influence on long time dispersion of heavy particles [93], in agreement with other
results in the literature.

4. Numerical Results
4.1. EIM–DRW Results

We consider here an extension of the EIM initiated by Burnage and Moon [91] and
furthermore developed by Huilier et al. [93,133,175–177]. The eddy lifetime and the eddy
length are distributed randomly according to exponential probability distribution functions
with average values respectively equal to the fluid Lagrangian integral time scale TL in
Section 4.1.1 and to the Lagrangian time proposed by Wang and Stock in the Appendix A
in Section 4.1.2; for the length scale related to the eddy lifetime, the transverse Eulerian
integral length scale LE was used. The instantaneous fluid eddy’s velocity was given by
the sum of a mean and a fluctuating velocity. Each component of the fluctuating velocity
was evaluated from a Gaussian probability distribution with zero mean and a variance



Fluids 2021, 6, 145 24 of 48

equal to u2
0, the rms value u0 being also called “the eddy velocity scale.” In this study,

the assumption is made that during the interaction between an eddy and the particle, the
fluctuating fluid velocity remains constant. Besides, it is supposed that the particle stays in
a same fluid eddy as long as:

(1) the distance between the eddy center and the heavy particle position does not exceed
the random eddy length (no overshooting condition),

(2) the interaction time of the particle does not exceed the random eddy lifetime.

If either of these two conditions becomes invalid, the heavy particle will be centered
on a new random fluid eddy.

4.1.1. Classical Dispersion Without Gravity (g = 0)

Without any external force field (no gravity, g = 0), one can reasonably assume that
the particle Reynolds number is less than one, since the mean fluid–particle slip velocity
→
v −→u

p
is zero. In that case, the drag law is linear (Stokesian, f = 1). All classical EIMs

consider that the turbulence along a particle path has TL as Lagrangian time scale. Only
inertial effects have to be taken into account with no gravity term, although crossing-
trajectory effects cannot be excluded since due to inertia particles can cross small eddies
rapidly. The general trend is that as expected, the turbulent particle integral scale increases
with the Stokes number (Figure 4) and particle turbulence decreases with inertia (Figure 5).
But very inertial (heavy) particles disperse much less than fluid elements (Figure 6), the
dispersion coefficients being normalized by the fluid diffusion coefficient equal to u2

0TL.
This is in contradiction with now well recognized results, either theoretical [52] or numerical
results (obtained by direct or large eddy simulations). In conclusion, the inertial effect is
not well simulated by this type of model based on TL. Simulations were performed with
the same model without overshooting [176], they simply verified Tchen’s theory, which is
obsolete for heavy particles since crossing-trajectory effects are not considered.
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4.1.2. Modified EIM with Wang and Stock Correction (No Gravity)

A similar simulation but with Wang and Stock’s relation (Equation (A1) in Appendix A)
gave much more promising results for the turbulent energies (Figure 7). In particular,
Figure 8 indicates that the ratio of the particle dispersion coefficient to the fluid diffusivity
is greater than unity for the large Stokes number; this result is in accordance with the
theories of Reeks [40] or Pismen and Nir [57], with the experimental observations of Wells
and Stock [16], with the direct numerical simulation of Squires and Eaton [98] and with
the large eddy simulation of Deutsch [178]. Only for large Stokes numbers are the particle
dispersion coefficients underestimated; this is due to the effects of nonlinear drag on the
Lagrangian particle integral time scale and the particle velocity scales [176]. Comparisons
between results obtained with Stokes’ drag and nonlinear drag were also proposed by
Wang and Stock [6] and also showed an increase of the velocity variance with use of the
nonlinear drag mainly due to the difference between the Stokesian relaxation times (and
so the related Stokes number) being larger than the nonlinear terms when the particle
Reynolds number Rep > 1 (Table 2).
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4.1.3. Dispersion under Gravity Effect

Fluid-particle slip velocity under gravity can be non-negligible for heavy particles, so
that the particle Reynolds number can be much larger than 1 and a non-Stokesian drag law
must be used, since the fall velocity increases with particle size. In the present case, a drag
law given by Schiller and Naumann [37] was proposed. This law is generally accepted, as
other laws bring no real modifications. The present results consider again that the heavy
particle is controlled by a fluid Lagrangian scale equal to TL. Although the influence of the
time step and number of total trajectories on the results was investigated, the results are
mixed and scattered for the larger Stokes numbers at least for the time scales (Figure 9) and
the particle dispersion coefficients (Figure 10). The normalized variances of the particle
velocity fluctuations (Figure 11) and the dispersion coefficients are overestimated for the
larger Stokes numbers (heavy particles) although decreasing as predicted by Wang and
Stock’s theory, even if the decrease is induced by the overshooting (crossing-trajectory) and
inertia. But the continuity effect is not restored.
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4.1.4. Conclusion on EIM–DRW Monte-Carlo Methods

It is a matter of fact that Lagrangian numerical simulations based on EIM–Monte-Carlo
processes cannot predict the dispersion of heavy particles with or without gravity. The
shortcomings of the method are due to the fact that the heavy particle will interact with an
eddy during a given time, the maximum of which is normally the eddy life (taken as the
Lagrangian scale TL). Major modifications were brought to Monte-Carlo approaches by
Huang et al. [179], Graham [95–97], Launay et al. [176,177], among others, and some eddy–
particle interaction models tried to better take into account the space–time characteristics of
the effective fluid turbulence controlling the particle motion, to better simulate the so-called
“true turbulence experienced by the particle’.”

The weakness of the EIM–DRW method is that the correlation functions and La-
grangian integral time scales are related to the way the time step or eddy lifetime is
chosen [5,60]. Furthermore, the eddy length and lifetime are not correlated, so that no
turbulence spectrum is really simulated. In addition, the different models proposed are
generally tested on well-known flow cases [18,19] and optimized by calibrating a few
parameters. Several papers compared different EIMs [120,133] and showed that even for
these test cases, some EIM approaches are deficient and the differences in the numerical
results are tremendous. It follows that EIM–DRW models are certainly not appropriate to
more complex gas–solid flows, shear flows, anisotropic flows, since even in case of HIST
deficiencies have been observed. That is why scientists have focused more and more of
their research on Markovian methods for two decades.

4.2. Markovian Methods

We consider here the models as defined in Section 3.2 and two kinds of simulations
will be presented here:

• The Markovian model developed by a two-step space–time approach (Section 3.2.2)
with the following equations and the method proposed by Lu et al. [126–130]:

u′pi (t + ∆t) = RP
F,ii(∆t, ∆s)u′pi (t) + u0ξti

√
1− [RP

F,ii(∆t, ∆s)]2,

RP
F,ii(∆t, ∆s) = exp

(
− ∆t

TL,ii

)
exp

(
− ∆s

LE,ii

)
where ξti are normalized Gaussian random numbers.

• A more classical Markovian model with a Langevin equation based on the correlation
functions proposed by Wang and Stock (Equation (A2)):

u′pi (t + ∆t) = RP
F,ii(∆t)u′pi (t) + u0ξti

√
1− [RP

F,ii(∆t)]2.

4.2.1. CRW–Lu Model

In the 1990’s it seemed that a modified EIM influenced by a Markov chain model
could bring some progress. That is why a space–time Langevin equation was explored. The
idea was to couple Eulerian space correlations to Lagrangian time correlations; the idea
was not so bad and was explored with some hope and used to simulate grid turbulence
experiments [15,16]. The method as proposed by Lu et al. [126–130] was applied to HIST,
but gave poor results. Without gravity and for small particles, which behave like small
inertial particles, the particle Lagrangian time was 15% less than the Lagrangian fluid
integral time TL. All possible parameters, among them the time increment ∆t, were
changed and gave no better results. Presently, simulations with this model are still being
undertaken. The particle variance seems to yield results similar to an EIM based on TL. It
is clear that the effect on underestimating the particle dispersion is directly related to the
integral time scales, and the space correction is certainly not valid, even if the approach
gives satisfactory results for grid turbulence experiments, due to calibration of constants
related to turbulent kinetic energy and dissipation. As for many models it is now clear that
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just simulating these experiments and modifying them for anisotropic flows is not the best
choice.

• Dispersion without gravity (g = 0)

As shown in Figure 12, the normalized variances of the fluctuating velocity of the
particles are generally underestimated, except for the smaller Stokes numbers (less inertial
particles). The same holds for the Lagrangian integral time scales (Figure 13) as well as
for the normalized dispersion coefficients (Figure 14). Thus, the model based on Marko-
vian chains is not suitable since the inertial effect (IE) of the particles cannot be correctly
simulated.

• RWM–Lu with gravity effects (g 6= 0)
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The turbulent energy of the heavy particles is well predicted by the model except for
intermediate Stokes numbers, where it is somewhat underestimated (Figure 15). One can
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note that overall, this model yields better results for the particle turbulent energy than
those obtained by an EIM–Monte-Carlo model (Figure 11). Again, long time dispersion
coefficients are systematically much smaller (up to a factor of 2) than Wang and Stock theory
for the smaller Stokes numbers (Figure 16). They decrease with larger particle inertia and
for larger Stokes numbers, the ratio of transverse to gravity direction dispersion coefficients
Dp,11/Dp,33 is close to a value of 0.5 in accordance with Csanady’s early results [42]. Such
a Markovian model seems to be able, at least partially, to simulate effects of crossing
trajectories and continuity, but the estimates of the dispersion coefficients are significantly
small.
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4.2.2. Langevin-WS Model

The Langevin model based on the Wang and Stock correlation functions seems more
promising. Without gravity, this model gave results close to the theory of Wang and Stock,
in accordance with results presented for the EIM in Section 4.1.2. We present here only the
simulations with the gravity–CTE-CE effects (Figures 17–19). The following equation is
used with correlation functions given by Equation (A2):

u′pi (t + ∆t) = RP
F,ii(∆t)u′pi (t) + u0ξti

√
1− [RP

F,ii(∆t)]2.

It is clear that this model is efficient, but in other models as well as the last, which will
be presented in Section 4.3, the support is conditioned to an appropriate relationship of the
correlation functions to the Stokes number and the drift parameter, in this case the Wang
and Stock model detailed in Appendix A. The influence of the time step was not investi-
gated but was always less than 1/10 of the typical time scales ∆t < min (TL/10, τs/10).
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4.2.3. Conclusions on Markovian Models

The prediction of the dispersion of heavy particles, based on Markov one-chain La-
grangian models, seems encouraging. Two of the three main effects, crossing-trajectory and
continuity, are rather well reproduced, except for the inertial effect, which enables particles
under zero gravity to disperse more than fluid elements, a result obtained theoretically
by Reeks [40], for instance. Furthermore, the long time dispersion coefficients are under-
predicted both with and without gravity effects. Nevertheless, Huilier [120], on the basis of
Launay’s thesis [159] and complementary simulations, clearly showed in a previous paper
the important influence of various autocorrelation functions RP

F,ii(∆t, ∆s) [20,23,24,120] on
the dispersion coefficients of heavy particles and one-step Markovian simulations with
adequate autocorrelations can bring enhanced results.
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4.3. Matrix Method and Related Considerations

The matrix method proposed by Launay has no real obvious gap, it is a statistical
method based on any correlation function and therefore simulates the fluid velocity along
the path of a discrete particle if the function is known. The following results are of course
in agreement with the Wang and Stock theory. The main problem persists with large Stokes
numbers because it is not obvious that the Wang and Stock theory is guaranteed by such
large Stokes numbers.

4.3.1. Matrix Method without Gravity (g = 0)

In order to check that the proposed Lagrangian method also correctly restores the
inertia effect (increased diffusivity of high-inertia particles), the dispersion of particles
without any drift velocity was first studied. In this case the parameter f was taken as
one in the Equation (9), id linear drag. The matrix model is self-consistent, in accordance
with the model proposed by Wang and Stock, for the particle Lagrangian integral time
scales (Figure 20) and the particle turbulence (Figure 21). Again, as in Section 4.1.2 with
the modified EIM, previous theoretical works (Reeks [40], Pismen and Nir [57]), experi-
ments (Wells and Stock [16]) and numerical studies (Squires and Eaton [98], Deutsch [178],
Graham [96,97]) are confirmed for heavy particles with large inertia that disperse faster
than the fluid elements. Figure 22 shows that the ratio of the particle to the fluid dispersion
(u2

0TL) coefficients is greater than unity for large Stokes numbers: this indicates that the
inertia effect is well taken into account by the proposed method for predicting the tur-
bulent dispersion of the heavy particles. The drop-off for Stokes numbers larger than 3
(last point in Figure 22) was never explained up to now; in fact, referring to Launay [159],
the particle integral time scale is under-predicted, although the particle turbulence is in
accordance with the theory of Wang and Stock. Either a non-linear drag for these very
inertial particles should be considered; but calculations based on a Monte-Carlo and a
non-linear drag law also underestimated the theoretical values for Stokes numbers larger
than 3 as shown by Matt and Huilier [180]. Trajectory calculations over a longer path time
(typically T∗∼ 20 · τs) should then give better results.
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4.3.2. Matrix Method with Gravity (g 6= 0)

Figures 23–25 yield the numerical results obtained with the proposed Lagrangian
model. The whole of the numerical results is again compared with the theory developed by
Wang and Stock. In Figure 25, the analytical and calculated long time dispersion particle’s
coefficients Di

p(∞) decrease with the Stokes number St in free-fall direction (direction 3) as
well as in the two directions orthogonal to the free-fall direction (directions 1 and 2). The
agreement between the numerical simulations and the theoretical expressions is very good
and the effect of crossing trajectories and continuity effects is clearly seen. Besides, it is
shown in Figure 25 that the particle’s dispersion in the free-fall direction is larger than in
the two transverse directions by a factor close to 2.

Fluids 2021, 6, x FOR PEER REVIEW 36 of 53 
 

Besides, it is shown in Figure 25 that the particle’s dispersion in the free-fall direction is 
larger than in the two transverse directions by a factor close to 2. 

 
Figure 23. Particle Lagrangian time scale (g ≠ 0). 

 
Figure 24. Normalized variance of particle velocity (g ≠ 0). 

 
Figure 25. Particle dispersion coefficients (g ≠ 0). 

5. Discussion and Present Trends of Modeling Approaches 
The present study only gave an overview of the relative performance of Lagrangian 

particle tracking methods for the turbulent gas–particle transport in HIST. The EIM was 
historically extensively summarized, the RWM partly. The main advantage of these meth-
ods is that they help to better understand the mechanisms and concepts of inertia and 

Figure 23. Particle Lagrangian time scale (g 6= 0).

Fluids 2021, 6, x FOR PEER REVIEW 36 of 53 
 

Besides, it is shown in Figure 25 that the particle’s dispersion in the free-fall direction is 
larger than in the two transverse directions by a factor close to 2. 

 
Figure 23. Particle Lagrangian time scale (g ≠ 0). 

 
Figure 24. Normalized variance of particle velocity (g ≠ 0). 

 
Figure 25. Particle dispersion coefficients (g ≠ 0). 

5. Discussion and Present Trends of Modeling Approaches 
The present study only gave an overview of the relative performance of Lagrangian 

particle tracking methods for the turbulent gas–particle transport in HIST. The EIM was 
historically extensively summarized, the RWM partly. The main advantage of these meth-
ods is that they help to better understand the mechanisms and concepts of inertia and 

Figure 24. Normalized variance of particle velocity (g 6= 0).



Fluids 2021, 6, 145 33 of 48

Fluids 2021, 6, x FOR PEER REVIEW 36 of 53 
 

Besides, it is shown in Figure 25 that the particle’s dispersion in the free-fall direction is 
larger than in the two transverse directions by a factor close to 2. 

 
Figure 23. Particle Lagrangian time scale (g ≠ 0). 

 
Figure 24. Normalized variance of particle velocity (g ≠ 0). 

 
Figure 25. Particle dispersion coefficients (g ≠ 0). 

5. Discussion and Present Trends of Modeling Approaches 
The present study only gave an overview of the relative performance of Lagrangian 

particle tracking methods for the turbulent gas–particle transport in HIST. The EIM was 
historically extensively summarized, the RWM partly. The main advantage of these meth-
ods is that they help to better understand the mechanisms and concepts of inertia and 

Figure 25. Particle dispersion coefficients (g 6= 0).

5. Discussion and Present Trends of Modeling Approaches

The present study only gave an overview of the relative performance of Lagrangian
particle tracking methods for the turbulent gas–particle transport in HIST. The EIM was his-
torically extensively summarized, the RWM partly. The main advantage of these methods
is that they help to better understand the mechanisms and concepts of inertia and crossing-
trajectory effects. Although presenting some other advantages, a crucial disadvantage is
that these methods require many trajectory calculations to achieve statistical convergence.

The EIM, sometimes also called ELT (Eddy Life Time), is often coupled to k-eps or
RANS turbulence models, is easy to implement and gives a first idea of the influence
of inertia and gravity on the behavior of discrete particles in interaction with turbulent
structures. But it seems, as demonstrated, that EIM hardly can predict accurate behavior of
heavy particles in HIST and certainly not in complex flow configurations, although these
methods were extensively applied to polydisperse sprays in combustion.

Markovian methods using time and space correlations are still discontinuous random
walk methods, and they have been developed as a possible improvement of the EIM
methods. Mainly the experiments by Snyder and Lumley [15] and Wells and Stock [16]
served as test cases to optimize these models and calibrate some constants. As shown in
Section 4.2, they were not able to simulate correctly turbulent dispersion in HIST, too.

The meteorology community working on air pollution and turbulent diffusion in
the atmosphere certainly brought a decisive contribution. A major effort was devoted
to optimize DRW and CRW models in inhomogeneous turbulence with the help of the
Langevin equation. Initially the Langevin equation was used to model the Brownian
velocity fluctuations. The stochastic equation was then applied to homogeneous turbulence
by Obukhov [181] in terms of a Fokker–Plank equation related to a Gaussian probability
distribution [182,183]. The CRW-Langevin equation first served to model turbulent dis-
persion in the tracer limit, when particles are considered as passive contaminants or fluid
elements. In homogeneous stationary one-dimensional Gaussian turbulence the Langevin
equation reduces to equation

du = u(t + dt)− u(t) = −u(t)
TL

dt + u0

√
2

TL
dW.

When applied to inhomogeneous flow, such as in boundary or shear layers, the
classical models, among which is the original Langevin equation, predict that particles
migrate from regions of high turbulence intensity (core or bulk region) to the regions
where the intensity is minimum (wall) and those even in the tracer limit. This is due to the
sampling of fluctuation velocity, inducing a spurious drift component of the mean flow
and introducing an unphysical accumulation and deposition velocity into the wall regions.

Early Wilson et al. [184,185] proposed a correction related to the effect of turbulent
acceleration of the particles for the vertical velocity component w′(t), in terms of a vertical
bias velocity w′(z) = σzTL∂σz/∂z added to the RHS of the Langevin equation, σz being the
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root-mean square of the vertical velocity. Several papers [186,187] refer to a problem of
consistency between the classical Langevin equation and the equations of the mean flow
field when particles are so small that they behave like fluid eddies. Classical models do not
obey the well-mixed criterion as defined by Thomson [7], that is: “A tracer field which is
initially well mixed in an inhomogeneous turbulent field should remain well mixed”.

The spurious drift term is related to the fluid acceleration

ai = Uj
∂Ui
∂xj

= Uj
∂Ui
∂xj

+ uj
∂Ui
∂xj

= Uj
∂(Ui + ui)

∂xj
+ uj

∂Ui + ui)

∂xj
,

with
Ui = Ui + ui,

by averaging

ai = Uj
∂Ui
∂xj

+ uj
∂ui
∂xj

.

The second term is non-zero in case of inhomogeneous turbulence, and the drift
correction velocity is then given by

∆ui = uj
∂ui
∂xj

∆t

in the tracer limit. In case of inertial particles, Bocksell and Loth [149] proposed a spurious
drift correction given by

∆ui =
1

1 + St
uj

∂ui
∂xj

=
1

1 + St
(
∆ui
)

FLUID,

so that the classical Langevin equation with spurious drift correction reads:

dui = ui(t + dt)− ui(t) = −
ui
TL

dt + u0

√
2

TL
dWi +

1
1 + St

uj
∂ui
∂xj

,

an equation that meets the well-mixed condition and can be reasonably used except in
strongly inhomogeneous turbulent flows such as boundary layers. More generally, a
generalized Langevin equation model, as proposed by Haworth and Pope [188], was
developed and is in active use. Pope [189] initially established PDF methods for reactive
flows. He also fixed the consistency conditions [190]. Several simplified versions exist [191]
and one simplified equation is

d
→
u = −

→
∇p
ρ dt− α ε

k

(
→
u −→u

)
dt + (C0ε)1/2d

→
W(t) =

−
→
∇p
ρ dt− ε

k

(
1
2 + 3

4 C0

)(→
u −→u

)
dt + (C0ε)1/2d

→
W(t) =

→
∇p
ρ dt− 1

TL

(
→
u −→u

)
dt + (C0ε)1/2d

→
W(t)

.

Numerous studies have been proposed to improve stochastic Lagrangian models
derived from the generalized Langevin equation, related to PDF approaches of the fluid
velocity, such as the models initially developed by Simonin et al. [192], Minier and cowork-
ers [157,193–197], Reeks [40,198–202] or Tanière and coworkers [151–153,158]; they first
focused on different expressions of the drift vector. Reeks extensively worked out a kinetic
equation in relationship to the generalized Langevin model (GLM) probability density
function (PDF) equation. “Should the kinetic equation be ill-posed?” was mathematically
discussed by Minier and Profeta [203] and Reeks et al. [204]. The most recent paper on
kinetic equations was given by Zhong et al. [205].

From a scientific point of view, RANS methods have been progressively replaced by
more accurate methods (LES, DNS), even if the computational cost is higher. With the
progress in computer performance, the Eulerian–Lagrangian models and particle tracking
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methods have focused progressively on a large eddy simulation (LES), coupled to stochastic
particle subgrid scale (SGS) models, proposing Langevin equations for the fluid seen along
the heavy particle trajectory in order to solve the momentum equation for particle-laden
flows [206–226].

One of the more detailed particle SGS models is that proposed by Berrouk et al. [209–
211], based on the Wang and Stock equations (Appendix A), integrating inertia, CTE,
continuity and anisotropy; the filtered fluid field (p∗, u∗f i) is calculated by an LES closed by
a classical fluid SGS model, and the fluid velocity upi seen by the particle is obtained by a
Langevin equation solved by a first-order Euler scheme; the Langevin equation is given by

dupi = −
∂p∗

∂xi
dt + ν

∂2u∗f i

∂xj∂xj
dt−

(upi − u∗f i)

T∗i
dt + (C∗0,iε)

1/2dWi(t).

Continuity, CTE and inertia appear in the drift term. T∗i (TL, β, St) is related to the
Lagrangian time scale of the subgrid fluctuations with the Wang and Stock correction
for inertia and Csanady’s expressions for mean drift and transverse directions in case of
gravity. More details are given in Berrouk et al. [210] (pp. 8–10) for the closure of the drift
and diffusion terms, the last being modified for anisotropy and non-stationarity through
a diagonal, non-isotropic diffusion matrix C∗0,i. Both parameters (T∗i , C∗0,i) depend on the
ratio between the Lagrangian and Eulerian time scales or β = TL/TmE, which was kept
constant in all the studies proposed by Wang and Stock [18–20] and equal to 0.356, referring
to a turbulence structure parameter m equal to 1 (Appendix A). The model was used to
simulate the dispersion experiments of Arnason in a pipe flow [75,76]. Nevertheless, as
mentioned, the normalized time scale β or the Kolmogorov constant C0 varies considerably
as given in the literature [9,10]. Last, a main persisting problem is related to the choice of
the value of the turbulence structure parameter m = TmE u0/L f .

Several benchmark tests exist and LES results are sometimes compared to DNS models,
which normally provide exact numerical flow fields, to evaluate the predictive capability of
particle dispersion in more complex turbulent flows. For instance, an international bench-
mark [227] was proposed for LES Eulerian–Lagrangian simulations in a particle-laden
channel flow, gathering a large database, and was compared to DNS results. Marchioli [228]
recently presented a review of LES in turbulent dispersed flows, which was complemen-
tary to other reviews and guidelines [157,197]. Objectives at least should be able to model
physical mechanisms such as erosion or deposition, settling, saltation of aerosols or solid
particles in bounded flows, migration in shear layers and boundary layers, preferential
concentration and turbophoresis. Particles tend to segregate in decreasing turbulence level
region wall areas, and the rate of deposition is enhanced on surfaces. Caporaloni et al. [229]
and Reeks [230] independently called this phenomenon “Turbophoresis,” analogous to the
thermophoresis or Ludwig–Soret effects. Furthermore, dense particles tend to accumulate
and cluster in specific convergence regions and are centrifuged away from vortex zones.
The influence of coherent vortex structures on particle dispersion was recognized early
by Crowe et al. [231–233], Chein and Chung [234], and studied by Eaton and cowork-
ers [235–239] as well as the research group of Cartellier or Bourgoin [240–247], among
others. Preferential concentration has since been extensively reported in the literature
during the last two decades, and the physical clustering mechanisms have been identified,
namely, sweep-stick, heavy particles migrating to low acceleration regions [248,249] and
centrifugal expulsion effects, inertial particles accumulating in low-vorticity zones of the
carrier flow.

To conclude, other review papers on modeling particle-laden flows or multiphase
flows are of interest [250–257], including, in some cases, collision and turbulence mod-
ification by particles in dense gas–particle flows. Some general and complete reviews
should be mentioned, too; the relevant review by Balachandar and Eaton [258] on different
aspects of turbulent dispersed multiphase flows focusing on preferential concentration and
different coupling mechanisms (e.g., interphase, two-way momentum coupling, turbulence
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modulation), and a general review of Lagrangian statistical properties of particles by Toshi
and Bodenschatz [259].

Furthermore, aside from the interest brought in the literature to single particle La-
grangian structure functions, with comparison between experiments and DNS instance,
e.g., [260], turbulent diffusion and dispersion have also been investigated in terms of the
mean-square displacement of a pair of particles relative to their center of mass and relative
velocity between pairs. Relative or particle pairs dispersion has been, since the pioneering
paper by Richardson [261] and Batchelor [262], extensively studied theoretically, experi-
mentally and numerically, in relation to new stochastic models and DNS calculations [263]
or experiments [264,265]. Significant reviews on turbulent relative dispersion were those
of Sawford [266] on two-particle Lagrangian stochastic models, Salazar and Collins [267]
on more recent advances. The reviews are often related to tracer diffusion and HIST, and
offer an increased understanding of the Lagrangian properties of turbulent flows. But they
as well as other articles not only concern low-inertia particle pairs [268] but also separation
of high-inertia particle pairs [269,270] and preferential concentration [271]. A new review
on turbulent relative dispersion studies would be welcome.
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Appendix A

Wang and Stock’s work on their model in HIST was summarized in several papers [18–
20,60] and an ASME lecture by Stock [257]. Wang and Stock [18] established an analytical
approximation for Gaussian turbulence that concludes that β = TL/TmE is always less than
1 but depends on the structure parameter m = TmE u0/L f , the ratio of the moving Eulerian
scale to the eddy turnover time L f /u0. Using a numerical simulation generated by Fourier
modes, Wang and Stock [20] proposed a relation for the fluid time scale seen by a heavy
particle with zero drift and a structure number of 1. As a fit of their numerical results one
has

TP
F (St) = TmE

(
1− 1− TL/TmE

(1 + St)0.4(1+0.01St)

)
= TmE

(
1− 0.644

(1 + St)0.4(1+0.01St)

)
(A1)

where TP
F (St) is the fluid time scale seen by the heavy particle in the absence of gravity and

TmE is the moving Eulerian time scale. This law was obtained for a structure parameter m
equal to 1, that is, β = TL/TmE = 0.356. For particles with small inertia TP

F (St→ 0) = TL,
whereas for high Stokes number, TP

F → TmE , as expected (Figure 1, [20] (p. 1903)).
Wang and Stock reconsidered Csanady’s theory by including the effects of the particle

inertia and drift effect, and exponential correlation functions for the fluid Lagrangian
velocity (scaled by TL), the fluid moving one point Eulerian velocity (scaled by TmE)
and the fluid Eulerian spatial correlation f(r) scaled by L f , and established the following
expressions for the fluid Lagrangian autocorrelation coefficient seen by the heavy particle,
with gravity in direction 3:
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RP
F,11(τ) = RP

F,22(τ) = u2
0

(
1− vchτ

2L f

)
exp

− τ
Tp

F

√
1 +

(
vchTp

F
L f

)2


RP
F,33(τ) = u2

0 exp

− τ
Tp

F

√
1 +

(
vchTp

F
L f

)2
 (A2)

These fluid autocorrelation coefficients have the advantage of integrating both the
inertia and the drift velocity of the heavy particle. The fluid Lagrangian integral scales seen
by the heavy particle having a drift velocity are then for long time diffusion:

TP
F,11 = 1

u2
0

∫ ∞
0 Rp

F,11(τ)dτ =
Tp

F

1+

(
Tp

F vch
L f

)2

√1 +
(

Tp
F vch
L f

)2
− vchTp

F
2L f


TP

F,22 = 1
u2

0

∫ ∞
0 Rp

22(τ)dτ = Tp
F,11

TP
F,33 = 1

u2
0

∫ ∞
0 Rp

33(τ)dτ =
Tp

F√√√√1+

(
Tp

F vch
L f

)2
.

(A3)

Following a development proposed by Reeks [40], a relation between the particle
velocity correlations RP

ij(τ) and the fluid velocity correlations RP
F,ij(τ) (Relation 2.9, in [20]

(p. 1900)) is obtained and for long time dispersion, algebraic expressions for the variances
of the particle’s fluctuating velocity, the particle’s integral time scales and the particle’s
long time dispersion coefficients can be written as:

• variances of the particle turbulent velocity in the i-th direction:

v2
11 = v2

22 = u2
0

(
1

1+StT
√

1+γ2m2
T
− 0.5γ mTStT(

1+StT
√

1+γ2m2
T

)2

)
v2

33 =
u2

0

1+StT
√

1+γ2m2
T

(A4)

with St =
τs

TmE
; γ =

vch
u0

; m =
TmEu0

L f
, StT =

τs

TP
F

; mT =
TP

F u0

L f
= m

TP
F (St)
TmE

; (A5)

• long time coefficient of the heavy particle in the i-th direction:

DP,11(∞) = DP,22(∞) = u2
0TP

F

(√
1+m2

Tγ2−0.5mTγ

1+m2
Tγ2

)
DP,33(∞) = u2

0TP
F

(
1√

1+m2
Tγ2

) (A6)

• particle Lagrangian integral time scale in the i-th direction:

TP,11 = TP,22 =
DP,11(∞)

v2
11

= TP
F (St)

(
1+
√

1+γ2m2
T−0.5γ mT

)(
1+StT

√
1+γ2m2

T

)2

(1+m2
Tγ2)

(
1+StT

√
1+γ2m2

T−0.5γ mTStT

)
TP,33 =

DP,33(∞)

v2
33

= TP
F (St) 1+StT

√
1+γ2m2

T√
1+γ2m2

T

(A7)

As the previously expressions indicate, the heavy particles’ dispersion depends on
the inertia parameter St (characterizing the inertia’s particle for a given turbulence), the
drift velocity parameter γ and the turbulence structure parameter m.

When the heavy particle has a zero drift velocity (absence of external force), the
previously analytical expressions take simplified forms:
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• variances of the particle turbulent velocity in the i-th direction (zero drift velocity):

v2
11

u2
0
=

v2
22

u2
0
=

v2
33

u2
0
=

1(
1 + τs

TP
F (St)

) ; (A8)

• particle Lagrangian integral time scale in the i-th direction (zero drift velocity):

TP,11 = TP,22 = TP,33 = τs + TP
F (St); (A9)

• long time coefficient of the heavy particle in the i-th direction (zero drift velocity):

DP,11(∞) = DP,22(∞) = DP,33(∞) = u2
0TP

F (St). (A10)

In the case where the drag law is nonlinear, the above analytical expressions remain
valid insofar as the particle Stokesian relaxation time τs is replaced by the “effective”
particle relaxation time:

τp =
τs

f

where f is the nonlinear correction factor as proposed by Schiller and Naumann [37] (see
Section 2.2.2):

f = 1 + 0.15 (ReP)
0.687

ReP =
dp‖
→
v−→u

p
‖

ν f
=

dpvch
v f

,

with d as the heavy particle’s diameter, ρF and µF are, respectively, the density and the
dynamic viscosity of the fluid.

In Figure A1 are shown the Wang and Stock fluid correlation coefficients for different
values of the particle Stokesian relaxation time. These coefficients are all the more so
directional dependent as the relaxation time τs is large.
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Figure A1. Autocorrelation coefficients as proposed by Equation (A2).

The lateral autocorrelation coefficients (directions perpendicular to the fall direction)
can have negative loops, which are more pronounced for larger drift parameters.
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Nomenclature

dp Particle diameter
D f

ij Fluid turbulent diffusion coefficient
Dp

ij Particle turbulent diffusion coefficient

E f
Lij(ω) Lagrangian turbulent fluid energy spectrum

f Non-Stokesian drag correction factor
f (r) Longitudinal Eulerian space correlation function
g(r) Lateral Eulerian space correlation function
k Turbulent kinetic energy
le Typical eddy length scale
LEij Eulerian integral length scale (i and j directions)
L f Size of the largest eddies
m Structure parameter of turbulence
Rep Particle Reynolds number
R f

Eij(τ) Eulerian fluid correlation function related to i,j directions

R f
Lij(τ) Lagrangian fluid correlation function related to i,j directions

Rp
Lij(τ) Lagrangian particle correlation function related to i,j directions

St Stokes number
T f

Lij Lagrangian integral fluid time scale related to i,j directions
Tp

Lij Lagrangian integral particle time scale related to i,j directions
T0 Eddy turnover time
TE Eulerian integral time scale
TmE Moving Eulerian time
TCTE Characteristic time for the crossing-trajectories effect
TMax Interaction time as defined by Graham [ ]
u f (t) Turbulent fluid velocity
up

f (t) Turbulent fluid velocity at the particle position
u0 Root mean-square fluid velocity
u f (t) Turbulent fluid velocity
u2 Fluid velocity variance
v2 Particle velocity variance
v2

i Particle velocity variance
vch Mean particle-fluid drift velocity
→
Xp(t) Particle position

y2
2(t) Mean lateral square fluid point displacement

Greek symbols
η Kolmogorov length scale
ε Rate of dissipation of turbulence kinetic energy

Λi =
√

u2
i TLii Lagrangian integral length scale

µF Fluid dynamic viscosity
νF, ν kinematic viscosity of the fluid
ρF Fluid density
ρp Particle density
ρ Relative density ρp/ρF
τE Eulerian microscale (Taylor)
τL Lagrangian microscale (Taylor)
τη Kolmogorov time scale
τp Non-Stokesian relaxation time
τs Stokesian relaxation time
Superscript/subscript
f For fluid properties
p For particle properties
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Abbreviations

EIM Eddy Interaction Model
IE Inertial effect
RWM Random Walk Model
CE Continuity effect
CTE Crossing Interaction effect
HIST Homogeneous Isotropic Stationary Turbulence
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