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Abstract: The development of secondary instabilities in a boundary layer over a backward-facing
step is investigated numerically. Two step heights are considered, h/δ∗o = 0.5 and 1.0 (where δ∗o is the
displacement thickness at the step location), in addition to a reference flat-plate case. A case with a
realistic freestream-velocity distribution is also examined. A controlled K-type transition is initiated
using a narrow ribbon upstream of the step, which generates small and monochromatic perturbations
by periodic blowing and suction. A well-resolved direct numerical simulation is performed. The
step height and the imposed freestream-velocity distribution exert a significant influence on the
transition process. The results for the h/δ∗o = 1.0 case exhibit a rapid transition primarily due to the
Kelvin–Helmholtz instability downstream of step; non-linear interactions already occur within the
recirculation region, and the initial symmetry and periodicity of the flow are lost by the middle stage
of transition. In contrast, case h/δ∗o = 0.5 presents a transition road map in which transition occurs far
downstream of the step, and the flow remains spatially symmetric and temporally periodic until the
late stage of transition. A realistic freestream-velocity distribution (which induces an adverse pressure
gradient) advances the onset of transition to turbulence, but does not fundamentally modify the flow
features observed in the zero-pressure gradient case. Considering the budgets of the perturbation
kinetic energy, both the step and the induced pressure-gradient increase, rather than modify, the
energy transfer.

Keywords: DNS; transition; secondary instability; surface imperfection; backward-facing step

1. Introduction

Laminar-turbulent transition is a complex, multi-stage process, through which a
laminar flow becomes turbulent. The specific type of flow and the nature of the perturbation
determines the type of transition, and its associated physical mechanisms [1]. Transition in
boundary-layer flows can be categorized into two main classes, depending on the way it
is induced. The first of them usually occurs when environmental perturbations are small
(O(10−4) of the freestream velocity, U∞); this category typically includes the so-called
H- and K-type transition. It is usually associated with the formation and amplification
of Tollmien–Schlichting (T–S) waves, and involves the interaction of various instability
modes that eventually lead to breakdown of the laminar flow. The various stages of
the transition happen consecutively, up to the onset of turbulence. The second type is
associated with direct breakdown of the laminar flow, and normally arises when high
levels of perturbations (O(10−2) of U∞) are present; common sources of such perturbations
include surface roughness or freestream turbulence. The evolution of this type of transition
typically involves rapid and transient amplification of perturbations and bypasses the
slowly growing phases of T-S waves, and is known as bypass transition [1,2].

One important source of perturbation that can induce transition (following either of
the paths mentioned before) are the surface imperfections that are inevitable in flows in
engineering and the natural sciences. They may be due to the manufacturing process itself,
to damage to the surface (pitting, cavitation, ice accumulation ...) or to the geometry itself
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(terrain topology, vegetation). These imperfections may significantly affect the transition
process, and are the subject of this work. Another factor that may play a role is the
freestream pressure gradient, which occur, for example, over aircraft wings and engine
nacelles. An adverse pressure gradient is known to amplify the transition process, and the
combined effect of pressure gradient and surface imperfections may alter the transition
process very considerably. The combined effect of surface imperfections and freestream
pressure-gradients is the subject of this study. In the remainder of this Section the studies
of the effects of imperfections and adverse pressure-gradients are reviewed separately. The
objectives of this work will then be outlined.

1.1. Influence of Localized Surface Imperfections

Surface imperfections can be categorized based on their geometry. They can be two-
dimensional (such as forward- or backward-facing steps, cylinders, gaps and surface waviness)
or three-dimensional (for instance, spheres, cubes, or roughness elements, etc.) [3–6]. Surface
imperfections give rise to instability by one or more physical mechanisms, and those
associated with laminar separation [4,7–11] and crossflow vorticity [6,12–14] have attracted
much attention [3,15,16].

Dovgal & Kozlov [8] experimentally investigated the receptivity of the separation
region induced in the boundary layer by two-dimensional (2D) roughness; among the
geometries studied were square bumps, forward- and backward-facing steps (FFSs and
BFSs, respectively). They observed that, for the step sizes examined (h/δ99 = 0.16 and 0.38,
where h and δ99 represent the step height and undisturbed boundary-layer thickness), the
flow over a BFS was more destabilized compared to that over an FFS. Dovgal et al. [9] in-
vestigated this behavior theoretically using the Orr-Sommerfeld equation with a hyperbolic-
tangent mean-velocity profile. They showed that the growth-rate of the perturbation and
the range of unstable frequencies increased rapidly with the distance from the wall of the
inflection point.

Boiko et al. [17] studied experimentally the flow instability of a laminar separation
zone developed downstream of a roughness element; the element was rectangular in shape
and h/δ99 = 0.35. They observed that the frequencies and growth-rates of the propagating
perturbations are similar to those of inviscidly unstable free-shear flows. More specifically,
the perturbations within a recirculation zone seemed to rely mostly on the instability of the
mixing layer at its edge; this conjecture was consistent with result of the numerical study
by Nayfeh et al. [4] and Danabasoglu et al. [18].

An experiment by Wang [19] considered both steps and square bumps. The experi-
ment revealed that the mean flow was more severely distorted downstream than upstream
of the bump; the distortion range downstream of the bump was also larger in size. This
led to a higher amplification of instability waves in the downstream region. The flow field
upstream of the FFS and downstream of the BFS, in fact, is similar to than that in the region
upstream and downstream of the bump, which explained the difference in the sensitivity
to perturbations between forward- and backward-facing step. Wang & Gaster [20] investi-
gated the effects of the step on the boundary-layer transition more in detail. A correlation
between the transition Reynolds number (Re) and the relative step height was proposed
for both backward- and forward-facing steps. The authors also confirmed that the BFS
induced transition earlier than the FFS.

Duncan [21] studied the effect of steps on the boundary-layer transition on a swept
wing; both forward- and backward-facing steps were considered in wind tunnel and flight
test. It was conjectured that in both cases there is a critical step height, which depends
on the Re. Below it, the crossflow instability is dominant, while once above the threshold,
the Kelvin–Helmholtz (K–H) instability becomes primary. The critical height of the FFS
could be twice that of a BFS: up to hcrit/δ∗ ∼ 1.5 for FFS, and hcrit/δ∗ ∼ 0.6 for BFS (hcrit
and δ∗ denote the critical step height and the local undisturbed displacement thickness).
A recent work of Eppink et al. [14] studied the effects of a BFS on the transition of a
crossflow-dominated boundary layer; the experiment considered three step heights on a
swept flat plate, h/δ99 = 0.36, 0.45, and 0.49, respectively. The significant influence of h/δ99
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on the amplitude of unsteady perturbation was observed, whereas the influence over the
stationary crossflow vortex was limited. It was conjectured that the unsteady perturbation
was the determining factor in transition. The accelerated onset of transition due to the
step height was related to the change in transition mechanism, but this did not necessarily
bypass the slowly growing phases of primary perturbations. Eppink [22] experimentally
explored the effects of step shapes on transitional flow over a swept BFS (h/δ99 = 0.76);
the shape was modified by placing different ramps on the downstream face of the step.
The experiment demonstrated the effectiveness of a 5% ramp in delaying the transition
downstream of the step.

Hu et al. [23] investigated the supersonic transitional flow (Ma∞ = 1.7) over a BFS
using large eddy simulation. A fixed step height, h = 3δo (δo denotes the inflow boundary-
layer thickness), was used; no perturbation was introduced. Five distinct stages were
identified for the transition process downstream of the step where K-H, and then secondary
instability dominated. Hu et al. [24] incorporated perturbations in the domain considered
previously with two amplitudes introduced at the inflow boundary, A/U∞ = 0.1% and
1.0%, respectively. The first case was analyzed in detail and revealed the dominant roles
played by T-S and K-H modes simultaneously immediately downstream of the step. They
conjectured that the K-H instability essentially served as an amplifier when primary T-S
mode interacted with K-H mode initially; this amplification was consistent with observation
in an earlier experiment by Eppink et al. [13] on the interaction of crossflow instability
with a BFS (h/δ99 = 0.50). The vortex breakdown was observed to take place close to the
location of maximum enstrophy.

1.2. Influence of the Pressure Gradient

The freestream pressure-gradient plays an important role in boundary-layer transition,
as demonstrated in the early experiment by Schubauer & Skramstad [25]; the favorable
and adverse pressure-gradients (FPG/APG) respectively stabilized or destabilized initially
small perturbations. Flows with APGs often have inflectional velocity profiles and, there-
fore, are subject to both viscous and inviscid K-H instability. Wazzan et al. [26] investigated
the spatial stability of the Falkner–Skan similarity profiles systematically by solving the
Orr-Sommerfeld equations; the Hartree parameter βH = 2m/(m + 1) ranged from −0.1988
to 1.0; m is a dimensionless constant that determines the freestream-velocity profile (see
below). The results showed that the increased growth-rates of the perturbations were
related to the increases in the strength of the APG. Taghavi & Wazzan [27] focused on the
Falkner–Skan profiles that gave rise to the reverse flows. The results, however, showed
that the profile became more stable as βH decreased from −0.05 to −0.18. The authors
conjectured that this was due to the inflection-point locations in the wall-normal direction;
the profile with βH = −0.05 showed an inflection point 35% farther away from the wall,
compared to that with βH = −0.18.

Gostelow & Blunden [28] studied boundary-layer transition experimentally with both
zero pressure gradient (ZPG) and a range of APGs. They considered the intermittency
distribution, i.e., the percentage of time the boundary layer is turbulent. The transition
lengths for APGs were shown to be much shorter than that for the ZPG case and self-
similarity in intermittency distributions was observed. A later experimental work by Walker
& Gostelow [29] studied the effect of an APG on the nature and length of a transitional
boundary layer, and proposed a predictive correlation for transition that incorporated both
Re and pressure-gradient effects.

Kloker & Fasel [30] carried out a direct numerical simulation (DNS) of transition in
a decelerating boundary layer with a strong pressure gradient (βH = −0.18). A narrow
ribbon created small-amplitude, periodic perturbations leading to K-type transition. Com-
pared to a Blasius case, the transitional flow underwent a rapid breakdown process, more
complex in structure. The author examined the root-mean-square (rms) amplitude of the
streamwise perturbation component, u′rms, at different spanwise locations. At the late
stages, the disturbance grew faster in regions where u′rms was minimal (“valleys”) than in
the regions where it was high (“peaks”).
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Experiments by Mislevy & Wang [31] measured mean quantities in transitional, ther-
mal and momentum boundary layers. Borodulin et al. [32] experimentally investigated the
production mechanism at the late non-linear stages of transition in a self-similar APG bound-
ary layer (βH = −0.115); a 2D harmonic T-S wave (4% of local U∞), initially perturbed by
weak broadband disturbances, was introduced to initiate the transition. Formation and
evolution of flow structures were qualitatively similar to those seen in a similar ZPG case.
The authors conjectured that there exist a universal, essentially non-linear, mechanism for
the turbulence production in wall-bounded shear flows.

In a recent DNS study, Bose et al. [33] examined the bypass transition in an APG
boundary layer with βH = −0.14. Effects of the inflow freestream-turbulence (FST) inten-
sity and the disturbance spectrum on the transition were considered. At low FST intensity
(0.1% of inflow), the onset of transition was particularly sensitive to the inlet-disturbance
spectrum. Transition inception and completion were characterized by sporadic formation
and breakdown of Λ-shaped structures.

1.3. Scope of the Current Study

In the present study, we performed DNS of transitional boundary layers over BFS with
two step heights; K-type transition was initiated through a narrow vibrating ribbon. In
practical applications (the leading edge of engine nacelles, for instance) a pressure gradient
(usually adverse) is present, which may change the transition mechanisms. For this reason,
we also considered a freestream-velocity profile of the type encountered near the leading
edge of engine nacelles, a region where laminar flow can be maintained by appropriate
design. The freestream velocity induced a favorable and then adverse pressure gradient.
Since our study concentrates on the secondary instability, the simulations do not extend to
the fully developed turbulent-flow region.

Two primary objectives of our work were to seek understanding of the step-height
effect on the transitional process, and to evaluate the influence of a variable freestream
velocity. Time-dependent dynamics of transitional structures are not dealt with in the
present paper, although visualization of instantaneous flow structures is presented pro-
viding insight into the flow evolution. In the following we will first present the numerical
methodology in Section 2. Then we will validate the model in Section 3, prior to discussing
the results given in Section 4. Concluding in Section 5 remarks will end the paper.

2. Methodology

The equations of conservation of mass and momentum for the incompressible flow of
a Newtonian fluid are:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂

∂xk
(ukui) = −

1
ρ

∂p
∂xi

+ ν∇2ui. (2)

The indices i, j and k represent the streamwise, wall-normal and spanwise direction, re-
spectively (also denoted by x, y and z); the corresponding velocity components are u, v, and
w. ρ and ν denote fluid density and kinematic viscosity. p is the hydrodynamic pressure.

The governing Equations (1) and (2) are solved using NEK5000 [34,35]. This open-
source code is based upon the spectral element method (SEM) and is high-order in spatial
accuracy. It can model a wide range of problems, such as transitional and turbulent flows,
low-Mach-number compressible flows, passive scalar transport, etc. Spatial discretiza-
tion of velocity and pressure is implemented using a PN−PN−2 formulation. Here, PN is
the basis function for the velocity, i.e., Nth-order Lagrange interpolation polynomials on
the Gauss–Lobatto–Legendre quadrature points. PN−2 is the basis function for the pres-
sure, namely (N − 2)th-order Lagrange interpolation polynomials on the Gauss-Legendre
quadrature points (details regarding SEM can be found in [36]). The temporal discretization
uses a semi-implicit scheme in which the non-linear terms are treated explicitly and the
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linear ones implicitly. The implicit scheme is implemented using a backward-difference-
formulation with 2nd-order accuracy and Richardson extrapolation is applied as the explicit
scheme with the same order of accuracy (details regarding the temporal discretization
scheme are provided in [37]).

2.1. Flow Configuration

To investigate the effect of a BFS on the secondary instability, we performed DNSs
of the spatially developing boundary layer over a flat plate (h/δ∗o = 0.0) and BFSs with
two step heights, h/δ∗o = 0.5 and 1.0. A vibrating ribbon at the wall serves to introduce
perturbations by periodic blowing and suction; this approach was chosen for its efficiency
in generating relatively uncontaminated T-S waves [38]. Figure 1 shows a sketch of the com-
putational setup. δ∗o was the displacement thickness measured at Reδ∗o = U∞δ∗o /ν = 1000
over a flat plate, and served as the reference length. The specifications of the computational
domains are given in Table 1; each of the investigations employed approximately 200
million grid points. In the streamwise direction the domains in all cases extend beyond
the nonlinear-breakdown, but do not reach the location where fully developed turbulence
is achieved. In the wall-normal direction the domain height is at least 7.5δ99 at the end
of each domain. Periodic boundary conditions are used in z, and the spanwise width
is determined by the wavelength of the 3D perturbation initially imposed. We used a
wavenumber kz = 0.22, so that −π/kz ≤ z/δ∗o ≤ π/kz; this is equivalent to 4.3δ99 for
h/δ∗o = 0.0 and 0.5, and 3.0δ99 for h/δ∗o = 1.0 at the outlet, respectively. Two more calcula-
tions with BFSs were performed in which the domain was halved in the spanwise direction,
i.e., 0 ≤ z/δ∗o ≤ π/kz, and a symmetric condition was used in z. The effect of a realistic
freestream-velocity distribution Ue(x) (details given in Section 2.2) on the instability was
also investigated in a case with h/δ∗o = 0.5. A symmetry boundary condition was used in
this case. In the following sections, results of ZPG cases are discussed using full domains
with periodic boundary conditions unless otherwise stated.

Figure 1. Sketch of the geometry used for the calculations of the boundary layer over a backward-
facing step.

2.2. Boundary Conditions

No-slip conditions are applied at the walls. The velocity profile is prescribed at the
inflow for the ZPG cases; the inlet Reynolds number based on local displacement thickness
is Reδ∗ = 920, so that (in the flat-plate case) Reδ∗ = 1000 at the reference location, x = 0. In
the ZPG cases a Blasius profile was used, whereas in the case with a variable freestream
velocity we used a velocity distribution of the type encountered on engine nacelles. Many
studies[14,20,21,39,40] considered surface imperfections located between 10–30% of the
chord; we followed the same approach: the velocity at the inflow was taken from the
location at 16% of the chord, the imperfection was at 20% of the chord, and the outlet was
at 31% of the chord.
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Table 1. Numerical setup for the boundary layers over backward-facing steps. (S) denotes cases in
which symmetry boundary conditions were applied at z = 0.

Case h/δ∗
o h/δ99 Lx/δ∗

o × Ly/δ∗
o × Lz/δ∗

o Nx × Ny × Nz

Flat plate 0.0 0.0 350 × 75 × 2π/k 1184 × 449 × 337
Small step 0.5 0.175 250 × 75 × 2π/k 1254 × 470 × 337
Large step 1.0 0.350 250 × 75 × 2π/k 1254 × 491 × 337

Variable Ue (S) 0.5 0.175 200 × 40 × π/k 1590 × 393 × 169

Small step (S) 0.5 0.175 250 × 75 × π/k 1254 × 470 × 169
Large step (S) 1.0 0.350 250 × 75 × π/k 1254 × 491 × 169

A convective boundary condition is applied at the outflow:

[−pI + ν(∇u)] · n = 0. (3)

Here I is the identity matrix, u the velocity vector and n the unit normal to the
boundary. The farfield boundary also uses (3), except that it enforces a given freestream-
velocity distribution, Ue/U∞. For the ZPG case, the freestream velocity was equal to U∞.
The variable distribution of Ue/U∞ was provided by Bombardier Aerospace (Personal
communication), and corresponds to that encountered on an engine nacelle. The wall-
normal edge velocity, Ve, was obtained from conservation of mass, and the pressure
along the freestream boundary was obtained from the Bernoulli equation (details given
in Ref. [41]). As mentioned before, we only consider the region between 16% and 31%
of the nacelle chord-length. The freestream profile of velocity and the dimensionless
pressure parameter

K =
ν

U2
e

dUe

dx
(4)

are shown in Figure 2.

Figure 2. Freestream profiles of (a) velocity, Ue/U∞ and (b) pressure gradient, K; the top axis is in
chord length unit, x/c. The grey area shows the position of the step.

A spanwise extent of one wavelength with periodic boundary conditions is used for
the full domain. In the half-domain cases a symmetric condition is imposed in the spanwise
direction at z = 0. The use of symmetric conditions is justified to the non-linear stages of
the transition. Figure 3 compares the profiles of the skin-friction coefficient

C f =
2τw

ρU2
∞

, (5)

where τw is the wall shear stress. The agreement between full and half domains remains
good beyond the over-shoot; discrepancy then becomes non-negligible as C f evolves further
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downstream. Close to the peak of C f , a maximum discrepancy of 5.0% is observed. The
coherent structures are not really affected (Figure 4), and the local values of the second
moments differ, on average, by less than 2%, with only a small, very localized, peak of the
order of 15% occurring at centerline (not shown).

Figure 3. Skin−friction coefficient, C f : Full domain vs. Half domain. , Small step;
, large step. The solid line denotes the full domain, the dashed line the corresponding

half domain. Turbulent correlation [42].

Figure 4. Large step. Isosurfaces of λ2, colored by the magnitude of streamwise velocity, u/U∞;
λ2 = −3.0× 10−2. (a) Full domain; (b) half domain.

The wall-normal velocity over the simulated vibrating ribbon is prescribed as fol-
lows [43]:

v(x, z, t) = A1 f (x) sin(ωxt) + A2 f (x)g(z) sin(ωzt), (6)

where A1/U∞ = 0.2% and A2/U∞ = 0.05% are the amplitudes of the fundamental and
oblique waves. ωx and ωz are their frequencies; for K-type transition, ωx = ωz. The non-
dimensional frequency is F = ωxν/U2

∞ × 106 = 100. g(z) = cos(2πz/λz) is a spanwise
modulation function and λz = 2π/kz. f (x) is defined as:

f (x) = 15.1875ξ5 − 35.4375ξ4 + 20.25ξ3; (7)
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where ξ is given by:

ξ =
x− xR1

xc − xR1
for xR1 < x < xc, and (8)

ξ =
xR2 − x
xR2 − xc

for xc < x < xR2. (9)

xc = (xR1 + xR2)/2 is the center of vibrating ribbon, which extends from xR1 = −40δ∗o to
xR2 = −20δ∗o . For the frequency imposed the reference location corresponds to the most
unstable region in the neutral stability curve for a ZPG boundary layer.

3. Model Validation

NEK5000 has been extensively used for the simulation of transitional flows [41,44–46];
we further validated the model by considering the evolution of small perturbations in
a 2D boundary layer, by testing the freestream boundary condition to verify that the
favorable and adverse pressure-gradients were implemented correctly, and by performing
a grid-convergence study.

A Blasius boundary layer was first simulated with Re∗δ = 400 at the inlet and
Re∗δ = 1225 at the outlet; 7th-order polynomials were used. Figure 5 shows the ampli-
fication of the perturbation, quantified using the integral in the wall-normal direction of
twice the perturbation kinetic energy (PKE) K, i.e.,

A =
∫ ∞

0
2Kdy =

∫ ∞

0
(u′2 + v′2)dy, (10)

where overbar denotes the time average over one period of the vibrating ribbon. We
considered a frequency F = 140× 10−6 for the instability waves with an initial amplitude
A1 = 1× 10−4U∞, to compare with Case 1 in Ref. [43]. Good agreement with the reference
data is achieved and the locations of Branch I and Branch II are consistent with the results
in the literature [26,47–49]. The perturbation amplitude profiles (not shown here) were also
in very good agreement with those in the literature.

Figure 5. Amplification curves; Are f is evaluated at the Branch I location, Reδ∗ = 605. 2D
DNS; Fasel & Konzelmann [43].

We then validated the implementation of the freestream boundary condition by per-
forming the simulation of a laminar Falkner–Skan flow. At the inflow, Re∗δ = 800 and the
exact velocity profile was prescribed. U∞(x) at the freestream is given by:

U∞(x) =
(

1 +
x
xo

)m
, (11)

where xo is the distance between the leading edge of the flat plate and the inlet of the
domain, and m = −0.065 was used (corresponding to βH = −0.14). The base flow was
in excellent agreement with the exact solution, and, when a perturbation with frequency



Fluids 2022, 7, 35 9 of 18

F = 140× 10−6 and amplitude A = 1× 10−7Uo (Uo denotes the freestream velocity at
inflow) was introduced, the predicted Branch II location agreed well with the data from the
spatial stability analysis [26,50]; the discrepancy was around 9%.

The grid was refined near the step by decreasing the size of each spectral element
by 5% upstream of the step, and then increasing it again by 5% downstream of the step.
The elements were also stretched by 5% in y, and constant in z. Near the step, ∆xmin/δ∗o ×
∆ymin/δ∗o × ∆z/δ∗o = 0.0130× 0.0106× 0.080. A grid-convergence study was performed
for the large-step case by comparing 5th- and 7th-order polynomials. A comparison of two
polynomial-order results is shown in Figure 6; C f was averaged over eight perturbation
periods. Very minor discrepancies between two profiles are observed, indicating that
7th-order polynomials are appropriate for the present study.

Figure 6. Skin−friction coefficient, C f , for the large-step case. 7th−order polynomials;
5th−order polynomials.

4. Results
4.1. Evolution of Skin-Friction

Figure 7 presents the evolution of C f . The BFS causes early onset of transition, com-
pared with the flat-plate case, and the APG caused by the variable freestream velocity
further increases the instability of the flow. In the step cases, Figure 7a, non-linear effects
start appearing within the recirculation region, where the amplitude of the perturbation
begins to exceed 1% of U∞. For the small step, the disturbance growth is not large enough
to modify the size of the recirculation region, and, overall, the C f profile evolves similarly
to that of flat plate. The large step destabilizes the flow the most. Not only it reduces the
size of the recirculation region but also modifies the overall behavior of C f , which no longer
resembles that of the flat-plate case. This change reflects the extensive role played by K-H
instability mechanisms at the initial stages of transition. Regardless of the step size, the
flow remains convectively unstable. In the recirculation regions the peak reverse-flow is
less than 4% of local U∞, too weak to cause local absolute instability [51–53]. Figure 7b
compares the variable-Ue case with the corresponding ZPG case. The APG after the step
further advances the inception of transition and increases the profile slope of C f . The
recirculation region is slightly longer, but the peak reverse velocities are similar, close to
2.0% of the local Ue.

4.2. Mean Velocity and Perturbation Amplitude

Figure 8 shows the mean velocity and the rms profiles of u′ at selected locations. In the
recirculation region, Figure 8a, the mean-velocity profiles collapse above the local inflection
point in the ZPG cases; the separated-flow zone only displaces the flow upward, but does
not change the velocity profile. The case with variable Ue has a fuller velocity profile,
reflecting the FPG upstream of the step. More significant differences can be observed
in the reattachment zone and beyond, Figure 8b. The small-step case returns towards a
Blasius-like profile earlier than the large-step case, and the variable-Ue case maintains its
FPG-like shape. Further downstream, Figure 8c, the mean-velocity profiles begin to diverge,
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as the large-step case moves towards a turbulent-like profile faster than the other cases; the
velocity profile matches the standard equilibrium logarithmic-law slightly beyond the peak
of the over-shoot, i.e., at x/δ∗o = 170, although the C f is still 5.5% higher than the turbulent
correlation. In the small-step cases the mean-velocity profiles approach, but never reach, a
logarithmic behavior.

Figure 7. Skin−friction coefficient, C f . (a) Step-height effect; (b) influence of variable Ue. Flat plate;
, small step; , large step; , small step, variable Ue. The solid line

is the transitional flow, the dashed line the corresponding laminar flow. Turbulent correlation [42].

The u′rms profiles initially present a typical two-peak structure characteristic of T-S
waves, Figure 8d; in the recirculation region, however, a third peak (Peak 3 ) appears
immediately downstream of the steps, in correspondence of the inflection point observed
in Figure 8a; the destabilization mechanism switches from viscous instability to a combi-
nation of viscous and K-H instability. Peak 3 increases in amplitude as the perturbation

propagates downstream and eventually exceeds Peak 2 , Figures 8e,f, indicating that the
viscous instability is becoming predominant. Non-linear effects are generally considered
negligible if u′rms < 0.01Ue. This occurs well within the recirculation region, compared
with a flat-plate case in which it would not occur until x/δ∗o = 58. Additionally, note how
the APG causes the intermediate peak 2 to grow faster than in the ZPG small-step case,
so that the u′rms levels are comparable to those of the more unstable large-step case. The
intermediate peak persists longer in the large-step case, Figure 8e, as a consequence of the
longer recirculation region and its associated shear-layer instability. Further downstream,
Figure 8f, the profiles tend towards the standard turbulent shape and magnitude (in outer
units), since the wall stress is significantly lower than the turbulent one; however, the peak
u′rms is much higher than the turbulent one in wall units.
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Figure 8. Profiles of (a–c) mean velocity and (d–f) u′rms at selected locations. Small step;
small step, variable Ue; , large step.

Figure 9 shows contours of u′rms. Peak 2 propagates along the inflection point,

∂2U/∂y2 = 0 while peak 3 moves away from the wall, and eventually merges with peak

2 . The growth of the perturbation along the inflection point reflects the important role
played by the K-H instability mechanism in the transition process. In the small-step case,
the combined effect of separation and APG yields a more unstable flow in the variable-Ue
case. This behavior is typical of transition in a separation bubble; the perturbation grows
in the outer region of the recirculation where the separated shear-layer is unstable via
the inviscid K-H instability, while in the inner region the reversed flow near the wall is
susceptible to the viscous instability [11,54].

4.3. Instantaneous Flow Structures

Figures 10–12 show the instantaneous vortical structures inside the boundary layer.
The iso-surfaces are visualized using the λ2 criterion [55] (λ2 is the middle eigenvalue
of the strain-rate tensor), colored by the magnitude of the streamwise velocity (u/Ue
for the variable Ue case); various values of λ2 are used to highlight the flow features
in different regions. In the large-step case (Figure 10) a large-scale Λ-shaped vortical
structure spans the domain. This structure evolves from the spanwise vortices formed
immediately downstream of the step as a result of the K-H instability of the separated shear-
layer [23], Figure 10b. These vortices form kinks that stretch and lift up due to self-induction,
eventually resulting in hairpin-shaped structures, Figure 10c. Shortly after the hairpin
head is lifted up small-scale structures start to form, eventually leading to a turbulent-like,
random distribution of hairpins. In the small-step case, the vortical structures evolve
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similarly to those in the large-step one near the step, Figure 11b. The smaller recirculation
region, however, limits the development of the 2D rollers; the formation and breakdown of
the hairpin vortices are, therefore, delayed. Although the small step accelerates the onset of
transition, the overall evolution of the flow structures resembles that of a conventional flat
plate, Figure 11a; the characteristic aligned pattern of Λ-shaped vortices, typical of K-type
transition, is clear. The variable Ue further accelerates the transition process, Figure 12,
without modifying the coherent structures.

Figure 9. Contours of u′rms. (a) Large step; (b) small step; (c) small step, variable Ue.
∂2U/∂y2 = 0; ∂U/∂y = 0. Different scales are used on x and y axes.

Figure 10. Large step. Isosurfaces of λ2, colored by the magnitude of streamwise velocity, u/U∞.
(a) λ2 = −2.0× 10−2; (b) λ2 = −2.5× 10−4; (c) λ2 = −2.5× 10−3; (d) λ2 = −2.5× 10−2.

Figures 13–15 show contours of the instantaneous streamwise velocity, u/U∞, in the
xz−plane at y/δ∗o = 1.0 for the ZPG cases. Please note that the flat-plate case has been
shifted so that the location where the domain ends is the same for all cases. Two instants
separated by one period of the vibrating ribbon, T, are shown. The flat-plate case (Figure 13)
exhibits both periodicity in time and symmetry throughout the domain. The small-step
case (Figure 14), on the other hand, begins to lose periodicity by x/δ∗o = 150 (corresponding
to x/δ∗o = 250 in the flat-plate case); the flow field remains symmetric to the end of the
domain. In the large-step case (Figure 15) the shear-layer instability discussed before causes
the non-linear effects to become significant much earlier, and the flow loses both periodicity
and symmetry by x/δ∗o = 95.
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Figure 11. Small step. Isosurfaces of λ2, colored by the magnitude of streamwise velocity, u/U∞.
(a) λ2 = −2.0× 10−2; (b) λ2 = −2.5× 10−4; (c) λ2 = −5.0× 10−4; (d) λ2 = −1.0× 10−2.

Figure 12. Small step, variable Ue. Isosurfaces of λ2, colored by the magnitude of streamwise velocity,
u/Ue. (a) λ2 = −2.0× 10−2; (b) λ2 = −1.5× 10−4; (c) λ2 = −3.0× 10−4; (d) λ2 = −1.0× 10−2.

Figure 13. Flat plate. Instantaneous streamwise velocity in the ywall/δ∗o = 1.0 plane. (a) Velocity
contours; (b) velocity profiles at the locations indicated by dashed lines in (a). t = to;
t = to + T.
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Figure 14. Small step. Instantaneous streamwise velocity in the ywall/δ∗o = 1.0 plane. (a) Velocity
contours; (b) velocity profiles at the locations indicated by dashed lines in (a). t = to;
t = to + T.

Figure 15. Large step. Instantaneous streamwise velocity in the ywall/δ∗o = 1.0 plane. (a) Velocity
contours; (b) velocity profiles at the locations indicated by dashed lines in (a). t = to;
t = to + T.

4.4. Perturbation Kinetic-Energy Budgets

The transport equation of the perturbation kinetic energy (PKE), K = 〈u′iu′i〉/2 (angle
brackets denote averaging over time and the spanwise direction) is given by [56]:

∂K
∂t

+
∂

∂xk
(〈Uk〉K)︸ ︷︷ ︸

C

=− 〈u′iu′k〉
∂〈Ui〉
∂xk︸ ︷︷ ︸

P

− 1
2

∂

∂xk
〈u′iu′k〉︸ ︷︷ ︸
T

− 1
ρ

∂

∂xk

〈
p′u′k

〉
︸ ︷︷ ︸

Πt

− ν

〈
∂u′i
∂xk

∂u′i
∂xk

〉
︸ ︷︷ ︸

ε

+ ν∇2K︸ ︷︷ ︸
D

, (12)

where P is the production, ε the pseudo-dissipation, D the viscous diffusion, T the turbulent
transport, Πt the pressure transport, and C the convection, respectively.

The budget terms at x/δ∗o = 10 are shown in Figure 16. At the streamwise location
selected the weakly non-linear effects initially occur in the step cases; terms are scaled using
ν and local Ue. Pressure transport dominates as a gain term, balancing viscous diffusion
immediately above the wall; this balance extends to the edge of inner layer, y/δ∗99 = 0.1,
before pressure transport switches signs and balances production and convection. As
distance further increases, pressure work and convection reach a balance, which is main-
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tained beyond the edge of the boundary layer. Neither the step height, Figures 16a,c, nor
the freestream pressure gradient, Figure 16b, modify the budget characteristics; only the
magnitude of the various terms is increased. The production, which represents the energy
transfer from the mean flow to the perturbations, always has a peak near the inflection
point (the second vertical line in Figures 16a–c); this phenomenon is observed throughout
the flow field, as indicated in Figure 16d which shows the region of high production always
straddling the inflection point. Finally, unlike what is observed in equilibrium boundary
layers, the convection here plays a significant role, transferring energy away from the
wall, and pressure work balances the production through most of the boundary layer, but
changes sign and becomes the predominant gain term in the outer region of the flow.

Figure 16. Budget ofK at x/δ∗o = 10. (a) Small step; (b) small step, variable Ue; (c) large step; (d) large
step; contours of K budget terms near the step. P; ε; D; C; T;

Πt; ∂2U/∂y2 = 0; ∂U/∂y = 0.

5. Conclusions

We performed direct numerical simulations of transitional boundary layers over a
backward-facing step with two step heights. We also considered a freestream-velocity
profile of the type encountered on the engine-nacelle lip; this induced a favorable and then
adverse pressure gradient in the domain. Our investigation sought to explore the effect of
the backward-facing step sizes and evaluate the influence of an induced pressure-gradient
on the secondary instability and, therefore, the domain only extended to the non-linear
breakdown region. A controlled K-type transition was induced using a narrow ribbon
upstream of the step that introduced small and monochromatic perturbations by periodic
blowing and suction.

First, we found that the step height and the variable freestream velocity influenced the
transition to turbulence significantly. In the large-step case, in particular, rapid transition
occurred primarily due to the Kelvin–Helmholtz instability downstream of step. The
non-linear interactions initially occurred within the recirculation region, and large-scale Λ-
shaped vortical structure were formed. Second, we observed that the initial symmetry and
periodicity of the flow broke down by the middle stage of transition where the slope of the
skin-friction profile increased. The step height and freestream-velocity distribution affected
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the location where this occurred. In contrast, we observed that in the small-step case
transition occurs far downstream of the step, and the flow remained spatially symmetric
and temporally periodic until the late stages of transition. Although the transition to
turbulence was promoted significantly, the overall evolution of the flow field (i.e., skin-
friction profile and coherent structures) resembled that of a flat-plate case. The effect of a
variable freestream velocity also advanced the onset of transition to turbulence, but did not
fundamentally modify the flow features, compared with the corresponding zero-pressure-
gradient step case. From the budget analysis, effects of a backward-facing step and induced
pressure-gradient both increase, rather than modify, the energy transfer from mean flow to
perturbations; this primarily occurs along the inflection point near the step.

The present work was limited to the K-type transition; the step heights considered
and the variable freestream velocity may introduce different physical mechanisms when
the instability mechanisms are different (bypass transition or crossflow instability, for
instance). These are issues that require further attention. In the future, other types of surface
imperfections (forward-facing steps, cavities, undulations etc.) need to be considered, to
evaluate whether they simply change the location of the onset of transition, or if they alter
its mechanisms. Three-dimensional shapes (such as those produced by ice depositions)
also need to be studied.
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